Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs

Author(s): Marcel Hrubša, Khondekar Nurjamal, Alejandro Carazo, Nayana Nayek, Jana Karlíčková, Lenka Applová, Indrajit Karmakar, Shamima Parvin, Jaka Fadraersada, Kateřina Macáková, Přemysl Mladěnka* and Goutam Brahmachari*

Volume 18, Issue 5, 2022

Published on: 11 January, 2022

Page: [536 - 543] Pages: 8

DOI: 10.2174/1573406417666211026150658

Price: $65

Abstract

Background: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported.

Objective: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action.

Methods: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined.

Results: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase- 1.

Conclusion: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.

Keywords: Pyridopyrimidine, indole, acridine, coumarin, aggregation, coagulation.

Graphical Abstract

[1]
Saraf, S.; Bensalha, I.; Gorog, D.A. Antiplatelet resistance-does it exist and how to measure it? Clin. Med. Cardiol., 2009, 3, 77-91.
[http://dx.doi.org/10.4137/CMC.S2159] [PMID: 20508768]
[2]
Topçuoglu, M.A.; Arsava, E.M.; Ay, H. Antiplatelet resistance in stroke. Expert Rev. Neurother., 2011, 11(2), 251-263.
[http://dx.doi.org/10.1586/ern.10.203] [PMID: 21306212]
[3]
Alexopoulos, D.; Xanthopoulou, I.; Mylona, P.; Perperis, A.; Panagiotou, A.; Dimitropoulos, G.; Tsigkas, G.; Hahalis, G.; Davlouros, P. Prevalence of contraindications and conditions for precaution for prasugrel administration in a real world acute coronary syndrome population. J. Thromb. Thrombolysis, 2011, 32(3), 328-333.
[http://dx.doi.org/10.1007/s11239-011-0610-9] [PMID: 21681393]
[4]
Cattaneo, M. Response variability to clopidogrel: is tailored treatment, based on laboratory testing, the right solution? J. Thromb. Haemost., 2012, 10(3), 327-336.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04602.x] [PMID: 22221409]
[5]
Kalantzi, K.I.; Tsoumani, M.E.; Goudevenos, I.A.; Tselepis, A.D. Pharmacodynamic properties of antiplatelet agents: cur-rent knowledge and future perspectives. Expert Rev. Clin. Pharmacol., 2012, 5(3), 319-336.
[http://dx.doi.org/10.1586/ecp.12.19] [PMID: 22697594]
[6]
Jayakumar, T.; Yang, C-H.; Geraldine, P.; Yen, T-L.; Sheu, J-R. The pharmacodynamics of antiplatelet compounds in thrombosis treatment. Expert Opin. Drug Metab. Toxicol., 2016, 12(6), 615-632.
[http://dx.doi.org/10.1080/17425255.2016.1176141] [PMID: 27055051]
[7]
Flores-García, M.; Fernández-G, J.M.; Busqueta-Griera, C.; Gómez, E.; Hernández-Ortega, S.; Lamothe-Flores, J.C.D.; Gómez-Vidales, V.; Mejía-Domínguez, A.M.; Anglés-Cano, E.; de la Peña-Díaz, A. New copper compounds with an-tiplatelet aggregation activity. Med. Chem., 2019, 15(8), 850-862.
[http://dx.doi.org/10.2174/1573406415666190222123207] [PMID: 30799791]
[8]
Moura, L.A.; de Almeida, A.C.; da Silva, A.V.; de Souza, V.R.; Ferreira, V.F.; Menezes, M.V.; Kaiser, C.R.; Ferreira, S.B.; Fuly, A.L. Synthesis, anticlotting and antiplatelet effects of 1,2,3-triazoles derivatives. Med. Chem., 2016, 12(8), 733-741.
[http://dx.doi.org/10.2174/1573406412666160502153417] [PMID: 27140186]
[9]
Cacciari, B.; Crepaldi, P.; Cheng, C.Y.; Bossi, E.; Spalluto, G.; Federico, S.; Jacobson, K.A.; Cattaneo, M. Structure activity relationship of 4-amino-2-thiopyrimidine derivatives as plate-let aggregation inhibitors. Med. Chem., 2019, 15(8), 863-872.
[http://dx.doi.org/10.2174/1573406415666190208124534] [PMID: 30734681]
[10]
Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Begam, S.; Nayek, N.; Mandal, B. Development of a water-mediated and catalyst-free green protocol for easy access to a huge array of diverse and densely functionalized pyrido[2,3-d:6,5-d′]dipyrimidines via one-pot multicomponent reaction under ambient conditions. ACS Sustainable Chem. Eng., 2017, 5(10), 9494-9505.
[http://dx.doi.org/10.1021/acssuschemeng.7b02696]
[11]
Brahmachari, G.; Khondekar, N. Trisodium citrate dihydrate-catalyzed one-pot three-component synthesis of biologically relevant diversely substituted 2-amino-3-cyano-4-(3- indol-yl)-4H-chromenes under eco-friendly conditions. Curr. Green Chem., 2016, 3(3), 248-258.
[http://dx.doi.org/10.2174/2213346104666170306100839]
[12]
Brahmachari, G.; Begam, S.; Nurjamal, K. Sulfamic acid-catalyzed one-pot synthesis of a new series of biologically relevant indole-uracil molecular hybrids in water at room temperature. ChemistrySelect, 2018, 3(12), 3400-3405.
[http://dx.doi.org/10.1002/slct.201800488]
[13]
Brahmachari, G.; Begam, S.; Nurjamal, K. Bismuth nitrate catalyzed one-pot multicomponent synthesis of a novel series of diversely substituted 1,8-dioxodecahydroacridines at room temperature. ChemistrySelect, 2017, 2(11), 3311-3316.
[http://dx.doi.org/10.1002/slct.201700265]
[14]
Brahmachari, G.; Mandal, M.; Karmakar, I.; Nurjamal, K.; Mandal, B. Ultrasound-promoted expedient and green synthe-sis of diversely functionalized 6-amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1H,3H)-diones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustainable Chem. Eng., 2019, 7(6), 6369-6380.
[http://dx.doi.org/10.1021/acssuschemeng.9b00133]
[15]
Brahmachari, G.; Nayek, N. Catalyst-free one-pot three-component synthesis of diversely substituted 5-Aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-triones under ambient conditions. ACS Omega, 2017, 2(8), 5025-5035.
[http://dx.doi.org/10.1021/acsomega.7b00791] [PMID: 31457779]
[16]
Brahmachari, G.; Karmakar, I.; Nurjamal, K. Ultrasound-assisted expedient and green synthesis of a new series of di-versely functionalized 7-aryl/heteroarylchromeno[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-ones via one-pot multicom-ponent reaction under sulfamic acid catalysis at ambient con-ditions. ACS Sustainable Chem. Eng., 2018, 6(8), 11018-11028.
[http://dx.doi.org/10.1021/acssuschemeng.8b02448]
[17]
Brahmachari, G.; Begam, S. An efficient and eco-friendly catalyst for one-pot synthesis of diversely functionalized bis-coumarins in aqueous medium under ambient conditions. ChemistrySelect, 2019, 4(19), 5415-5420.
[http://dx.doi.org/10.1002/slct.201900961]
[18]
Brahmachari, G.; Nayek, N. A facile synthetic route to biolog-ically relevant substituted 1,4-naphthoquinonyl-2-oxoindolinyl-pyrimidines under metal-free organocatalytic conditions. ChemistrySelect, 2018, 3(13), 3621-3625.
[http://dx.doi.org/10.1002/slct.201800462]
[19]
Heber, D.; Heers, C.; Ravens, U. Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Pharmazie, 1993, 48(7), 537-541.
[PMID: 7692456]
[20]
Zheng, G.Z.; Lee, C.; Pratt, J.K.; Perner, R.J.; Jiang, M.Q.; Gomtsyan, A.; Matulenko, M.A.; Mao, Y.; Koenig, J.R.; Kim, K.H.; Muchmore, S.; Yu, H.; Kohlhaas, K.; Alexander, K.M.; McGaraughty, S.; Chu, K.L.; Wismer, C.T.; Mikusa, J.; Jarvis, M.F.; Marsh, K.; Kowaluk, E.A.; Bhagwat, S.S.; Stewart, A.O. Pyridopyrimidine analogues as novel adenosine kinase inhibi-tors. Bioorg. Med. Chem. Lett., 2001, 11(16), 2071-2074.
[http://dx.doi.org/10.1016/S0960-894X(01)00375-4] [PMID: 11514141]
[21]
Leoncini, G.; Signorello, M.G.; Roma, G.; Di Braccio, M. Effect of 2-(1-piperazinyl)-4H-pyrido[1,2-a]pyrimidin-4-one (AP155) on human platelets in vitro. Biochem. Pharmacol., 1997, 53(11), 1667-1672.
[http://dx.doi.org/10.1016/S0006-2952(97)00019-1] [PMID: 9264319]
[22]
Park, M-K.; Rhee, Y-H.; Lee, H-J.; Lee, E-O.; Kim, K.H.; Park, M-J.; Jeon, B-H.; Shim, B.; Jung, C-H.; Ahn, K.; Kim, S-H. Antiplatelet and antithrombotic activity of indole-3-carbinol in vitro and in vivo. Phytotherapy research, 2008, 22, 58-64.
[PMID: 17724769]
[23]
Mirfazli, S.S.; Kobarfard, F.; Firoozpour, L.; Asadipour, A.; Esfahanizadeh, M.; Tabib, K.; Shafiee, A.; Foroumadi, A. N-substituted indole carbohydrazide derivatives: synthesis and evaluation of their antiplatelet aggregation activity. Daru, 2014, 22(1), 65.
[http://dx.doi.org/10.1186/s40199-014-0065-6] [PMID: 25238875]
[24]
Faghih Akhlaghi, M.; Amidi, S.; Esfahanizadeh, M.; Daeihamed, M.; Kobarfard, F. Synthesis of N-arylmethyl substituted indole derivatives as new antiplatelet aggregation agents. Iran. J. Pharm. Res., 2014, 13(Suppl.), 35-42.
[PMID: 24711827]
[25]
Hannun, Y.A.; Bell, R.M. Aminoacridines, potent inhibitors of protein kinase C. J. Biol. Chem., 1988, 263(11), 5124-5131.
[http://dx.doi.org/10.1016/S0021-9258(18)60688-X] [PMID: 3258596]
[26]
Najmanová, I.; Doseděl, M.; Hrdina, R.; Anzenbacher, P.; Filipský, T.; Říha, M.; Mladěnka, P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr. Top. Med. Chem., 2015, 15(9), 830-849.
[http://dx.doi.org/10.2174/1568026615666150220112437] [PMID: 25697565]
[27]
Lidbury, P.S.; Cirillo, R.; Vane, J.R. Dissociation of the anti-ischaemic effects of cloricromene from its anti-platelet activi-ty. Br. J. Pharmacol., 1993, 110(1), 275-280.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13805.x] [PMID: 8220889]
[28]
Kontogiorgis, C.; Nicolotti, O.; Mangiatordi, G.F.; Tognolini, M.; Karalaki, F.; Giorgio, C.; Patsilinakos, A.; Carotti, A.; Hadjipavlou-Litina, D.; Barocelli, E. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin de-rivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 925-933.
[http://dx.doi.org/10.3109/14756366.2014.995180] [PMID: 25807297]
[29]
Jain, M.; Surin, W.R.; Misra, A.; Prakash, P.; Singh, V.; Khanna, V.; Kumar, S.; Siddiqui, H.H.; Raj, K.; Barthwal, M.K.; Dikshit, M. Antithrombotic activity of a newly synthe-sized coumarin derivative 3-(5-hydroxy-2,2-dimethyl-chroman-6-yl)-N-{2-[3-(5-hydroxy-2,2-dimethyl-chroman-6-yl)-propionylamino]-ethyl}-propionamide. Chem. Biol. Drug Des., 2013, 81(4), 499-508.
[http://dx.doi.org/10.1111/cbdd.12000] [PMID: 23534412]
[30]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their deriva-tives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[31]
Chang, T-S.; Kim, H-M.; Lee, K-S.; Khil, L-Y.; Mar, W-C.; Ryu, C-K.; Moon, C-K. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-[(4-cyanophenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Biochem. Pharmacol., 1997, 54(2), 259-268.
[http://dx.doi.org/10.1016/S0006-2952(97)00179-2] [PMID: 9271330]
[32]
Mladěnka, P.; Karlíčková, J.; Hrubša, M.; Veljović, E.; Muratović, S.; Carazo, A.; Shivling Mali, A.; Špirtović-Halilović, S.; Saso, L.; Pour, M.; Durić, K. Interaction of 2,6,7-trihydroxy-xanthene-3-ones with iron and copper, and biological effect of the most active derivative on breast cancer cells and eryth-rocytes. Appl. Sci. (Basel), 2020, 10(14), 4846.
[http://dx.doi.org/10.3390/app10144846]
[33]
Pourová, J.; Applová, L.; Macáková, K.; Vopršalová, M.; Migkos, T.; Bentanachs, R.; Biedermann, D.; Petrásková, L.; Tvrdý, V.; Hrubša, M.; Karlíčková, J.; Křen, V.; Valentová, K.; Mladěnka, P. The effect of silymarin flavonolignans and their sulfated conjugates on platelet aggregation and blood vessels ex vivo. Nutrients, 2019, 11(10), 2286.
[http://dx.doi.org/10.3390/nu11102286] [PMID: 31554252]
[34]
Cayman Chemical Company, Thromboxane B2 ELISA Kit. Available from: https://www.caymanchem.com/product/501020
[35]
Cayman Chemical Company, COX (ovine/human) Inhibitor Screening Assay Kit. Available from: https://www.caymanchem.com/product/560131/cox-(ovine-human)-inhibitor-screening-assay-kit
[36]
Broos, K.; Feys, H.B.; De Meyer, S.F.; Vanhoorelbeke, K.; Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev., 2011, 25(4), 155-167.
[http://dx.doi.org/10.1016/j.blre.2011.03.002] [PMID: 21496978]
[37]
Hall, E.R.; Tuan, W.M.; Venton, D.L. Production of platelet thromboxane A2 inactivates purified human platelet throm-boxane synthase. Biochem. J., 1986, 233(3), 637-641.
[http://dx.doi.org/10.1042/bj2330637] [PMID: 3707514]
[38]
Zhang, J.; Yang, J.; Chang, X.; Zhang, C.; Zhou, H.; Liu, M. Ozagrel for acute ischemic stroke: a meta-analysis of data from randomized controlled trials. Neurol. Res., 2012, 34(4), 346-353.
[http://dx.doi.org/10.1179/1743132812Y.0000000022] [PMID: 22643078]
[39]
Arii, K.; Igarashi, H.; Arii, T.; Katayama, Y. The effect of ozagrel sodium on photochemical thrombosis in rat: therapeu-tic window and combined therapy with heparin sodium. Life Sci., 2002, 71(25), 2983-2994.
[http://dx.doi.org/10.1016/S0024-3205(02)02165-3] [PMID: 12384182]
[40]
Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin en-doperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. The Ridogrel versus Aspirin Patency Trial (RAPT). Circulation, 1994, 89(2), 588-595.
[http://dx.doi.org/10.1161/01.CIR.89.2.588] [PMID: 8313547]
[41]
van der Wieken, L.R.; Simoons, M.L.; Laarman, G.J.; Van den Brand, M.; Nijssen, K.M.; Dellborg, M.; Hermens, W.; Vrolik, W. Ridogrel as an adjunct to thrombolysis in acute myocardial infarction. Int. J. Cardiol., 1995, 52(2), 125-134.
[http://dx.doi.org/10.1016/0167-5273(95)02476-D] [PMID: 8749872]
[42]
Vanden Bossche, H.; Willemsens, G.; Bellens, D.; Janssen, P.A. Ridogrel: a selective inhibitor of the cytochrome P450-dependent thromboxane synthesis. Biochem. Pharmacol., 1992, 43(4), 739-744.
[http://dx.doi.org/10.1016/0006-2952(92)90238-E] [PMID: 1540227]
[43]
Green, D.; Miller, V. The role of dipyridamole in the therapy of vascular disease. Geriatrics, 1993, 48(1), 46-, 51-53, 57-58.
[PMID: 8419269]
[44]
Eisert, W.G. Dipyridamole in antithrombotic treatment. Adv. Cardiol., 2012, 47, 78-86.
[http://dx.doi.org/10.1159/000338053] [PMID: 22906904]
[45]
Ally, A.I.; Manku, M.S.; Horrobin, D.F.; Morgan, R.O.; Karmazin, M.; Karmali, R.A. Dipyridamole: a possible potent inhibitor of thromboxane A2 synthetase in vascular smooth muscle. Prostaglandins, 1977, 14(3), 607-609.
[http://dx.doi.org/10.1016/0090-6980(77)90278-7] [PMID: 905584]
[46]
Schrör, K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin. Thromb. Hemost., 1997, 23(4), 349-356.
[http://dx.doi.org/10.1055/s-2007-996108] [PMID: 9263351]
[47]
Chitapanarux, T.; Lertprasertsuke, N.; Kongnak, A. Teprenone for the prevention of low-dose aspirin-induced gastric mucosal injury in Helicobacter pylori-negative pa-tients. Scand. J. Gastroenterol., 2019, 54(10), 1199-1204.
[http://dx.doi.org/10.1080/00365521.2019.1672781] [PMID: 31591940]
[48]
Floyd, C.N.; Ferro, A. Indications for anticoagulant and an-tiplatelet combined therapy. BMJ, 2017, 359, j3782.
[http://dx.doi.org/10.1136/bmj.j3782] [PMID: 28982662]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy