Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Progress in Chemical Modification of the Natural Polysaccharide Guar Gum

Author(s): Simran Kaur and Soumava Santra*

Volume 19, Issue 2, 2022

Published on: 27 December, 2021

Page: [197 - 219] Pages: 23

DOI: 10.2174/1570179418666211109105416

Price: $65

Abstract

Guar gum (GG) is a natural heteropolysaccharide. Due to its non-toxic, eco-friendly, and biodegradable nature, GG has found wide applications in many areas, in particular food, paper, textile, petroleum, and pharmaceutical industries. Therefore, GG is often called “Black Gold” as well. Due to the presence of hydroxyl groups, GG can be modified by various methods. The physical and biological properties of GG can be modulated by chemical modifications. In this manuscript, various methods for the chemical modifications of GG have been discussed according to the type of modifications. Mechanistic insights have also been provided whenever possible. In addition, potential applications of new GG derivatives have also been briefly mentioned.

Keywords: Guar gum, galactomanan, natural product, polymer, polysaccharide, chemical modification, progress.

Graphical Abstract

[1]
Heath, E.C. Complex polysaccharides. Annu. Rev. Biochem., 1971, 40, 29-56.
[http://dx.doi.org/10.1146/annurev.bi.40.070171.000333] [PMID: 4256333]
[2]
Yogi, R.K.; Bhattacharya, A.; Jaiswal, A.K.; Alok, K. Lac, Plant resins and gums statistics;2014 at a glance: ICAR + indian institute of natural resins and gums, namkun, ranchi, bulletin (technical) No. 07/2015. 2015.
[3]
Whistler, R.L. Industrial gums from plants Guar and Chia. Econ. Bot., 1982, 36(2), 195-202.
[http://dx.doi.org/10.1007/BF02858718]
[4]
Wesley, E.; Peterson, F. The role of population in economic growth. SAGE Open, 2017.
[http://dx.doi.org/10.1177/2158244017736094]
[5]
Hymowitz, T. The trans-domestication concept as applied to guar. Econ. Bot., 1972, 26(1), 49-70.
[http://dx.doi.org/10.1007/BF02862261]
[6]
Gupta, S.; Variyar, P.S. Guar Gum: A Versatile Polymer for the Food Industry. In: Biopolymers for Food Design; Grumezescu, A.M.; Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 383-407.
[http://dx.doi.org/10.1016/B978-0-12-811449-0.00012-8]
[7]
Punia, A.; Yadeve, R.; Arora, P.; Chaudhary, A. Molecular and morphophysiological characterization of superior cluster bean varieties. J. Crop Sci. Biotechnol., 2009, 12, 143-148.
[http://dx.doi.org/10.1007/s12892-009-0106-8]
[8]
Whistler, R.L. Industrial Gums, 2nd ed; McGraw-Hill: New York, USA, 1973, pp. 315-339.
[9]
Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J.; Naikwadi, N.N.; Variya, B.C. Galactomannan: a versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol., 2013, 60, 83-92.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.017] [PMID: 23707734]
[10]
Pawar, H.A.; Kamat, S.R.; Choudhary, P.D. An overview of natural polysaccharides as biological macromolecules: Their chemical modifications and pharmaceutical applications. Biol. Med. (Aligarh), 2015, 7(1), 1000224.
[http://dx.doi.org/10.4172/0974-8369.1000224]
[11]
Zhang, L.M.; Zhou, J.F.; Hui, P.S. A comparative study on viscosity behavior of water‐soluble chemically modified guar gum derivatives with different functional lateral groups. J. Sci. Food Agric., 2005, 85(15), 3638-2644.
[http://dx.doi.org/10.1002/jsfa.2308]
[12]
Parija, S.; Mishra, M.; Mohanty, A.K. Studies on natural gum adhesive extracts: An overview. Polym. Rev. (Phila. Pa.), 1981, 41, 410-415.
[13]
BeMiller. J.N. One hundred years of commercial food carbohydrates in the United States. J. Agric. Food Chem., 2007, 57(18), 8125-8129.
[http://dx.doi.org/10.1021/jf8039236]
[14]
Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: processing, properties and food applications-A Review. J. Food Sci. Technol., 2014, 51(3), 409-418.
[http://dx.doi.org/10.1007/s13197-011-0522-x] [PMID: 24587515]
[15]
Taylor, K.C.; Halfacre, R.G. The effect of hydrophilic polymer on media water retention and nutrient availability to Ligustrum lucidum. Hortic. Sci., 1986, 21(5), 1159-1161.http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=268239
[16]
Silberbush, M.; Adar, E.; DeMalach, Y. Use of an hydrophilic polymer to improve water storage and availability to crops grown in sand dunes I. Corn irrigated by trickling. Agric. Water Manage., 1993, 23(4), 303-313.
[http://dx.doi.org/10.1016/0378-3774(93)90042-9]
[17]
(a)Prabaharan, M. Prospective of guar gum and its derivatives as controlled drug delivery systems. Int. J. Biol. Macromol., 2011, 49(2), 117-124.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.04.022] [PMID: 21596058]
(b)Takahashi, T.; Yokawa, T.; Ishihara, N.; Okubo, T.; Chu, D.C.; Nishigaki, E.; Kawada, Y.; Kato, M.; Raj Juneja, L. Hydrolyzed guar gum decreases postprandial blood glucose and glucose absorption in the rat small intestine. Nutr. Res., 2009, 29(6), 419-425.
[http://dx.doi.org/10.1016/j.nutres.2009.05.013] [PMID: 19628109]
[18]
Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, a review. Cosmetics, 2019, 6(1), 13.
[http://dx.doi.org/10.3390/cosmetics6010013]
[19]
Mc Laughlin, S.P. Economic prospects for new crops in the south western United States. Econ. Bot., 1985, 39(4), 473-481.
[http://dx.doi.org/10.1007/BF02858756]
[20]
Dekker, R.F.; Richards, G.N. Hemicellulases: their occurrence, purification, properties, and mode of action. Adv. Carbohydr. Chem. Biochem., 1976, 32, 277-352.
[http://dx.doi.org/10.1016/S0065-2318(08)60339-X] [PMID: 782186]
[21]
Holmes, V. The application of controlled radical polymerization processes on the graft copolymerization of hydrophobic substitution onto guar gum and guar gum derivatives., 2007.Available from:. https://digitalcommons.lsu.edu/cgi/viewcontent. cgi?article=4219&context=gradschool_dissertations
[22]
Sabahelkheir, M.K.; Abdalla, A.H.; Nouri, S.H. Quality Assessment of Guar Gum (Endosperm) of Guar (Cyamopsis tetragonoloba). Int. Res. J. Biol. Sci., 2012, 1, 67-70.http://www.isca.in/IJBS/Archive/v1/i1/10.ISCA-JBS-2012-001.pdf
[23]
McCleary, B.V.; Neukom, H. Effect of enzymic modification on the solutions and interactions properties of galactomannans. Prog. Food Nutr. Sci., 1982, 6, 109-118.https://agris.fao.org/agris- search/search.do?recordID=US201301998208
[24]
Prabhajan, H.; Gharia, M.M.; Srivastava, H.C. Guar gum properties part 2: Preparations and properties. Carbohydr. Polym., 1990, 12, 1-7.
[http://dx.doi.org/10.1007/978-3-642-36566-9_5]
[25]
Sharma, B.R.; Kumar, V.; Soni, P.L. Carbamoylethylation of guar gum. Carbohydr. Polym., 2004, 58, 449-453.
[http://dx.doi.org/10.1016/j.carbpol.2004.08.013]
[26]
Iqbal, D.N.; Hussain, E.A. Green biopolymer guar gum and its derivatives. Int. J. Pharma Bio Sci., 2013, 4, 423-435.
[27]
Gupta, A.P.; Verma, D.K. Guar gum and their derivatives: A research profile. Int. J. Adv. Res. (Indore), 2014, 2014(2), 680-690.
[http://dx.doi.org/10.1007/s40097-015-0172-z]
[28]
Dodi, G.; Hritcu, D.; Popa, M.I. Carboxymethylation of guar gum: Synthesis and characterization. Cellul. Chem. Technol., 2011, 45, 171-176.
[29]
Pravathy, K.S.; Susheelamm, N.S.; Tharanatha, R.N.; Gaonkar, A.K.A. Simple non aqueous method for carboxymethylation of galactomannans. Carbohydr. Polym., 2005, 62, 137-141.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.014]
[30]
(a)Pal, S. Carboxymethyl guar: Its synthesis and macromolecule characterization. J. Appl. Polym. Sci., 2009, 111(5), 2630-2636.
[http://dx.doi.org/10.1002/app.29338]
(b)Kundu, S.; Das, A.; Basu, A.; Ghosh, D.; Datta, P.; Mukherjee, A. Carboxymethyl guar gum synthesis in homogeneous phase and macroporous 3D scaffolds design for tissue engineering. Carbohydr. Polym., 2018, 191, 71-78.
[31]
Sullad, A.G.; Manjeshwar, L.S.; Aminabhavi, T.M. Microsphere of carboxymethyl guar gum for in vitro release of abacavir sulfate: Preparation and characterization. J. Appl. Polym. Sci., 2011, 122(1), 452-460.
[http://dx.doi.org/10.1002/app.34173]]
[32]
(a)Kumar, V.; Tiwari, A.K.; Kaur, G. Investigation on chitosan-carboxymethyl guar gum complexes interpolymer complexes for colon delivery of fluticasone. Int. J. Drug Deliv., 2010, 2, 242-250.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02035]
(b)Gong, H.; Liu, M.; Chen, J.; Han, F.; Gao, C.; Zhang, B. Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydr. Polym., 2012, 88, 1015-1022.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.057]
[33]
Lawal, O.S.; Lechner, M.D.; Hartmann, B.; Kuliche, W-M. Carboxymethyl cocoyam starch: Synthesis, characterization and influence of reaction parameter. Starch, 2007, 59(5), 224.
[http://dx.doi.org/10.1002/star.200600594]
[34]
Patel, S.P.; Patel, R.; Patel, V.S. Rheological properties of guar gum and hydroxyethyl guar gum in aqueous solution. Int. J. Biol. Macromol., 1987, 9(6), 314-320.
[http://dx.doi.org/10.1016/0141-8130(87)90001-8]
[35]
Lapsin, R.; Pricl, S.; Tracanelli, P. Rheology of hydroxyethyl guar gum derivatives. Carbohydr. Polym., 1991, 14, 411-427.
[http://dx.doi.org/10.1016/0144-8617(91)90006-X]
[36]
He, L-S.; Jiang, B.; Wang, K. Determination of degree of substitution of hydroxyethyl guar gum. Carbohydr. Polym., 2008, 72, 557-560.
[http://dx.doi.org/10.1016/j.carbpol.2007.09.030]
[37]
Xiong, R.C.; Chang, M.Z.; Chen, J.M.; Zhou, N.; Wei, G. Synthesis of hydroxypropyl guar gum by phase transfer catalysis. Chin. Chem. Lett., 2005, 16, 545-546.
[http://dx.doi.org/10.1016/j.carbpol.2007.09.030]
[38]
(a)Gangotri, W.; Jain-Raina, R.; Babbar, S.B. Evaluation of guar gum derivatives as gelling agents for microbial culture media. World J. Microbiol. Biotechnol., 2012, 28(5), 2279-2285.
[http://dx.doi.org/10.1007/s11274-012-1027-0] [PMID: 22806052]
(b)Boonstar, D.J.; Bakker, A. Guar Gum derivatives and process for preparation. US Patent 3,912,713A, 1973.
[39]
Wu, X.Y.; Chen, Y.; Ding, B.; Cui, J.; Jiang, B. Selective oxidation and determination of the substitution pattern of hydroxypropyl guar gum. Carbohydr. Polym., 2010, 20, 1178-1182.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.044]
[40]
Nayak, B.R.; Biswal, D.R.; Karmakar, N.C.; Singh, R.P. Grafted hydroxypropyl guar gum: Development, characterization and application as flocculating agent. Bull. Mater. Sci., 2002, 25(6), 537-540.
[http://dx.doi.org/10.1007/BF02710545]
[41]
Zhao, Y.; He, J.; Han, X.; Tian, X.; Deng, M.; Chen, W.; Jiang, B. Modification of hydroxypropyl guar gum with ethanolamine. Carbohydr. Polym., 2012, 90(2), 988-992.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.032] [PMID: 22840030]
[42]
Chen, Y.; Wu, X.; Miao, X.; Luo, J.; Jiang, B. Determination of the degree of substitution of hydroxypropyl guar gum at C-6 by pyrolysis-gas chromatography spectrometry. Carbohydr. Polym., 2010, 82, 829-832.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.002]
[43]
(a)Biswas, A.; Pal, S.; Udayabhanu, G. Effect of chemical modification of a natural polysaccharide on its inhibitory action on mild steel in 15% HCl solution. J. Adhes. Sci. Technol., 2017, 31(22), 2468-2489.
[http://dx.doi.org/10.1080/01694243.2017.1306912]
(b)Gece, G. Drugs: A review of promising novel corrosion inhibitors. Corros. Sci., 2011, 53, 3873-3898.
[http://dx.doi.org/10.1016/j.corsci.2011.08.006]
[44]
Raja, P.B.; Sethuraman, M.G. Natural products as corrosion inhibitor for metals in corrosive media – a review. Mater. Lett., 2008, 62(1), 113-116.
[http://dx.doi.org/10.1016/j.matlet.2007.04.079]
[45]
Umoren, S.A. Polymers as corrosion inhibitors for metals in different media – a review. Open Corros. J., 2009, 2, 175-188.
[http://dx.doi.org/10.2174/1876503300902010175]
[46]
Bobina, M.; Kellenberger, A.; Millet, J.P.; Muntean, C.; Vaszilcsin, N. Corrosion resistance of carbon steel in weak acid solutions in the presence of L-histidine as corrosion inhibitor. Corros. Sci., 2013, 69, 389-395.
[http://dx.doi.org/10.1016/j.corsci.2012.12.020]
[47]
Dar, M.A.A. Review: Plant extracts and oils as corrosion inhibitors in aggressive media. Ind. Lubr. Tribol., 2011, 63, 227-233.
[http://dx.doi.org/10.1108/00368791111140431]
[48]
Frateur, I.; Lartundo-Rojas, L.; Méthivier, C.; Galtayries, A.; Marcus, P. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron+ chromium alloy. Electrochim. Acta, 2006, 51(8-9), 1550-1557.
[http://dx.doi.org/10.1016/j.electacta.2005.02.116]
[49]
Obot, I.B.; Gasem, Z.M.; Umoren, S.A. Molecular level understanding of the mechanism of aloes leaves extract inhibition of low carbon steel corrosion: a DFT approach. Int. J. Electrochem. Sci., 2014, 9, 510-522.http://electrochemsci.org/papers/vol9/90200510.pdf
[50]
Raja, P.B.; Qureshi, A.K.; Rahim, A.A.; Osman, H.; Awang, K. Neolamarckia cadamba alkaloids as eco-friendly corrosion inhibitors for mild steel in 1 M HCl media. Corros. Sci., 2013, 69, 292-301.
[http://dx.doi.org/10.1016/j.corsci.2012.11.042]
[51]
Fares, M.M.; Maayta, A.K.; Al-Qudah, M.M. Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corros. Sci., 2012, 60, 112-117.
[http://dx.doi.org/10.1016/j.corsci.2012.04.002]
[52]
Bentrah, H.; Rahali, Y.; Chala, A. Gum Arabic as an eco-friendly inhibitor for API 5L X42 pipeline steel in HCl medium. Corros. Sci., 2014, 82, 426-431.
[http://dx.doi.org/10.1016/j.corsci.2013.12.018]
[53]
Abdallah, M. Guar gum as corrosion inhibitor for carbon steel in sulfuric acid solutions. Port. Electrochim. Acta, 2004, 22, 161-175.Available from:. http://www.peacta.org/articles_upload/PEA2222004161.pdf
[54]
Abu-Dalo, M.A.; Othman, A.A.; Al-Rawashdeh, N.A.F. Exudate gum from acacia trees as green corrosion inhibitor for mild steel in acidic medi. Int. J. Electrochem. Sci., 2012, 7(10), 9303-9324.http://www.electrochemsci.org/papers/vol7/71009303.pdf
[55]
Srivastava, V.; Banerjee, S.; Singh, M.M. Inhibitive effect of polyacrylamide grafted with fenugreek mucilage on corrosion of mild steel in 0.5 M H2SO4 at 35 oC. J. Appl. Polym. Sci., 2010, 116(2), 810-816.
[http://dx.doi.org/10.1002/app.31559]
[56]
Banerjee, S.; Srivastava, V.; Singh, M.M. Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium. Corros. Sci., 2012, 59, 35-41.
[http://dx.doi.org/10.1016/j.corsci.2012.02.009]
[57]
Fekry, A.M.; Mohamed, R.R. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim. Acta, 2010, 55(6), 1933-1939.
[http://dx.doi.org/10.1016/j.electacta.2009.11.011]
[58]
Roy, P.; Pal, A.; Sukul, D. Origin of the synergistic effect between polysaccharide and theorem towards adsorption and corrosion inhibition for mild steel in sulphuric acid. RSC Advances, 2014, 4, 10607-10613.
[http://dx.doi.org/10.1039/c3ra46549g]
[59]
Bajpai, U.D.N.; Raj, S. Grafting of acrylamide onto guar gum using KMnO4/oxalic acid redox system. J. Appl. Polym. Sci., 1988, 35(5), 1169-1182.
[http://dx.doi.org/10.1002/app.1988.070350504]
[60]
Roy, P.; Karfa, P.; Adhikari, U.; Sukul, D. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corros. Sci., 2014, 88, 246-253.
[http://dx.doi.org/10.1016/j.corsci.2014.07.039]
[61]
Kumar, A.; Singh, K.; Ahuja, M. Xanthan-g-poly(acrylamide): Microwave-assisted synthesis, characterization and in vitro release behaviour. Carbohydr. Polym., 2009, 76, 261-267.
[http://dx.doi.org/10.1016/j.carbpol.2008.10.014]
[62]
Nayak, B.R.; Singh, R.P. Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation. Eur. Polym. J., 2001, 37(8), 1655-1666.
[http://dx.doi.org/10.1016/S0014-3057(01)00035-0]
[63]
Singh, V.; Tiwari, A.; Tripathi, D.N.; Sanghi, R. Microwave assisted synthesis of Guar-g-polyacrylamide. Carbohydr. Polym., 2004, 58, 1-6.
[http://dx.doi.org/10.1016/j.carbpol.2004.04.010]
[64]
(a)Sen, G.; Mishra, S.; Jha, U.; Pal, S. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int. J. Biol. Macromol., 2010, 47(2), 164-170.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.004] [PMID: 20471416]
(b)Mishra, S.; Sen, G. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int. J. Biol. Macromol., 2011, 48(4), 688-694.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.02.013] [PMID: 21356236]
(c)Singh, A.; Liu, M.; Ituen, E.; Lin, Y. Anti-corrosive properties of an effective guar gum grafted 2-acrylamido-2 methylpropanesulfonic acid (GG-AMPS) coating on copper in a 3.5% NaCl solution. Coatings, 2020, 10(3), 241.
[http://dx.doi.org/10.3390/coatings10030241]
(d)Mitra, M.; Mahapatra, M.; Dutta, A.; Deb, M.; Dutta, S.; Chattopadhyay, P.K.; Roy, S.; Banerjee, S.; Sil, P.C.; Singha, N.R. Fluorescent guar gum-g-terpolymer via in situ acrylamido-acid fluorophore-monomer in cell imaging, Pb(II) sensor, and security ink. ACS Appl. Bio Mater., 2020, 3(4), 1995-2006.
[http://dx.doi.org/10.1021/acsabm.9b01146]
[65]
Mestechkina, N.M.; Egorov, A.V.; Shcherbukhin, V.D. Synthesis of galactomannan sulphates. Appl. Biochem. Microbiol., 2006, 42(3), 326-330.
[http://dx.doi.org/10.1134/S0003683806030185]
[66]
(a)Wang, L.; Li, X.; Chen, Z. Sulfated modification of the polysaccharides obtained from defatted rice bran and their antitumor activities. Int. J. Biol. Macromol., 2009, 44(2), 211-214.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.12.006] [PMID: 19135473]
(b)Wang, X.; Wang, J.; Zhang, J.; Zhao, B.; Yao, J.; Wang, Y. Structure-antioxidant relationships of sulfated galactomannan from guar gum. Int. J. Biol. Macromol., 2010, 46(1), 59-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.10.004] [PMID: 19836415]
(c)Wang, J.; Zhao, B.; Wang, X.; Yao, J.; Zhang, J. Structure and antioxidant activities of sulfated guar gum: homogeneous reaction using DMAP/DCC catalyst. Int. J. Biol. Macromol., 2012, 50(5), 1201-1206.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.03.009] [PMID: 22484325]
[67]
Petzold, K.; Einfeldt, L.; Günther, W.; Stein, A.; Klemm, D. Regioselective functionalization of starch: synthesis and 1H NMR characterization of 6-O-silyl ethers. Biomacromolecules, 2001, 2(3), 965-969.
[http://dx.doi.org/10.1021/bm010067u] [PMID: 11710057]
[68]
Wang, J.; Niu, S.; Zhao, B.; Wang, X.; Yao, J.; Zhang, J.; Zhao, W.; Zhao, Y. Regioselective synthesis of sulfated guar gum: comparative studies of structure and antioxidant activities. Int. J. Biol. Macromol., 2013, 62, 734-740.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.005] [PMID: 24120962]
[69]
Gamal-Eldeen, A.M.; Amer, H.; Helmy, W.A. Cancer chemopreventive and anti-inflammatory activities of chemically modified guar gum. Chem. Biol. Interact., 2006, 161(3), 229-240.
[http://dx.doi.org/10.1016/j.cbi.2006.03.010] [PMID: 16756967]
[70]
(a)Singh, A.V.; Sharma, N.K. Characterization and applications of synthesized cation exchanger Guar gum sulphonic acid (GSA) resin for removal and recovery of toxic metals ions from industrial waste water. Water S.A., 2011, 37(3), 295-302.
[http://dx.doi.org/10.4314/wsa.v37i3.68480]
(b)Singh, A.V.; Gupta, S.; Gupta, S.C. Synthesis of a guaran-sulphonic acid cation-exchanger and its application in metal ion removal from underground mine water of the Rajpura Dariba Mines, Udaipur, India. Desalination, 1996, 104(3), 235-238.
[http://dx.doi.org/10.1016/0011-9164(96)00046-X]
[71]
Wang, J.; Zhao, B.; Wang, X.; Zhang, J. Preparation and characterization of sulfated galactomannan from guar gum: Optimization of reaction conditions by BBD and molecules conformational studies. J. Taiwan Inst. Chem. Eng., 2012, 43(6), 889-896.
[http://dx.doi.org/10.1016/j.jtice.2012.08.001]
[72]
Denham, W.S.; Woodhouse, H. CLXSXVI.-The methylation of cellulose. J. Chem. Soc., 1913, 103, 1735-1742.
[http://dx.doi.org/10.1039/CT9130301735]
[73]
Haworth, W.N. III A new method of preparing alkylated sugars. J. Chem. Soc., 1915, 107, 8-12.
[http://dx.doi.org/10.1039/CT9150700008]
[74]
Tiwari, A.; Singh, V.; Tripathi, D.N.; Malviya, T. Microwave promoted methylation of plant polysachharides. Tetrahedron Lett., 2003, 44(39), 7295-7729.
[http://dx.doi.org/10.1016/S0040-4039(03)01871-9]
[75]
Risica, D.; Dentini, M.; Crescenzi, V. Guar gum methyl ethers. Part I. Synthesis and macromolecular characterization. Polym., 2005, 46(26), 12247-12255.
[http://dx.doi.org/10.1016/j.polymer.2005.10.083]
[76]
(a)Tripathi, J.; Ambolikar, R.; Gupta, S.; Jain, D.; Bahadur, J.; Variyar, P.S. Methylation of guar gum for improving mechanical and barrier properties of biodegradable packaging films. Sci. Rep., 2019, 9(1), 14505.
[http://dx.doi.org/10.1038/s41598-019-50991-7] [PMID: 31601861]
(b)Chen, F.; Wang, X.; Yang, R. Synthesis and Characterization of hydrophobic modification guar gum. Adv. Mat. Res., 2014, 952121-124.www.scientific.net/AMR.952.121
[http://dx.doi.org/10.4028/www.scientific.net/AMR.952.121]
[77]
Ibrahim, S.M. Characterization, mechanical and thermal properties of gamma irradiated starch films reinforced with mineral clay. Appl. Polym. Sci, 2011, 119, 685-692.
[http://dx.doi.org/10.1002/app.32732]
[78]
(a)Saurabh, C.K.; Gupta, S.; Bahadur, J.; Mazumder, S.; Variyar, P.S.; Sharma, A. Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films. Carbohydr. Polym., 2013, 98(2), 1610-1617.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.041] [PMID: 24053847]
(b)Micard, V.; Belamri, R.; Morel, M.; Guilbert, S. Properties of chemically and physically treated wheat gluten films. J. Agric. Food Chem., 2000, 48(7), 2948-2953.
[http://dx.doi.org/10.1021/jf0001785] [PMID: 10898649]
(c)Rhim, J.W.; Hong, S.I.; Park, H.M.; Ng, P.K. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem., 2006, 54(16), 5814-5822.
[http://dx.doi.org/10.1021/jf060658h] [PMID: 16881682]
[79]
Shailesh, P.; Patel, R.; Patel, G.; Patel, V.S. Kinetic study of thermal degradation of guar gum esters. Thermochim. Acta, 1988, 128, 141-148.
[http://dx.doi.org/10.1016/0040-6031(88)85360-7]
[80]
Fujioka, R.; Tanaka, Y.; Yoshimura, T. Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J. Appl. Polym. Sci., 2009, 114(1), 612-616.
[http://dx.doi.org/10.1002/app.30600]
[81]
Sarkar, S.; Singhal, R.S. Esterication of guar gum hydrolysate and gum arabic with N-octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydr. Polym., 2011, 86, 1723-1731.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.003]
[82]
Iqbal, D.N.; Hussain, E.A. Microwave-assisted green synthesis of guar gum esters with enhanced physicochemical properties. Sci. Iran. C,, 2019, 26, 1474-1484.
[83]
Hill, C.A. Wood modification: Chemical, thermal and other processes; John Wiley & Sons, 2007, pp. 77-97.
[84]
Han, F.; Liu, M.; Gong, H.; Lü, S.; Ni, B.; Zhang, B. Synthesis, characterization and functional properties of low substituted acetylated corn starch. Int. J. Biol. Macromol., 2012, 50(4), 1026-1034.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.02.030] [PMID: 22402247]
[85]
Das, A.; Abdullah, Md. F; Kundu, S.; Mukherjee, A. Synthesis of guar gum propionate nanoparticles for antimicrobial applications. Mater. Today Proc., 2018, 5, 9683-9689.
[http://dx.doi.org/10.1016/j.matpr.2017.10.154]
[86]
Das, D.; Mukherjee, A. Biomaterial film for soluble organic sorption and anti-microbial activity in water environment. Bioresour. Technol., 2012, 110, 412-416.
[http://dx.doi.org/10.1016/j.biortech.2012.01.147] [PMID: 22357294]
[87]
Das, A.; Kundu, S.; Ghosh, S.K.; Basu, A.; Gupta, M.; Mukherjee, A. Guar gum cinnamate ouzo nanoparticles for bacterial contact killing in water environment. Carbohydr. Res., 2020, 491, 107983.
[http://dx.doi.org/10.1016/j.carres.2020.107983] [PMID: 32229325]
[88]
Gupta, A.P.; Arota, G. Preperation and characterization of allyl modified guar gum. Int. J. Sci. Res. (Ahmedabad), 2014, 3, 27-29.
[http://dx.doi.org/10.15373/22778179/MARCH2014/9]
[89]
Tizzotti, M.; Caroline Creuzet, C.; Labeau, M-P.; Hamaide, T.; Boisson, F.; Drockenmuller, E.; Charlot, A.; Fleury, E. Synthesis of temperature responsive biohybrid guar-based grafted copolymers by click chemistry. Macromol, 2010, 43, 6843-6852.
[http://dx.doi.org/10.1021/ma101215d]
[90]
Singh, A.V.; Kumawat, I.K. Synthesis and characterization of a new guar gum 4-hydroxybenzoic acid resin and its use for the separation of heavy metal ions in industrial effluents. Polym. Eng. Sci., 2012, 53, 546-554.
[http://dx.doi.org/10.1002/pen.23294]
[91]
Jana, P.; Sarkar, K.; Mitra, T.; Chatterjee, A.; Gnanamanid, A.; Chakraborti, G.; Kundu, P.P. Synthesis of carboxymethylated guar gum grafted polyethyleneimine copolymer as an efficient gene delivery vehicle. RSC Advances, 2016, 6, 13730-13741.
[http://dx.doi.org/10.1039/C5RA23447F]
[92]
Liu, Y.; Rao, L.; Zhang, H.; Cen, Y.; Cheng, K. Conjugation of vitamin E-TPGS and guar gum to carry borneol for enhancing blood-brain barrier permeability. J. Biomater. Appl., 2018, 33(4), 590-598.
[http://dx.doi.org/10.1177/0885328218799551] [PMID: 30208770]
[93]
Sharma, M.; Malik, R.; Verma, A.; Dwivedi, P.; Banoth, G.S.; Pandey, N.; Sarkar, J.; Mishra, P.R.; Dwivedi, A.K. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J. Biomed. Nanotechnol., 2013, 9(1), 96-106.
[http://dx.doi.org/10.1166/jbn.2013.1474] [PMID: 23627072]
[94]
Zhang, F.; Shen, Y.; Ren, T.; Wang, L.; Su, Y. Synthesis of 2-alkenyl-3-butoxypropyl guar gum with enhanced rheological properties. Int. J. Biol. Macromol., 2017, 97(97), 317-322.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.062] [PMID: 28093331]
[95]
Tang, H.; Li, Y.; Zhang, W.; Dong, S. Synthesis, optimization, property, characterization, and application of dialdehyde cross-linking guar gum. Int. J. Polym. Sci., 2016, 2016, 6482461.
[http://dx.doi.org/10.1155/2016/6482461]
[96]
Zhang, J.; Chen, G. Improve the temperature resistance of guar gum by silanization. Adv. Mater. Res., 2012, 415-417.Available from:. www.scientific.net/AMR.415-417.652
[97]
Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M.Z. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr. Polym., 2017, 168, 274-281.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.086] [PMID: 28457450]
[98]
Li, N.; Liu, C.; Chen, W. Facile access to guar gum based supramolecular hydrogels with rapid self-healing ability and multistimuli responsive gel-sol transitions. J. Agric. Food Chem., 2019, 67(2), 746-752.
[http://dx.doi.org/10.1021/acs.jafc.8b05130] [PMID: 30571099]
[99]
Dassanayake, R.S.; Rajakaruna, E.; Abidi, N. Borax-cross-linked guar gum-manganese dioxide composites for oxidative decolorization of methylene blue. J. Nanomater., 2019, 2019, 7232715.
[http://dx.doi.org/10.1155/2019/7232715]
[100]
Fan, H.; Gong, Z.; Wei, Z.; Chen, H.; Fan, H.; Geng, J.; Kang, W.; Dai, C. Understanding the temperature–resistance performance of a borate cross-linked hydroxypropyl guar gum fracturing fluid based on a facile evaluation method. RSC Advances, 2017, 7, 53290-53300.
[http://dx.doi.org/10.1039/C7RA11687J]
[101]
Krishna, K.; Shweta, K.; Yadav, D.; Sharma, S.K. Cu (II) Schiff base complex grafted guar gum: Catalyst for benzophenone derivatives synthesis. Appl. Catal. A Gen., 2020, 601, 117529.
[http://dx.doi.org/10.1016/j.apcata.2020.117529]
[102]
Xie, W.; Song, Z.; Liu, Z.; Qian, X. Surface modification of PCC with guar gum using organic titanium ionic crosslinking agent and its application as papermaking filler. Carbohydr. Polym., 2016, 150, 114-120.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.010] [PMID: 27312620]
[103]
Baran, T.; Yılmaz Baran, N.; Menteş, A. Highly active and recyclable heterogeneous palladium catalyst derived from guar gum for fabrication of biaryl compounds. Int. J. Biol. Macromol., 2019, 132, 1147-1154.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.042] [PMID: 30974140]
[104]
Niu, S.; Wang, J.; Zhao, B.; Zhao, M.; Nie, M.; Wang, X.; Yao, J.; Zhang, J. Regioselective synthesis and antioxidant activities of phosphorylated guar gum. Int. J. Biol. Macromol., 2013, 62, 741-747.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.047]
[105]
Ragothaman, M.; Palanisamy, T.; Kalirajan, C. Collagen-poly(dialdehyde) guar gum based porous 3D scaffolds immobilized with growth factor for tissue engineering applications. Carbohydr. Polym., 2014, 114, 399-406.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.045] [PMID: 25263907]
[106]
Ma, J.; Fang, S.; Shi, P.; Duan, M. Hydrazine-Functionalized guar-gum material capable of capturing heavy metal ions. Carbohydr. Polym., 2019, 223, 115137.
[http://dx.doi.org/10.1016/j.carbpol.2019.115137] [PMID: 31427030]
[107]
Wang, L.; Wang, X.; Shen, Y.; Shao, J.; Pei, F. Synthesis and properties of s-triazine di-sulfanilic guar gum as a thickener in reactive printing. Text. Res. J., 2018, 88(15), 1766-1775.
[http://dx.doi.org/10.1177/0040517517708541]
[108]
Raj, V.; Bajpai, A. Synthesis of hydrophobically modified guar gum film for packaging materials. Mater. Today Proc., 2020, 29, 1132-1142.
[http://dx.doi.org/10.1016/j.matpr.2020.05.339]
[109]
Bajpai, A.; Raj, V. Hydrophobically modified guar gum film for wound dressing. Polym. Bull., 2021, 78, 4109-4128.
[http://dx.doi.org/10.1007/s00289-020-03302-4]
[110]
Ma, J.; Zhou, J.; Liu, G.; Luo, L.; Yan, K.; Yao, H.; Li, X. Synthesis and properties of waterborne polyurethane modified with guar gum polysaccharide. ChemistrySelect, 2020, 5(7), 2348-2353.
[http://dx.doi.org/10.1002/slct.201904054]
[111]
Jana, P.; Ghosh, S.; Sarkar, K. Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer. Int. J. Biol. Macromol., 2020, 161, 1149-1160.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.090] [PMID: 32553957]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy