Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Role of miRNAs in Cancer Diagnostics and Therapy: A Recent Update

Author(s): Adil A. Sayyed, Piyush Gondaliya, Palak Bhat, Mukund Mali, Neha Arya*, Amit Khairnar* and Kiran Kalia*

Volume 28, Issue 6, 2022

Published on: 14 December, 2021

Page: [471 - 487] Pages: 17

DOI: 10.2174/1381612827666211109113305

Price: $65

Abstract

The discovery of microRNAs (miRNAs) has been one of the revolutionary developments and has led to the advent of new diagnostic and therapeutic opportunities for the management of cancer. In this regard, miRNA dysregulation has been shown to play a critical role in various stages of tumorigenesis, including tumor invasion, metastasis as well as angiogenesis. Therefore, miRNA profiling can provide accurate fingerprints for the development of diagnostic and therapeutic platforms. This review discusses the recent discoveries of miRNA- based tools for early detection of cancer as well as disease monitoring in cancers that are common, like breast, lung, hepatic, colorectal, oral and brain cancer. Based on the involvement of miRNA in different cancers as oncogenic miRNA or tumor suppressor miRNA, the treatment with miRNA inhibitors or mimics is recommended. However, the stability and targeted delivery of miRNA remain the major limitations of miRNA delivery. In relation to this, several nanoparticle-based delivery systems have been reported which have effectively delivered the miRNA mimics or inhibitors and showed the potential for transforming these advanced delivery systems from bench to bedside in the treatment of cancer metastasis and chemoresistance. Based on this, we attempted to uncover recently reported advanced nanotherapeutic approaches to deliver the miRNAs in the management of different cancers.

Keywords: MicroRNA, cancer therapy, nanotherapeutics, biomarker, diagnostic, cancer metastasis, chemoresistance.

[1]
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer — an emerging concept. EBioMedicine 2016; 12: 34-42.
[2]
Chi Y, Zhou D. MicroRNAs in colorectal carcinoma - From pathogenesis to therapy. J Experim Clin Can Res 2016; 35: 43.
[3]
Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed 2015; 10(1): 1001-18.
[PMID: 25678788]
[4]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[5]
Berindan-Neagoe I, Monroig P del C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 2014; 64(5): 311-36.
[http://dx.doi.org/10.3322/caac.21244] [PMID: 25104502]
[6]
Shenouda SK, Alahari SK. MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer and Metasta Rev 2009; 48: 369-78.
[7]
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Can 2015; 15(6): 321-33.
[8]
Treiber T, Treiber N, Biology GM-NRMC. Meistab Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell 2019; 20(1): 5-20.
[9]
Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5(6): 463-6.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[10]
Chuma M, Toyoda H, Matsuzaki J, et al. Circulating microRNA-1246 as a possible biomarker for early tumor recurrence of hepatocellular carcinoma. Hepatol Res 2019; 49(7): 810-22.
[http://dx.doi.org/10.1111/hepr.13338] [PMID: 30920086]
[11]
Aryani A, Denecke B. In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Res Notes 2015; 8(1): 164.
[http://dx.doi.org/10.1186/s13104-015-1114-z] [PMID: 25899823]
[12]
Cozar JM, Robles-Fernandez I, Rodriguez-Martinez A, Puche-Sanz I, Vazquez-Alonso F, Lorente JA. The role of miRNAs as biomarkers in prostate cancer. Mutat Res Rev Mutat Res 2019; 781: 165-74.
[13]
Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac J Cancer Prev 2019; 20(7): 2015-20.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2015] [PMID: 31350959]
[14]
Orangi E, Motovali-Bashi M. Evaluation of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of breast cancer in Iranian women. Gene 2019; 687: 272-9.
[http://dx.doi.org/10.1016/j.gene.2018.11.036] [PMID: 30468908]
[15]
Zhang K, Wang YW, Wang YY, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 2017; 619: 10-20.
[http://dx.doi.org/10.1016/j.gene.2017.03.038] [PMID: 28359916]
[16]
Adam-Artigues A, Garrido-Cano I, Simón S, et al. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO Open 2021; 6(1): 100039.
[http://dx.doi.org/10.1016/j.esmoop.2020.100039] [PMID: 33477007]
[17]
Guan X, Shi A, Zou Y, et al. EZH2-Mediated microRNA-375 upregulation promotes progression of breast cancer via the inhibition of FOXO1 and the p53 signaling pathway. Front Genet 2021; 12: 382.
[http://dx.doi.org/10.3389/fgene.2021.633756] [PMID: 33854524]
[18]
Nama S, Muhuri M, Di Pascale F, et al. MicroRNA-138 is a prognostic biomarker for triple-negative breast cancer and promotes tumorigenesis via TUSC2 repression. Sci Rep 2019; 9(1): 12718.
[http://dx.doi.org/10.1038/s41598-019-49155-4] [PMID: 31481748]
[19]
Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clinics in Chest Medicine 2011; 32(4): 605-44.
[20]
Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 2016; 5(3): 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[21]
Liang LB, Zhu WJ, Chen XM, Luo FM. Plasma miR-30a-5p as an early novel noninvasive diagnostic and prognostic biomarker for lung cancer. Future Oncol 2019; 15(32): 3711-21.
[http://dx.doi.org/10.2217/fon-2019-0393] [PMID: 31664862]
[22]
Pan J, Zhou C, Zhao X, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep 2018; 8(1): 16699.
[http://dx.doi.org/10.1038/s41598-018-35139-3] [PMID: 30420640]
[23]
Zhang YH, Jin M, Li J, Kong X. Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165847.
[http://dx.doi.org/10.1016/j.bbadis.2020.165847] [PMID: 32473385]
[24]
Abu-Duhier FM, Javid J, Sughayer MA, Mir R, Albalawi T, Alauddin MS. Clinical significance of circulatory miRNA-21 as an efficient non-invasive biomarker for the screening of lung cancer patients. Asian Pac J Cancer Prev 2018; 19(9): 2607-11.
[PMID: 30256067]
[25]
Trakunram K, Chaniad P. Serum miR-339-3p as a potential diagnostic marker for non-small cell lung cancer. 2020; 17(3): 652-63.
[26]
Chen TJ, Zheng Q, Gao F, et al. MicroRNA-665 facilitates cell proliferation and represses apoptosis through modulating Wnt5a/β-Catenin and Caspase-3 signaling pathways by targeting TRIM8 in LUSC. Cancer Cell Int 2021; 21(1): 215.
[http://dx.doi.org/10.1186/s12935-021-01913-z] [PMID: 33858426]
[27]
Oura K, Fujita K, Morishita A, et al. Serum microRNA-125a-5p as a potential biomarker of HCV-associated hepatocellular carcinoma. Oncol Lett 2019; 18(1): 882-90.
[http://dx.doi.org/10.3892/ol.2019.10385] [PMID: 31289566]
[28]
Li F, Wang F, Zhu C, Wei Q, Zhang T, Zhou YL. miR-221 suppression through nanoparticle-based miRNA delivery system for hepatocellular carcinoma therapy and its diagnosis as a potential biomarker. Int J Nanomedicine 2018; 13: 2295-307.
[http://dx.doi.org/10.2147/IJN.S157805] [PMID: 29713162]
[29]
Jin Y, Wong YS, Goh BKP, et al. Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci Rep 2019; 9(1): 10464.
[http://dx.doi.org/10.1038/s41598-019-46872-8] [PMID: 31320713]
[30]
Tan Y, Ge G, Pan T, Wen D, Chen L, Yu X. A serum MicroRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus. PLoS ONE 2014; 9(9): e107986.
[31]
Dong Y, Li F, Wang J, et al. miR-369 inhibits Liver Cancer progression by targeting ZEB1 pathway and predicts the prognosis of HCC patients. J Cancer 2021; 12(10): 3067-76.
[http://dx.doi.org/10.7150/jca.54759] [PMID: 33854606]
[32]
Shi H, Chen J, Li Y, et al. Identification of a six microRNA signature as a novel potential prognostic biomarker in patients with head and neck squamous cell carcinoma. Oncotarget 2016; 7(16): 21579-90.
[http://dx.doi.org/10.18632/oncotarget.7781] [PMID: 26933913]
[33]
Summerer I, Unger K, Braselmann H, et al. Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer 2015; 113(1): 76-82.
[http://dx.doi.org/10.1038/bjc.2015.111] [PMID: 26057452]
[34]
Blot WJ, McLaughlin JK, Winn DM, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48(11): 3282-7.
[PMID: 3365707]
[35]
Fadhil RS, Wei MQ, Nikolarakos D, Good D, Nair RG. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLOS ONE 2020; 15(3): e0221779.
[http://dx.doi.org/10.1371/journal.pone.0221779]
[36]
Lu Z, He Q, Liang J, et al. miR-31-5p Is a potential circulating biomarker and therapeutic target for oral cancer. Mol Ther Nucleic Acids 2019; 16: 471-80.
[http://dx.doi.org/10.1016/j.omtn.2019.03.012] [PMID: 31051332]
[37]
Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Molecule Oncolo 2017; 11(1): 40-61.
[http://dx.doi.org/10.1002/1878-0261.12022]
[38]
Maminezhad H, Ghanadian S, Pakravan K, et al. A panel of six- circulating miRNA signature in serum and its potential diagnostic value in colorectal cancer. Life Sci 2020; 258: 118226.
[http://dx.doi.org/10.1016/j.lfs.2020.118226] [PMID: 32771555]
[39]
Zhang H, Zhu M, Shan X, et al. A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene 2019; 687: 246-54.
[http://dx.doi.org/10.1016/j.gene.2018.11.055] [PMID: 30458288]
[40]
Peng X, Wang J, Zhang C, et al. A three-miRNA panel in serum as a noninvasive biomarker for colorectal cancer detection. Int J Biol Markers 2020; 35(3): 74-82.
[http://dx.doi.org/10.1177/1724600820950740] [PMID: 32914665]
[41]
Yan Z, Hong S, Song Y, Bi M. Micror-4449 promotes colorectal cancer cell proliferation via regulation of socs3 and activation of stat3 signaling. Cancer Manag Res 2021; 13: 3029-39.
[http://dx.doi.org/10.2147/CMAR.S266153] [PMID: 33854373]
[42]
Tang Y, Zhao Y, Song X, Song X, Niu L, Xie L. Tumor-derived exosomal miRNA-320d as a biomarker for metastatic colorectal cancer. J Clin Lab Anal 2019; 33(9): e23004.
[http://dx.doi.org/10.1002/jcla.23004] [PMID: 31420913]
[43]
Liu W, Yang D, Chen L, et al. Plasma exosomal miRNA-139-3p is a novel biomarker of colorectal cancer. J Cancer 2020; 11(16): 4899-906.
[http://dx.doi.org/10.7150/jca.45548] [PMID: 32626537]
[44]
Patel AP, Fisher JL, Nichols E, Abd-Allah F, Abdela J, Abdelalim A. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(4): 376-93.
[http://dx.doi.org/10.1016/S1474-4422(18)30468-X] [PMID: 30797715]
[45]
Teplyuk NM, Mollenhauer B, Gabriely G, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-oncol 2012; 14(6): 689-700.
[http://dx.doi.org/10.1093/neuonc/nos074] [PMID: 22492962]
[46]
Kopkova A, Sana J, Machackova T, et al. Cerebrospinal fluid microRNA signatures as diagnostic biomarkers in brain tumors. Cancers (Basel) 2019; 11(10): 1546.
[http://dx.doi.org/10.3390/cancers11101546] [PMID: 31614872]
[47]
Ma C, Nguyen HPT, Luwor RB, et al. A comprehensive meta-analysis of circulation miRNAs in glioma as potential diagnostic biomarker. PLoS One 2018; 13(2): e0189452.
[http://dx.doi.org/10.1371/journal.pone.0189452] [PMID: 29444091]
[48]
Ye X, Wei W, Zhang Z, et al. Identification of microRNAs associated with glioma diagnosis and prognosis. Oncotarget 2017; 8(16): 26394-403.
[http://dx.doi.org/10.18632/oncotarget.14445] [PMID: 28060761]
[49]
Rahmati Y, Alivand M, Mollanoori H. MiR-330-3p and miR-485-5p as biomarkers for glioblastoma: An integrated bioinformatics and experimental study. Comput Biol Chem 2021; 92: 107458.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107458] [PMID: 33761401]
[50]
Wu X, Cheng YL, Matthen M, et al. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J Exp Clin Cancer Res 2021; 40(1): 70.
[http://dx.doi.org/10.1186/s13046-021-01865-2] [PMID: 33596979]
[51]
Chen AH, Qin YE, Tang WF, Tao J. Song H mei, Zuo M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int 2017; 17(1): 1-9.
[http://dx.doi.org/10.1186/s12935-017-0431-9]
[52]
Franchina T, Amodeo V, Bronte G, et al. Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non-small cell lung cancer. J Cell Physiol 2014; 229(1): 97-9.
[PMID: 23794259]
[53]
Tian YW, Shen Q, Jiang QF, Wang YX, Li K, Xue HZ. Decreased levels of miR-34a and miR-217 act as predictor biomarkers of aggressive progression and poor prognosis in hepatocellular carcinoma. Minerva Med 2017; 108(2): 108-13.
[http://dx.doi.org/10.23736/S0026-4806.16.04616-4] [PMID: 27879964]
[54]
Imani S, Zhang X, Hosseinifard H, Fu S, Fu J. The diagnostic role of microRNA-34a in breast cancer: a systematic review and meta-analysis. Oncotarget 2017; 8(14): 23177-87.
[http://dx.doi.org/10.18632/oncotarget.15520] [PMID: 28423566]
[55]
Nugent M, Miller N, Kerin MJ. Circulating miR-34a levels are reduced in colorectal cancer. J Surg Oncol 2012; 106(8): 947-52.
[http://dx.doi.org/10.1002/jso.23174] [PMID: 22648208]
[56]
Corcoran C, Rani S, O’Driscoll L. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 2014; 74(13): 1320-34.
[http://dx.doi.org/10.1002/pros.22848] [PMID: 25053345]
[57]
Hu Y, Dingerdissen H, Gupta S, et al. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput Biol Med 2018; 103: 183-97.
[http://dx.doi.org/10.1016/j.compbiomed.2018.10.021] [PMID: 30384176]
[58]
Wong NW, Chen Y, Chen S, Wang X, Oncomi R. OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics 2018; 34(4): 713-5.
[http://dx.doi.org/10.1093/bioinformatics/btx627] [PMID: 29028907]
[59]
Cheerla N, Gevaert O. MicroRNA based pan-cancer diagnosis and treatment recommendation. BMC Bioinformatics 2017; 18(1): 32.
[http://dx.doi.org/10.1186/s12859-016-1421-y] [PMID: 28086747]
[60]
Gao J, Zhang Q, Xu J, Guo L, Li X. Clinical significance of serum miR-21 in breast cancer compared with CA153 and CEA. Chin J Cancer Res 2013; 25(6): 743-8.
[PMID: 24385703]
[61]
Zhai LY, Li MX, Pan WL, et al. In situ detection of plasma exosomal MicroRNA-1246 for breast cancer diagnostics by a Au nanoflare probe. ACS Appl Mater Interfaces 2018; 10(46): 39478-86.
[http://dx.doi.org/10.1021/acsami.8b12725] [PMID: 30350935]
[62]
Li X, Li X, Li D, et al. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens Bioelectron 2020; 168: 112554.
[http://dx.doi.org/10.1016/j.bios.2020.112554] [PMID: 32871496]
[63]
Souza KCB, Evangelista AF, Leal LF, Souza CP, Vieira RA, Causin RL. Identification of cell-free circulating microRNAs for the detection of early breast cancer and molecular subtyping. Journal of Oncology 2019; 2019
[http://dx.doi.org/10.1155/2019/8393769]
[64]
Leng Q, Lin Y, Jiang F, et al. A plasma miRNA signature for lung cancer early detection. Oncotarget 2017; 8(67): 111902-11.
[http://dx.doi.org/10.18632/oncotarget.22950] [PMID: 29340099]
[65]
Gao Z, Yuan H, Mao Y, et al. In situ detection of plasma exosomal microRNA for lung cancer diagnosis using duplex-specific nuclease and MoS2 nanosheets. Analyst (Lond) 2021; 146(6): 1924-31.
[http://dx.doi.org/10.1039/D0AN02193H] [PMID: 33491014]
[66]
Powrózek T, Kuźnar-Kamińska B, Dziedzic M, et al. The diagnostic role of plasma circulating precursors of miRNA-944 and miRNA-3662 for non-small cell lung cancer detection. Pathol Res Pract 2017; 213(11): 1384-7.
[http://dx.doi.org/10.1016/j.prp.2017.09.011] [PMID: 28964576]
[67]
Rapa I, Votta A, Giorcelli J, et al. Proposal of a panel of genes identified by miRNA profiling as candidate prognostic biomarkers in lung carcinoids. Neuroendocrinology 2021; 111(1-2): 115-22.
[http://dx.doi.org/10.1159/000506401] [PMID: 32040954]
[68]
Xue WX, Zhang MY, Rui Li , Liu X, Yin YH, Qu YQ. Serum miR-1228-3p and miR-181a-5p as noninvasive biomarkers for non-small cell lung cancer diagnosis and prognosis. BioMed Res Int 2020; 2020: 9601876.
[http://dx.doi.org/10.1155/2020/9601876] [PMID: 32724822]
[69]
Lv J, An J, Zhang YD, et al. A three serum miRNA panel as diagnostic biomarkers of radiotherapy-related metastasis in non-small cell lung cancer. Oncol Lett 2020; 20(5): 236.
[http://dx.doi.org/10.3892/ol.2020.12099] [PMID: 32968458]
[70]
Xu Z, Wang Z, Sun H, Xin H. Evaluation of exosomal miRNA in blood as a potential diagnostic biomarker for human non-small cell lung cancer. Med Sci Monit 2020; 26: e924721.
[http://dx.doi.org/10.12659/MSM.924721] [PMID: 32444593]
[71]
Zhang J, Li D, Zhang Y, et al. Integrative analysis of mRNA and miRNA expression profiles reveals seven potential diagnostic biomarkers for non‑small cell lung cancer. Oncol Rep 2020; 43(1): 99-112.
[PMID: 31746439]
[72]
Zhao J, Zhu XC, Wu XS, et al. Identification of miR-4644 as a suitable endogenous normalizer for circulating miRNA quantification in hepatocellular carcinoma. J Cancer 2020; 11(23): 7032-44.
[http://dx.doi.org/10.7150/jca.48903] [PMID: 33123293]
[73]
El-Abd NE, Fawzy NA, El-Sheikh SM, Soliman ME. Circulating miRNA-122, miRNA-199a, and miRNA-16 as biomarkers for early detection of hepatocellular carcinoma in Egyptian patients with chronic hepatitis C virus infection. Mol Diagn Ther 2015; 19(4): 213-20.
[http://dx.doi.org/10.1007/s40291-015-0148-1] [PMID: 26133725]
[74]
Świtlik WZ, Bielecka-Kowalska A, Karbownik MS, Kordek R, Jabłkowski M, Szemraj J. Forms of diagnostic material as sources of miRNA biomarkers in hepatocellular carcinoma: a preliminary study. Biomarkers Med 2019; 13(7): 523-34.
[http://dx.doi.org/10.2217/bmm-2018-0485] [PMID: 30854869]
[75]
Rashad NM, El-Shal AS, Shalaby SM, Mohamed SY. Serum miRNA-27a and miRNA-18b as potential predictive biomarkers of hepatitis C virus-associated hepatocellular carcinoma. Mol Cell Biochem 2018; 447(1-2): 125-36.
[http://dx.doi.org/10.1007/s11010-018-3298-8] [PMID: 29455432]
[76]
Zahran F, Ghalwash D, Shaker O, Al-Johani K, Scully C. Salivary microRNAs in oral cancer. Oral Dis 2015; 21(6): 739-47.
[http://dx.doi.org/10.1111/odi.12340] [PMID: 25784212]
[77]
Chang Y-A, Weng S-L, Yang S-F, et al. A Three-MicroRNA signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci 2018; 19(3): 758.
[http://dx.doi.org/10.3390/ijms19030758] [PMID: 29518940]
[78]
Duz MB, Karatas OF, Guzel E, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol (Dordr) 2016; 39(2): 187-93.
[http://dx.doi.org/10.1007/s13402-015-0259-z] [PMID: 26650483]
[79]
Severino P, Brüggemann H, Andreghetto FM, et al. MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation. BMC Cancer 2013; 13(1): 533.
[http://dx.doi.org/10.1186/1471-2407-13-533] [PMID: 24209638]
[80]
Han Y, Qiang L, Gao Y, Gao J, He Q, Liu H. Large-area surface-enhanced Raman spectroscopy substrate by hybrid porous GaN with Au/Ag for breast cancer miRNA detection. Appl Surf Sci 2021; 541: 148456.
[http://dx.doi.org/10.1016/j.apsusc.2020.148456]
[81]
Guo S, Zhang J, Wang B, et al. A 5-serum miRNA panel for the early detection of colorectal cancer. OncoTargets Ther 2018; 11: 2603-14.
[http://dx.doi.org/10.2147/OTT.S153535] [PMID: 29780253]
[82]
Herreros-Villanueva M, Duran-Sanchon S, Martín AC, et al. Plasma microRNA signature validation for early detection of colorectal cancer. Clin Transl Gastroenterol 2019; 10(1): e00003.
[http://dx.doi.org/10.14309/ctg.0000000000000003] [PMID: 30702491]
[83]
Yang Q, Wang S, Huang J, Xia C, Jin H, Fan Y. Serum miR-20a and miR-486 are potential biomarkers for discriminating colorectal neoplasia: A pilot study. J Cancer Res Ther 2018; 14(7): 1572-7.
[http://dx.doi.org/10.4103/jcrt.JCRT_1198_16] [PMID: 30589041]
[84]
Roman-Canal B, Tarragona J, Moiola CP, et al. EV-associated miRNAs from peritoneal lavage as potential diagnostic biomarkers in colorectal cancer. J Transl Med 2019; 17(1): 208.
[http://dx.doi.org/10.1186/s12967-019-1954-8] [PMID: 31221189]
[85]
Tantawy M, Elzayat MG, Yehia D, Taha H. Identification of microRNA signature in different pediatric brain tumors. Genet Mol Biol 2018; 41(1): 27-34.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0334] [PMID: 29658967]
[86]
Braoudaki M, Lambrou GI, Giannikou K, et al. miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas. Tumour Biol 2016; 37(7): 9887-97.
[http://dx.doi.org/10.1007/s13277-016-4903-7] [PMID: 26813564]
[87]
Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC. miRNA nanotherapeutics for cancer. Drug Discovery Today 2017; 22: 424-32.
[88]
Gurses HE, Hatipoğlu OF, Gunduz M, Gunduz E. MicroRNAs as therapeutic targets in human breast cancer. In: A Concise Review of Molecular Pathology of Breast Cancer InTech. 2015.
[http://dx.doi.org/10.5772/59681]
[89]
Li Y, Dai Y, Zhang X, Chen J. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy. Nanotechnology 2017; 28(28): 285101.
[http://dx.doi.org/10.1088/1361-6528/aa757f] [PMID: 28627503]
[90]
Ramchandani D, Lee SK, Yomtoubian S, Han MS, Tung C-H, Mittal V. Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. Molec Cancer Therap 2019; 18(3): 495.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0702]
[91]
Kaban K, Salva E, Akbuga J. The effects of chitosan/miR-200c nanoplexes on different stages of cancers in breast cancer cell lines. Eur J Pharm Sci 2016; 95: 103-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.030] [PMID: 27260087]
[92]
Liu J, Meng T, Yuan M, et al. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 2016; 11: 6713-25.
[http://dx.doi.org/10.2147/IJN.S111647] [PMID: 28003747]
[93]
Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm 2017; 530(1-2): 387-400.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.079] [PMID: 28774852]
[94]
Panebianco F, Climent M, Malvindi MA, Pompa PP, Bonetti P, Nicassio F. Delivery of biologically active miR-34a in normal and cancer mammary epithelial cells by synthetic nanoparticles. Nanomedicine 2019; 19: 95-105.
[http://dx.doi.org/10.1016/j.nano.2019.03.013] [PMID: 31028887]
[95]
Vakhshiteh F, Khabazian E, Atyabi F, Ostad SN, Madjd Z, Dinarvand R. Peptide-conjugated liposomes for targeted miR-34a delivery to suppress breast cancer and cancer stem-like population. J Drug Deliv Sci Technol 2020; 57: 101687.
[http://dx.doi.org/10.1016/j.jddst.2020.101687]
[96]
Bhargava-Shah A, Foygel K, Devulapally R, Paulmurugan R. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2016; 11(3): 235-47.
[http://dx.doi.org/10.2217/nnm.15.193] [PMID: 26787319]
[97]
Gilam A, Conde J, Weissglas-Volkov D, et al. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat Commun 2016; 7(1): 12868.
[http://dx.doi.org/10.1038/ncomms12868] [PMID: 27641360]
[98]
Zhou Z, Kennell C, Lee JY, Leung YK, Tarapore P. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine 2017; 13(2): 403-10.
[http://dx.doi.org/10.1016/j.nano.2016.07.016] [PMID: 27520723]
[99]
Hayward SL, Francis DM, Kholmatov P, Kidambi S. Targeted delivery of MicroRNA125a-5p by engineered lipid nanoparticles for the treatment of HER2 positive metastatic breast cancer. J Biomed Nanotechnol 2016; 12(3): 554-68.
[http://dx.doi.org/10.1166/jbn.2016.2194] [PMID: 27280253]
[100]
Wang S, Zhang J, Wang Y, Chen M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine 2016; 12(2): 411-20.
[http://dx.doi.org/10.1016/j.nano.2015.09.014] [PMID: 26711968]
[101]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[102]
Song C, Xiao Y, Ouyang Z. Efficient co-delivery of microRNA 21 inhibitor and doxorubicin to cancer cells using core–shell tecto dendrimers formed via supramolecular host–guest assembly. J Mater Chem B 2020; 8(14): 768-74.
[103]
Kim SJ, Oh JS, Shin JY, et al. Development of microRNA-145 for therapeutic application in breast cancer. J Control Release 2011; 155(3): 427-34.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.026] [PMID: 21723890]
[104]
Tekie FSM, Soleimani M, Zakerian A, et al. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr Polym 2018; 201: 131-40.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.060] [PMID: 30241804]
[105]
Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett 2018; 18(6): 3571-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b00689] [PMID: 29722542]
[106]
Wang H, Guan X, Tu Y, et al. MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN. J Exp Clin Cancer Res 2015; 34(1): 59.
[http://dx.doi.org/10.1186/s13046-015-0169-y] [PMID: 26063204]
[107]
Perepelyuk M, Maher C, Lakshmikuttyamma A, Shoyele SA. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int J Nanomedicine 2016; 11: 3533-44.
[http://dx.doi.org/10.2147/IJN.S110488] [PMID: 27555773]
[108]
Wu D, Wang W, He X, et al. Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells. Mater Sci Eng C 2019; 97: 827-32.
[http://dx.doi.org/10.1016/j.msec.2018.12.009] [PMID: 30678973]
[109]
Yang J, Liu H, Wang H, Sun Y. Down-regulation of microRNA-181b is a potential prognostic marker of non-small cell lung cancer. Pathol Res Pract 2013; 209(8): 490-4.
[http://dx.doi.org/10.1016/j.prp.2013.04.018] [PMID: 23827213]
[110]
Lin J, Xu K, Wei J, Heimberger A. MicroRNA-124 suppresses tumor cell proliferation and invasion by targeting CD164 signaling pathway in non-small cell lung cancer. J Gene Ther 2016; 2(1): 6.
[111]
Peng Y, Zhu X, Qiu L. Electroneutral composite polymersomes self-assembled by amphiphilic polyphosphazenes for effective miR-200c in vivo delivery to inhibit drug resistant lung cancer. Biomaterials 2016; 106: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.001] [PMID: 27541441]
[112]
Russo V, Paciocco A, Affinito A, et al. Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells. Mol Ther Nucleic Acids 2018; 13: 334-46.
[http://dx.doi.org/10.1016/j.omtn.2018.09.016] [PMID: 30340138]
[113]
Nuzzo S, Catuogno S, Capuozzo M, et al. Axl-targeted delivery of the oncosuppressor miR-137 in non-small-cell lung cancer. Mol Ther Nucleic Acids 2019; 17: 256-63.
[http://dx.doi.org/10.1016/j.omtn.2019.06.002] [PMID: 31276956]
[114]
Wang H, Zhao X, Guo C, Ren D, Zhao Y, Xiao W. Aptamer-Dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. Plose one 2015; 10(9): e0139136.
[http://dx.doi.org/10.1371/journal.pone.0139136]
[115]
Moro M, Di Paolo D, Milione M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019; 308: 44-56.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.006] [PMID: 31299263]
[116]
Iaboni M, Russo V, Fontanella R, et al. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL. Mol Ther Nucleic Acids 2016; 5: e289.
[http://dx.doi.org/10.1038/mtna.2016.5] [PMID: 27111415]
[117]
Arham S, Ariff Y, Yusoff K, Jaffri Masarudin M. Encapsulation of miRNA in chitosan nanoparticles as a candidate for an anti-metastatic agent in cancer therapy. Malays Appl Biol 2017; 46(1): 165-70.
[118]
Koshizuka K, Hanazawa T, Fukumoto I, Kikkawa N, Okamoto Y, Seki N. The microRNA signatures: Aberrantly expressed microRNAs in head and neck squamous cell carcinoma. J Human Genet 2017; 62: 3-13.
[119]
Fan B, Yang X, Li X, et al. Photoacoustic-imaging-guided therapy of functionalized melanin nanoparticles: combination of photothermal ablation and gene therapy against laryngeal squamous cell carcinoma. Nanoscale 2019; 11(13): 6285-96.
[http://dx.doi.org/10.1039/C9NR01122F] [PMID: 30882835]
[120]
Sun S, Wang Y, Zhou R, et al. Targeting and regulating of an oncogene via nanovector delivery of MicroRNA using patient-derived tumor xenografts. Theranostics 2017; 7(3): 677-93.
[http://dx.doi.org/10.7150/thno.16357] [PMID: 28255359]
[121]
Shiiba M, Uzawa K, Tanzawa H. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC). Cancers (Basel) 2010; 2(2): 653-69.
[http://dx.doi.org/10.3390/cancers2020653] [PMID: 24281087]
[122]
Cao M, Deng X, Su S, et al. Protamine sulfate-nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells. Nanoscale 2013; 5(24): 12120-5.
[http://dx.doi.org/10.1039/c3nr04056a] [PMID: 24154605]
[123]
Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25(17): 2537-45.
[http://dx.doi.org/10.1038/sj.onc.1209283] [PMID: 16331254]
[124]
Varshney A, Panda JJ, Singh AK, et al. Targeted delivery of microRNA-199a-3p using self-assembled dipeptide nanoparticles efficiently reduces hepatocellular carcinoma in mice. Hepatology 2018; 67(4): 1392-407.
[http://dx.doi.org/10.1002/hep.29643] [PMID: 29108133]
[125]
Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Therap 2014; 13(10): 2352-60.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0209]
[126]
Fan YP, Liao JZ, Lu YQ, et al. MiR-375 and doxorubicin co-delivered by liposomes for combination therapy of hepatocellular carcinoma. Mol Ther Nucleic Acids 2017; 7: 181-9.
[http://dx.doi.org/10.1016/j.omtn.2017.03.010] [PMID: 28624193]
[127]
Devulapally R, Foygel K, Sekar TV, Willmann JK, Paulmurugan R. Gemcitabine and antisense-microRNA Co-encapsulated PLGA-PEG polymer nanoparticles for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces 2016; 8(49): 33412-22.
[http://dx.doi.org/10.1021/acsami.6b08153] [PMID: 27960411]
[128]
Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 2014; 13(10): 2352-60.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0209] [PMID: 25053820]
[129]
Xu F, Liao JZ, Xiang GY, et al. MiR-101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma. Cancer Med 2017; 6(3): 651-61.
[http://dx.doi.org/10.1002/cam4.1016] [PMID: 28135055]
[130]
Yang T, Zhao P, Rong Z, et al. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics 2016; 6(1): 142-54.
[http://dx.doi.org/10.7150/thno.13130] [PMID: 26722380]
[131]
Cai C, Xie Y, Wu L, et al. PLGA-based dual targeted nanoparticles enhance miRNA transfection efficiency in hepatic carcinoma. Sci Rep 2017; 7(1): 46250.
[http://dx.doi.org/10.1038/srep46250] [PMID: 28387375]
[132]
Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer 2013; 13(1): 21.
[http://dx.doi.org/10.1186/1471-2407-13-21] [PMID: 23320393]
[133]
Li J, Wang Y, Yu W, Chen J, Luo J. Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun 2011; 406(1): 70-3.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.111] [PMID: 21295551]
[134]
Liu Y, Wu X, Gao Y, et al. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. Int J Nanomedicine 2016; 11: 3891-905.
[http://dx.doi.org/10.2147/IJN.S108128] [PMID: 27574422]
[135]
Wang Y, Costanza F, Li C, Nimmagadda A, Song D, Cai J. PEG-poly(amino acid)s/MicroRNA complex nanoparticles effectively arrest the growth and metastasis of colorectal cancer. J Biomed Nanotechnol 2016; 12(7): 1510-9.
[http://dx.doi.org/10.1166/jbn.2016.2253] [PMID: 29337490]
[136]
Zhao Y, Xu J, Le VM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol Pharm 2019; 16(11): 4696-710.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00867] [PMID: 31589818]
[137]
Reimondez-Troitiño S, González-Aramundiz JV, Ruiz-Bañobre J, et al. Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells. Eur J Pharm Biopharm 2019; 142: 449-59.
[http://dx.doi.org/10.1016/j.ejpb.2019.07.016] [PMID: 31326581]
[138]
Juang V, Chang CH, Wang CS, Wang HE, Lo YL. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 2019; 15(49): e1903296.
[http://dx.doi.org/10.1002/smll.201903296] [PMID: 31709707]
[139]
Chan C, Guo N, Duan X, et al. Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer. Biomaterials 2019; 210: 94-104.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.028] [PMID: 31060867]
[140]
Zheng B, Chen L, Pan CC, et al. Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy. Nanomedicine (Lond) 2018; 13(7): 769-85.
[http://dx.doi.org/10.2217/nnm-2017-0345] [PMID: 29460671]
[141]
Wang TY, Choe JW, Pu K, et al. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer. J Control Release 2015; 203: 99-108.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.018] [PMID: 25687306]
[142]
Li Y, Duo Y, Bi J, et al. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int J Nanomedicine 2018; 13: 1241-56.
[http://dx.doi.org/10.2147/IJN.S158290] [PMID: 29535520]
[143]
Liang C, Sun W, He H, et al. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma. Int J Nanomedicine 2017; 13: 209-20.
[http://dx.doi.org/10.2147/IJN.S148142] [PMID: 29343959]
[144]
Seo YE, Suh HW, Bahal R, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 2019; 201: 87-98.
[http://dx.doi.org/10.1016/j.biomaterials.2019.02.016] [PMID: 30802686]
[145]
Ananta JS, Paulmurugan R, Massoud TF. Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments glioblastoma cell kill by temozolomide: Toward a “personalized” anti-microRNA therapy. Mol Pharm 2016; 13(9): 3164-75.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00388] [PMID: 27508339]
[146]
Malhotra M, Sekar TV, Ananta JS, et al. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model. Oncotarget 2018; 9(30): 21478-94.
[http://dx.doi.org/10.18632/oncotarget.25135] [PMID: 29765554]
[147]
Zhuang X, Teng Y, Samykutty A, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit Brain Tumor Progression. Mol Ther 2016; 24(1): 96-105.
[http://dx.doi.org/10.1038/mt.2015.188] [PMID: 26444082]
[148]
Küçüktürkmen B, Bozkır A. Development and characterization of cationic solid lipid nanoparticles for co-delivery of pemetrexed and miR-21 antisense oligonucleotide to glioblastoma cells. Drug Dev Ind Pharm 2018; 44(2): 306-15.
[http://dx.doi.org/10.1080/03639045.2017.1391835] [PMID: 29023168]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy