Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Progress in the Synthesis of Heterocycles based on 1,3-diketones

Author(s): Soumaya Talbi, Mustapha Dib*, Latifa Bouissane, Hafid Abderrafia, Souad Rabi and Mostafa Khouili*

Volume 19, Issue 2, 2022

Page: [220 - 245] Pages: 26

DOI: 10.2174/1570179418666211011141428

Price: $65

conference banner
Abstract

N,O-heterocycles containing the dicarbonyl ring play a significant role in heterocyclic and therapeutic chemistry. Since the discovery of 1,3-diketones, numerous research works have been achieved regarding the synthesis and its chemical reactivity. In this review, we have described the most relevant publications involving β-diketone compounds published during the period between 2018 to date. In addition, we include the 1,3-diketones-based heterocyclic compounds prepared by various synthetic methodologies.

Keywords: 1, 3-diketones, heterocyclic compounds, dynthesis, teactivity, multi-compound reaction, therapeutic chemistry.

Graphical Abstract

[1]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[2]
Zarenezhad, E.; Farjam, M.; Iraji, A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J. Mol. Struct., 2021, 1230129833
[http://dx.doi.org/10.1016/j.molstruc.2020.129833]
[3]
Khasimbi, S.; Ali, F.; Manda, K.; Sharma, A.; Chauhan, G.; Wakode, S. Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review. Curr. Org. Synth., 2021, 18(3), 270-293.
[http://dx.doi.org/10.2174/1570179417666201207215710] [PMID: 33290199]
[4]
Dib, M.; Ouchetto, H.; Ouchetto, K.; Hafid, A.; Khouili, M. Recent developments of quinoline derivatives and their potential biological activities. Curr. Org. Synth., 2021, 18(3), 248-269.
[http://dx.doi.org/10.2174/1570179417666201216162055] [PMID: 33327918]
[5]
Khan, M.M.; Saigal, B.; Shareef, S.; Khana, S.; Sahoo, S.C. One-pot practical method for synthesis of functionalized 4H-chromen-5-one derivatives under catalyst and solvent-free conditions. Synth. Commun., 2018, 48, 2683-2694.
[http://dx.doi.org/10.1080/00397911.2018.1517218]
[6]
Gomaa, M.A.M.; Manolikakes, G.; Sun, Y.; Hassan, D.K. Catalyst-free direct synthesis of β-enaminones through reaction of benzohydrazonamides with cyclic 1,3-diketones: Access to exocyclic β-enaminones. Synth. Commun., 2019, 49, 161-3168.
[http://dx.doi.org/10.1080/00397911.2019.1658785]
[7]
Kumari, S.; Kumar, D.; Gajaganti, S.; Srivastava, V.; Singh, S. Sc(OTf)3 catalysed multicomponent synthesis of chromeno[2,3-d]pyrimidinetriones under solvent-free condition. Synth. Commun., 2019, 49, 431-443.
[http://dx.doi.org/10.1080/00397911.2018.1560471]
[8]
Zanin, L.L.; Jimenez, D.E.Q.; de Jesus, M.P.; Diniz, L.F.; Ellena, J.; Porto, A.L.M. Synthesis and X-ray crystal structures of polyfunctionalized 4H-chromene derivatives via tricomponent reaction with Knoevenagel adducts as intermediates in aqueous medium. J. Mol. Struct., 2020, 1223129226
[http://dx.doi.org/10.1016/j.molstruc.2020.129226]
[9]
Muhammad, S.; Ali, F.I.; Javed, M.N.; Wasim, A.A.; Bari, A.; Rafique, F.; Ilyas, M.A.; Riaz, K.; Mahmood, S.J.; Ahmed, A.; Hashmi, I.A. Effect of supramolecular polymeric aggregation in room temperature ionic liquids (RTILs) on catalytic activity in the synthesis of 4H-chromene derivatives and Knoevenagel condensation. J. Mol. Liq., 2021, 322114503
[http://dx.doi.org/10.1016/j.molliq.2020.114503]
[10]
Gharabaghlou, M.A.; Shadjou, N.; Marjani, A.P. Cu@KCC-1-NH-CS2 as a new and highly efficient nanocatalyst for the synthesis of 2-amino-4H-chromene derivatives. Appl. Organomet. Chem., 2020, 34e5868
[http://dx.doi.org/10.1002/aoc.5868]
[11]
Zeynizadeh, B.; Rahmani, S.; Hallaj, A. The immobilized copper on nickel ferrite: A magnetically superior nanocatalyst for chemoselective and Knoevenagel synthesis of bisdimedones and 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Curr. Org. Synth., 2019, 16(6), 939-947.
[http://dx.doi.org/10.2174/1570179416666190423123915] [PMID: 31984915]
[12]
Hiremath, P.B.; Kantharaju, K. An efficient and facile synthesis of 2-amino-4H-pyrans & tetrahydrobenzo[b]pyrans catalysed by WEMFSA at room temperature. ChemistrySelect, 2020, 5, 1896-1906.
[http://dx.doi.org/10.1002/slct.201904336]
[13]
Safaei-Ghomi, J.; Elyasi, Z.; Babaei, P. N-doped graphene quantum dots modified with CuO (0D)/ZnO (1D) heterojunction as a new nanocatalyst for environmental being one pot synthesis of monospiro derivatives. New J. Chem., 2021, 45, 1269-1277.
[http://dx.doi.org/10.1039/D0NJ04447D]
[14]
Gao, H.; Yang, X.; Tang, X.; Yin, P.; Mao, Z. A Brief Synthesis of 2,2′-Arylmethylene Bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1- one) Catalyzed by TEAOH in Various Solvents. Curr. Org. Synth., 2019, 16(7), 1032-1039.
[http://dx.doi.org/10.2174/1570179416666190723122816] [PMID: 31984884]
[15]
Taydakov, I.V.; Korshunov, V.M.; Belousov, Y.A.; Nelyubin, Y.V.; Marchettie, F.; Pettinarif, R.; Pettinari, C. Synthesis, crystal structure and photophysical properties of mixed-ligand lanthanide complexes with 1,3-diketonates bearing pyrazole moieties and 1,10-phenanthroline. Inorg. Chim. Acta, 2020, 513119922
[http://dx.doi.org/10.1016/j.ica.2020.119922]
[16]
Akhramez, S.; Achour, Y.; Dib, M.; Bahsis, L.; Ouchetto, H.; Hafid, A.; Khouili, M.; El Haddad, M. DFT study and synthesis of novel bioactive bispyrazole using Mg/Al-LDH as a solid base catalyst. Curr. Chem. Biol., 2020, 14, 240-249.
[http://dx.doi.org/10.2174/2212796814999200918175018]
[17]
Chithanna, S.; Yang, D.Y. Multicomponent synthesis of 1,3-diketone-linked N-substituted pyrroles, pyrrolo[1,2- a]pyrazines, pyrrolo[1,4]diazepines, and pyrrolo[1,4]diazocines. J. Org. Chem., 2019, 84(3), 1339-1347.
[http://dx.doi.org/10.1021/acs.joc.8b02819] [PMID: 30604610]
[18]
Sun, D.W.; Zhoua, Y.Y.; Jiang, M.; Nian, T.; Liu, J.T. CF3SOCl-promoted intramolecular cyclization of β-diketones: An efficient synthesis of flavones. Tetrahedron, 2021, •••132226
[http://dx.doi.org/10.1016/j.tet.2021.132226]
[19]
Diep, T.D.; Dao, P.D.Q.; Cho, C.S. Synthesis of binuclear isoquinoline- and pyridine-fused benzimidazole-4,7-diones by magnetic MOF-199-catalyzed C–C coupling/cyclization followed by oxidation. Eur. J. Org. Chem., 2019, 2019, 4071-4079.
[http://dx.doi.org/10.1002/ejoc.201900635]
[20]
Malamiri, F.; Khaksar, S.; Badri, R.; Tahanpesar, E. Solvent-mediated highly efficient synthesis of [1,2,4]triazolo/benzimida-zoloquinazolinone derivatives. Curr. Org. Synth., 2019, 16(8), 1185-1190.
[http://dx.doi.org/10.2174/1570179416666191018145142] [PMID: 31984925]
[21]
Kuang, J.; Zhou, T.; You, T.; Chen, J.; Su, C.; Xia, Y. Facile access to 1,3-diketones by gold(i)-catalyzed regioselective hydration of ynones. Org. Biomol. Chem., 2019, 17(16), 3940-3944.
[http://dx.doi.org/10.1039/C9OB00494G] [PMID: 30942249]
[22]
Zhu, J.L.; Tsai, Y.T. Rhodium-catalyzed aerobic decomposition of 1,3-diaryl-2-diazo-1,3-diketones: Mechanistic investigation and application to the synthesis of benzils. J. Org. Chem., 2021, 86(1), 813-828.
[http://dx.doi.org/10.1021/acs.joc.0c02366] [PMID: 33395740]
[23]
Hazarika, R. Konwara; Damarla, M.; Kumar, K.; Sarma, A.D. HBF4/ACN: A simple and efficient protocol for the synthesis of pyrazoles under ambient reaction conditions. Synth. Commun., 2020, 50, 329-337.
[http://dx.doi.org/10.1080/00397911.2019.1692869]
[24]
Zhou, X.Yu.; Chen, X.; Yang, D. Iodine and Brønsted acid catalyzed C–C bond cleavage of 1,3-diketones for the acylation of amines. Synth. Commun., 2020, 50, 177-184.
[http://dx.doi.org/10.1080/00397911.2019.1691736]
[25]
Aderibigbe, S.O.; Coltart, D.M. Synthesis of 1,3-diketones and β-keto thioesters via soft enolization. J. Org. Chem., 2019, 84(15), 9770-9777.
[http://dx.doi.org/10.1021/acs.joc.9b00397] [PMID: 31333029]
[26]
He, J.P.; Zhan, Z.Z.; Luo, N.; Zhang, M.M.; Huang, G.S. Direct synthesis of 2,3,5-trisubstituted pyrroles via copper-mediated one-pot multicomponent reaction. Org. Biomol. Chem., 2020, 18(48), 9831-9835.
[http://dx.doi.org/10.1039/D0OB01952F] [PMID: 33245315]
[27]
Lyu, X.L.; Huang, S.S.; Huang, Y.Q.; Song, H.J.; Liu, Y.X.; Li, Y.Q.; Yang, S.X.; Wang, Q.M. Rhodium(III) catalyzed cross-coupling of sulfoxonium ylides with quinoline-8-carboxaldehydes for synthesis of quinoline-1,3-diketones. Asian J. Org. Chem., 2021, 10, 176-179.
[http://dx.doi.org/10.1002/ajoc.202000581]
[28]
Dige, N.C.; Mahajan, P.G.; Raza, H.; Hassan, M.; Vanjare, B.D.; Hong, H.; Lee, K.H.; Latip, J.; Seo, S.Y. Synthesis and characterization of new 4H-chromene-3-carboxylates ensuring potent elastase inhibition activity along with their molecular docking and chemoinformatics properties. Bioorg. Chem., 2020, 100103906
[http://dx.doi.org/10.1016/j.bioorg.2020.103906] [PMID: 32422387]
[29]
Li, K.; Jiang, J.; Amann, T.; Yuan, Y.; Wang, C.; Yuan, C.; Neville, A. Evaluation of 1,3-diketone as a novel friction modifer for lubricating oils. Wear, 2020, 452-453203299
[http://dx.doi.org/10.1016/j.wear.2020.203299]
[30]
Liu, D.; Li, K.; Zhang, S.; Amann, T.; Zhang, C.; Yan, X. Anti-spreading behavior of 1,3-diketone lubricating oil on steel surfaces. Tribol. Int., 2018, 121, 108-113.
[http://dx.doi.org/10.1016/j.triboint.2018.01.031]
[31]
Wang, D.J.; Xu, B.P.; Wei, X.H.; Zheng, J. Preparation and spectroscopic properties of some new diaroylmethanatoboron difluoride derivatives. J. Fluor. Chem., 2012, 140, 49-53.
[http://dx.doi.org/10.1016/j.jfluchem.2012.04.010]
[32]
Zawadiak, J.; Mrzyczek, M.; Piotrowski, T. Synthesis and properties of aromatic 1,3-diketones and bis-(1,3-diketones) obtained from acetophenone and phtalic acids esters. Eur. J. Med. Chem., 2011, 2, 289-294.
[http://dx.doi.org/10.5155/eurjchem.2.3.289-294.416]
[33]
Wang, D.J.; Kang, Y.F.; Xu, B.P.; Zheng, J.; Wei, X.H. Synthesis, characterization and fluorescence properties of boron difluoride pyridyl-β-diketonate derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 104, 419-422.
[http://dx.doi.org/10.1016/j.saa.2012.11.102] [PMID: 23274472]
[34]
Katritzky, A.R.; Wang, Z.; Wang, M.; Wilkerson, C.R.; Hall, C.D.; Akhmedov, N.G. Preparation of β-keto esters and β-diketones by C-acylation/deacetylation of acetoacetic esters and acetonyl ketones with 1-acylbenzotriazoles. J. Org. Chem., 2004, 69(20), 6617-6622.
[http://dx.doi.org/10.1021/jo049274l] [PMID: 15387583]
[35]
Lim, D.; Fang, F.; Zhou, G.; Coltart, D.M. Direct carbon-carbon bond formation via soft enolization: A facile and efficient synthesis of 1,3-diketones. Org. Lett., 2007, 9(21), 4139-4142.
[http://dx.doi.org/10.1021/ol701599v] [PMID: 17877360]
[36]
Wiles, C.; Watts, P.; Haswell, S.J.; Pombo-Villar, E. The regioselective preparation of 1,3-diketones within a micro reactor. Chem. Commun. (Camb.), 2002, 10(10), 1034-1035.
[http://dx.doi.org/10.1039/b201220k] [PMID: 12122651]
[37]
Chen, P.; Zhang, Q.Q.; Guo, J.; Chen, L.L.; Wang, Y.B.; Zhang, X. An effective preparation of both 1,3-diketones and nitriles from alkynones with oximes as hydroxide sources. Org. Biomol. Chem., 2018, 16(37), 8336-8344.
[http://dx.doi.org/10.1039/C8OB01861H] [PMID: 30206631]
[38]
Su, B.; Hou, Y.; Wang, L.; Li, X.; Pan, D.; Yan, T.; Zhang, A.; Paison, F.; Ding, L. The syntheses, characterization and crystal structures of a series of heterocyclic β-diketones and their isoxazole compounds. Curr. Org. Synth., 2019, 16(8), 1174-1184.
[http://dx.doi.org/10.2174/1570179416666191022113022] [PMID: 31984924]
[39]
Fekri, L.Z. NiFe2O4@SiO2 @amino glucose magnetic nanoparticle under solvent-free condition: A new, mild, simple and effective avenue for the synthesis of quinazolinone, imidazo[1,2-a]pyrimidinone and novel derivatives of amides. Curr. Org. Synth., 2020, 17(4), 304-312.
[http://dx.doi.org/10.2174/1570179417666200409151330] [PMID: 32271698]
[40]
Daraie, M.; Mirsafaei, R.; Heravi, M.M. Acid-functionalized mesoporous silicate (KIT-5-Pr-SO3H) synthesized as an efficient and nanocatalyst for green multicomponent. Curr. Org. Synth., 2019, 16(1), 145-153.
[http://dx.doi.org/10.2174/1570179415666181005110543] [PMID: 31965928]
[41]
Keshk, R.M.; Garavelli, M.; El-Tahawy, M.M.T. Synthesis, physicochemical and vibrational spectral properties of 2-pyridone and 2-aminopyridine derivatives: An experimental and theoretical study. J. Mol. Struct., 2021, 1225129136
[http://dx.doi.org/10.1016/j.molstruc.2020.129136]
[42]
Sepehrmansouri, H.; Zarei, M.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Rostamnia, S.; Moradi, S. Multilinker phosphorous acid anchored En/MIL-100 (Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido [4, 5-b] quinolines. Mol. Catal, 2020, 481, 110303-110320.
[http://dx.doi.org/10.1016/j.mcat.2019.01.023]
[43]
Liu, J.Y.; Xu, J.X.; Qiao, X.M.; Cai, Y.; Chen, D.S. Three-component one-pot synthesis of pyrazino[2,3-a]acridine derivatives under catalyst-free conditions. J. Heterocycl. Chem., 2020, 57, 3890-3897.
[http://dx.doi.org/10.1002/jhet.4094]
[44]
Zhu, W.R.; Su, Q.; Lin, N.; Chen, Q.; Zhang, Z.W.; Weng, J.; Lu, G. Organocatalytic synthesis of chiral CF3-containing oxazolidines and 1,2-amino alcohols: Asymmetric oxa-1,3-dipolar cycloaddition of trifluoroethylamine-derived azomethine ylides. Org. Chem. Front., 2020, 7, 3452-3458.
[http://dx.doi.org/10.1039/D0QO00990C]
[45]
Hu, Z.; Men, Y.; Xu, Z.; Wu, T.; Xu, X.; Tang, B. A catalyst-free aqueous mediated multicomponent reaction of isocyanide: Expeditious synthesis of polyfunctionalized cyclo[: B] fused mono-, di- and tricarbazoles. Org. Chem. Front., 2020, 7, 3720-3726.
[http://dx.doi.org/10.1039/D0QO01095B]
[46]
Wu, W.; Han, X.; Weng, Z. Synthesis of pertrifluoromethyl pyridazine derivatives: via a tandem reaction of aryldiazonium salts with hexafluoro-acetylacetone. Org. Chem. Front., 2020, 7, 3499-3504.
[http://dx.doi.org/10.1039/D0QO00955E]
[47]
Wu, D.; Fang, X.; Song, J.; Qu, L.; Zhou, X.; Xiang, H.; Wang, J.; Liu, J. Multi-stimuli-responsive fluorescence of axially chiral 4-ene-β-Diketones. Dyes Pigm, 2021, 184108851
[http://dx.doi.org/10.1016/j.dyepig.2020.108851]
[48]
Li, Z.; Ma, Y.; Qin, J.; Tan, Z.; Sun, X.; Wang, W. Silver-catalyzed radical cascade cyclization of 1, 3-diarylpropynones with 1, 3-dicarbonyl compounds to access 2-dicarbonyl indenones. Tetrahedron Lett., 2020, 61151679
[http://dx.doi.org/10.1016/j.tetlet.2020.151679]
[49]
Tang, S.B.; Zhang, X.; Tu, H.F.; You, S.L. Regio- and enantioselective rhodium-catalyzed allylic alkylation of racemic allylic alcohols with 1,3-diketones. J. Am. Chem. Soc., 2018, 140(24), 7737-7742.
[http://dx.doi.org/10.1021/jacs.8b05126] [PMID: 29799203]
[50]
Roy, P.; Anjum, S.R.; Ramachary, D.B. One-pot Knoevenagel and [4 + 2] cycloaddition as a platform for calliviminones. Org. Lett., 2020, 22(8), 2897-2901.
[http://dx.doi.org/10.1021/acs.orglett.0c00518] [PMID: 32223251]
[51]
Rahmatpour, A.; Goodarzi, N. Cross-linked polystyrene-TiCl4 complex as a reusable Lewis acid catalyst for solvent-free Knoevenagel condensations of 1,3-dicarbonyl compounds with aldehydes. Catal. Commun., 2019, 124, 24-31.
[http://dx.doi.org/10.1016/j.catcom.2018.11.001]
[52]
Xiaolong, L.; Xiangjie, L.; Zhelun, W.; Jinlong, Z.; Xinjiong, F.; Yao, F. Biosynthesis of α-substituted β-Ketoesters via the tandem Knoevenagel condensation-reduction reaction using a single enzyme. ACS Sustain. Chem.& Eng., 2020, 8, 8206-8213.
[http://dx.doi.org/10.1021/acssuschemeng.0c00938]
[53]
Chen, Y.; You, Y.; Weng, Z. Syntheses of 2-(2,2,2-trifluoroethylidene)/(2,2-difluoroethyl)-1,3-dicarbonyl compounds and their fungicidal activities. Org. Chem. Front., 2019, 6, 213-217.
[http://dx.doi.org/10.1039/C8QO01118D]
[54]
Jiang, M.C.; Chuang, C.P. Manganese(III) acetate initiated oxidative free radical reactions between 2-amino-1,4-naphthoquinones and β-dicarbonyl compounds. J. Org. Chem., 2000, 65(17), 5409-5412.
[http://dx.doi.org/10.1021/jo991947q] [PMID: 10993373]
[55]
Singh, A.; Srivastava, A.; Singh, M.S. Metal-free one-pot four-component cascade annulation in ionic liquids at room temperature: Convergent access to thiazoloquinolinone derivatives. J. Org. Chem., 2018, 83(15), 7950-7961.
[http://dx.doi.org/10.1021/acs.joc.8b00814] [PMID: 29978705]
[56]
Brahmachari, G.; Mandal, M. One-pot multicomponent synthesis of a new series of curcumin-derived 4H-pyrans under ambient conditions. J. Heterocycl. Chem., 2020, 57, 744-750.
[http://dx.doi.org/10.1002/jhet.3814]
[57]
Feng, G.; Sun, C.; Xin, X.; Wan, R.; Liu, L. Cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with 1,3-dicarbonyls and aryl moieties. Tetrahedron Lett., 2019, 60, 1547-1550.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.016]
[58]
Ying, L.; Yan-Cheng, H.; Ding-Wei, J.; Wei-Song, Z.; Gu-Cheng, H.; Yu-Feng, C.; Qing-An, C. Acid-catalyzed chemoselective C- and O-prenylation of cyclic 1,3-diketones. Chin. J. Catal., 2020, 41, 1401-1409.
[http://dx.doi.org/10.1016/S1872-2067(20)63575-6]
[59]
Sarnikar, Y.P.; Mane, Y.D.; Biradar, D.O.; Khade, B.C.B. (C6F5)3 catalyzed synthesis of dihydropyrano[3,2-b]chromenediones under solvent-free conditions. Synth. Commun., 2019, 49, 1143-1153.
[http://dx.doi.org/10.1080/00397911.2019.1585542]
[60]
Sravya, G.; Suresh, G.; Zyryanov, G.V.; Balakrishna, A.; Reddy, K.M.K.; Reddy, C.S.; Venkataramaiah, C.; Rajendra, W.; Reddy, N.B. A meglumine catalyst–based synthesis, molecular docking, and antioxidant studies of dihydropyrano[3, 2‐b]chromenedione derivatives. J. Heterocycl. Chem., 2019, 57, 355-369.
[http://dx.doi.org/10.1002/jhet.3786]
[61]
Harichandran, G.; Devi, K.S.; Shanmugam, P.; Jesse, M.I.; Kathiravan, K. Amberlite IRA-400 Cl resin catalyzed multicomponent organic synthesis in water: Synthesis, antimicrobial and docking studies of spiroheterocyclic 2-oxindoles and acenaphthoquinone. Curr. Organo cat, 2018, 5, 13-24.
[http://dx.doi.org/10.2174/2213337205666180316170023]
[62]
Chavan, P.V.; Desai, U.V.; Wadgaonkar, P.P.; Tapase, S.R.; Kodam, K.M.; Choudhari, A.; Sarkar, D. Click chemistry based multicomponent approach in the synthesis of spirochromenocarbazole tethered 1,2,3-triazoles as potential anticancer agents. Bioorg. Chem., 2019, 85, 475-486.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.070] [PMID: 30776558]
[63]
Kumar, M.R.; Manikandan, A.; Sivakumar, A.; Dhayabaran, V.V. An eco-friendly catalytic system for multicomponent, one-pot synthesis of novel spiro-chromeno indoline-triones and their anti-prostate cancer potentials evaluated via alkaline phosphatase inhibition mechanism. Bioorg. Chem., 2018, 81, 44-54.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.037] [PMID: 30118985]
[64]
Shahi, A.M.; Nikpassand, M.; Fekri, L.Z. Acidic Ionic Liquid-catalyzed Synthesis of Pyrano[4,3-b]pyran-5(4H)-ones using 4,4,4-trifluoro-1-phenylbutane-1,3-dione as a Building Block. Curr. Org. Synth., 2020, 17(8), 648-653.
[http://dx.doi.org/10.2174/1570179417666200520111536] [PMID: 32433006]
[65]
Li, F.; Xu, Y.; Wang, C.; Wang, C.; Zhao, R.; Wang, L. Efficient synthesis of cyano-containing multi-substituted indoles catalyzed by lipase. Bioorg. Chem., 2021, 107104583
[http://dx.doi.org/10.1016/j.bioorg.2020.104583] [PMID: 33421956]
[66]
Abdolmohammadi, S.; Shariati, S.; Fard, N.E.; Samani, A. Aqueous-Mediated green synthesis of novel spiro[indole-quinazoline] derivatives using kit-6 mesoporous silica coated Fe3O4 nanoparticles as catalyst. J. Heterocycl. Chem., 2020, 57, 2729-2737.
[http://dx.doi.org/10.1002/jhet.3981]
[67]
Taslimi, P.; Türkan, F.; Turhan, K.; Karaman, H.S.; Turgut, Z.; Gulcin, I. 2H -Indazolo [ 2, 1- b ] phthalazine-trione derivatives : Inhibition on some metabolic enzymes and molecular docking studies. J. Heterocycl. Chem., 2020, 57, 3116-3125.
[http://dx.doi.org/10.1002/jhet.4019]
[68]
Sun, Q.S.; Sun, J.; Pan, L.N.; Yan, C.G. Selective construction of diverse polycyclic spirooxindoles via a three-component reaction of cyclic mercapto-substituted β-enamino esters, isatins, and cyclic 1,3-diketones. J. Org. Chem., 2020, 85(19), 12117-12127.
[http://dx.doi.org/10.1021/acs.joc.0c01290] [PMID: 32901479]
[69]
Li, T.; Liang, K.; Zhang, Y.; Hu, D.; Ma, Z.; Xia, C. Three-component minisci reaction with 1,3-dicarbonyl compounds induced by visible light. Org. Lett., 2020, 22(6), 2386-2390.
[http://dx.doi.org/10.1021/acs.orglett.0c00584] [PMID: 32155078]
[70]
Wu, Y.; He, X.; Xie, M.; Li, R.; Ning, Y.; Duan, J.; Zhang, E.; Shang, Y. Rh(III)-catalyzed cascade nucleophilic addition/annulation of 2-diazo-1,3-diketones with 1,3-dicarbonyl compounds to access 6,7-dihydrobenzofuran-4(5H)-ones. J. Org. Chem., 2021, 86(11), 7370-7380.
[http://dx.doi.org/10.1021/acs.joc.1c00259] [PMID: 34014083]
[71]
Yan, R.; Huang, J.; Luo, J.; Wen, P.; Huang, G.; Liang, Y. Copper(I)-catalyzed synthesis of polysubstituted furans from alkynoates and 1,3-dicarbonyl compounds in the presence of oxygen. Synlett, 2010, 7, 1071-1074.
[http://dx.doi.org/10.1055/s-0029-1219778]
[72]
Khoeiniha, R.; Olyaei, A.; Saraei, M. Catalyst-free synthesis of novel 4H-indeno[1,2-b]furan-4-ones and furo[2,3-d]pyrimidines in water. Synth. Commun., 2018, 48, 155-160.
[http://dx.doi.org/10.1080/00397911.2017.1388409]
[73]
Fan, C.; He, X.; Zuo, Y.; Shang, Y. Synthesis of oxazole and furan derivatives via Rh2(OAc)4-catalyzed C≡X bond insertion of cyclic 2-diazo-1,3-diketones with nitriles and arylacetylenes. Synth. Commun., 2018, 48, 2782-2792.
[http://dx.doi.org/10.1080/00397911.2018.1473441]
[74]
Wang, S.; Song, M.; Li, X.; Huang, Y.; Zhao, T.; Wei, Z.; Lan, Y.; Tan, H. Synthesis of heterobiaryl 4-aryl furans through a base-promoted decarboxylative propargylation/cycloisomerization annulations. Org. Lett., 2020, 22(22), 8752-8757.
[http://dx.doi.org/10.1021/acs.orglett.0c02668] [PMID: 33021800]
[75]
Zhang, W.H.; Chen, M.N.; Hao, Y.; Jiang, X.; Zhou, X.L.; Zhang, Z.H. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines J. Mol. Liq., 2019, 278, 124-129.
[http://dx.doi.org/10.1016/j.molliq.2019.01.065]
[76]
Rahimi, F.; Bayat, M.; Hosseini, H. Synthesis of spiroimidazopyridineoxindole, spiropyrido- pyrimidineoxindole and spiropyridodiazepineoxindole derivatives based on heterocyclic ketene aminals: Via a four-component reaction. RSC Advances, 2019, 9, 16384-16389.
[http://dx.doi.org/10.1039/C8RA10379H]
[77]
Joshi, R.; Kumawat, A.; Singh, S.; Roy, K.; Pardasani, R.T. Synthesis of spirooxindoles through cyclocondensation of isatin and cyclic 1,3‐diones. J. Heterocycl. Chem., 2018, 55, 1783-1790.
[http://dx.doi.org/10.1002/jhet.3217]
[78]
Pradhan, S.; Mishra, B.G. CsxH3-xPW12O40 nanoparticles dispersed in the porous network of Zr-pillared A-zirconium phosphate as efficient heterogeneous catalyst for synthesis of spirooxindoles. Mol. Catal, 2018, 446, 58-71.
[http://dx.doi.org/10.1016/j.mcat.2017.12.013]
[79]
Zhang, M.; Yang, W.; Qian, M.; Zhao, T.; Yang, L.; Zhu, C. Iodine-promoted three-component reaction for the synthesis of spirooxindoles. Tetrahedron, 2018, 74, 955-961.
[http://dx.doi.org/10.1016/j.tet.2018.01.001]
[80]
Mirhosseini-Eshkevari, B.; Ghasemzadeh, M.A.; Esnaashari, M. Highly efficient and green approach for the synthesis of spirooxindole derivatives in the presence of novel Brønsted acidic ionic liquids incorporated in UiO-66 nanocages. Appl. Organomet. Chem., 2019, 33, 1-13.
[http://dx.doi.org/10.1002/aoc.5027]
[81]
Nasri, S.; Bayat, M.; Farahani, H.V.; Karami, S. Synthesis of new functionalized thiazolo pyridine-fused and thiazolo pyridopyrimidine-fused spirooxindoles via one-pot reactions. Heliyon, 2020, 6(3)e03687
[http://dx.doi.org/10.1016/j.heliyon.2020.e03687] [PMID: 32258502]
[82]
Moradi, L.; Ataei, Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem. Lett. Rev., 2017, 10, 380-386.
[http://dx.doi.org/10.1080/17518253.2017.1390611]
[83]
Metlina, D.A.; Metlin, M.T.; Ambrozevich, S.A.; Selyukov, A.S.; Datskevich, N.P.; Aminev, D.F.; Goryachii, D.O.; Lyssenko, K.A.; Pavlov, A.A.; Dmitrienko, A.O.; Taydakov, I.V. Bright NIR-luminescent complexes Nd3+ with pyrazole-substituted 1,3-diketones demonstrated an unusual spectral lines branching ratios. Dyes Pigm, 2020, 181108558
[http://dx.doi.org/10.1016/j.dyepig.2020.108558]
[84]
Kundu, T.; Pramanik, A. Expeditious and eco-friendly synthesis of new multifunctionalized pyrrole derivatives and evaluation of their antioxidant property. Bioorg. Chem., 2020, 98103734
[http://dx.doi.org/10.1016/j.bioorg.2020.103734] [PMID: 32171990]
[85]
Benzekri, Z.; Sibous, S.; Serrar, H.; Boukhris, S.; Hassikou, A.; Ghailane, R.; Souizi, A. Efficient synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles using snail shell as a biodegradable and reusable catalyst. Org. Prep. Proced. Int., 2019, 51, 566-575.
[http://dx.doi.org/10.1080/00304948.2019.1677991]
[86]
Komendantova, A.S.; Lyssenko, K.A.; Zavarzin, I.V.; Volkova, Y.A. Iodine-promoted synthesis of pyrazoles from 1,3-dicarbonyl compounds and oxamic acid thiohydrazides. Org. Chem. Front., 2020, 7, 1640-1646.
[http://dx.doi.org/10.1039/D0QO00476F]
[87]
Dutta, A.; Rahman, N.; Kumar, J.E.; Rabha, J.; Phukan, T.; Nongkhlaw, R. Articles Catalyst-free UV365-assisted synthesis of pyran annulated heterocyclic scaffolds and evaluation of their antibacterial activities Arup Dutt. Synth. Commun., 2021, 51, 263-278.
[http://dx.doi.org/10.1080/00397911.2020.1825741]
[88]
Zou, L.H.; Fan, M.; Wang, L.; Liu, C. Hetero diacylation of 1, 1-diborylalkanes: Practical synthesis of 1,3-diketones. Chin. Chem. Lett., 2020, 31, 1911-1913.
[http://dx.doi.org/10.1016/j.cclet.2019.12.016]
[89]
Quiroga, D.; Becerra, L.D.; Coy-Barrera, E. Solvent free three-component synthesis of 2,4,5-trisubstituted-1H-pyrrol-3-ol-type compounds from L-tryptophan: DFT-B3LYP calculations for the reaction mechanism and 3H-pyrrol-3-one↔1H-pyrrol-3-ol tautomeric equilibrium. Molecules, 2020, 25(19), 4402.
[http://dx.doi.org/10.3390/molecules25194402] [PMID: 32992704]
[90]
Zhao, M.; Ning, G.; Yang, D.; Gao, P.; Fan, M.; Zhao, L. Nickel-catalyzed formal [ 3 + 2 ] -cycloaddition of 2 H -azirines with 1, 3-dicarbonyl compounds for the synthesis of pyrroles. Tetrahedron Lett., 2020, 61152319
[http://dx.doi.org/10.1016/j.tetlet.2020.152319]
[91]
Anary-Abbasinejada, M.; Nezhad-Shshrokhabadi, F.; Mohammadi, M. A green method for the synthesis of pyrrole derivatives using arylglyoxals, 1,3-diketones and enaminoketones in water or water-ethanol mixture as solvent. Mol. Divers., 2020, 24(4), 1205-1222.
[http://dx.doi.org/10.1007/s11030-019-09984-x] [PMID: 31485891]
[92]
Zhao, M.X.; Liu, Q.; Yu, K.M.; Zhao, X.L.; Shi, M. Organocatalyzed asymmetric formal [3 + 2] cycloaddition of isocyanoacetates with: N-itaconimides: Facile access to optically active spiropyrroline succinimide derivatives. Org. Chem. Front., 2019, 6, 3879-3884.
[http://dx.doi.org/10.1039/C9QO00939F]
[93]
Elkina, N.A.; Burgart, Y.V.; Shchegolkov, E.V.; Krasnykh, O.P.; Maslova, V.V.; Triandafilova, G.A.; Solodnikov, S.S.; Muryleva, A.A.; Misiurina, M.S.; Slita, A.V.; Zarubaev, V.V.; Saloutin, V.I. Competitive routes to cyclizations of polyfluoroalkyl-containing 2-tolylhydrazinylidene-1,3-diketones with 3-aminopyrazoles into bioactive pyrazoloazines. J. Fluor. Chem., 2020, 240109648
[http://dx.doi.org/10.1016/j.jfluchem.2020.109648]
[94]
Kumari, S.; Singh, S.; Srivastava, V. Lemon juice catalyzed C-C bond formation via C-H activation of methylarene: A sustainable synthesis of chromenopyrimidines. Mol. Divers., 2020, 24(3), 717-725.
[http://dx.doi.org/10.1007/s11030-019-09980-1] [PMID: 31376065]
[95]
Kumari, P.; Yadav, R.; Bharti, R.; Parvin, T. Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Mol. Divers., 2020, 24(1), 107-117.
[http://dx.doi.org/10.1007/s11030-019-09929-4] [PMID: 30843127]
[96]
Dajek, M.; Pruszczyńska, A.; Konieczny, K.A.; Kowalczyk, R. Cinchona squaramide-catalyzed intermolecular desymmetrization of 1,3-diketones leading to chiral 1,4-dihydropyridines. Adv. Synth. Catal., 2020, 362, 3613-3620.
[http://dx.doi.org/10.1002/adsc.202000455]
[97]
Yan, X.P.; Li, C.K.; Zhou, S.F.; Shoberu, A.; Zou, J.P. Copper-catalyzed sp3-carbon radical/carbamoyl radical cross coupling: A direct strategy for carbamoylation of 1,3-dicarbonyl compounds. Tetrahedron, 2020, 76131342
[http://dx.doi.org/10.1016/j.tet.2020.131342]
[98]
Estopiñá-Durán, S.; Mclean, E.B.; Donnelly, L.J.; Hockin, B.M.; Taylor, J.E. Arylboronic acid catalyzed C-alkylation and allylation reactions using benzylic alcohols. Org. Lett., 2020, 22(19), 7547-7551.
[http://dx.doi.org/10.1021/acs.orglett.0c02736] [PMID: 32959662]
[99]
Ren, Y.Y.; Chen, M.; Li, K.; Zhu, S.F. Gold-catalyzed formal C-C bond insertion reaction of 2-Aryl-2-diazoesters with 1,3-diketones. Chem. Asian J., 2018, 13(18), 2606-2610.
[http://dx.doi.org/10.1002/asia.201800934] [PMID: 29959823]
[100]
Yu, T.Y.; Zheng, Z.J.; Dang, T.T.; Zhang, F.X.; Wei, H. Synthesis of Acyl Azides from 1,3-diketones via oxidative cleavage of two C-C bonds. J. Org. Chem., 2018, 83(17), 10589-10594.
[http://dx.doi.org/10.1021/acs.joc.8b01417] [PMID: 30080043]
[101]
Kobayashi, T.; Takizawa, I.; Kawamoto, Y.; Ito, H. Sequential condensation-6π-electrocyclization reaction of a chiral 1,3-diketone possessing C2 symmetry. Tetrahedron Lett., 2020, 6151897
[http://dx.doi.org/10.1016/j.tetlet.2020.151897]
[102]
Navale, B.S.; Laha, D.; Bhat, R.G. Propargyl α-aryl-α-diazoacetates as robust reagents for the effective Csingle bondH bond functionalization of 1,3-diketones via scandium catalysis. Tetrahedron Lett., 2019, 60, 1899-1903.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.026]
[103]
Chen, Y.; You, Y.; Weng, Z. Syntheses of 2-(2,2,2-trifluoroethylidene)/(2,2-difluoroethyl)-1,3-dicarbonyl compounds and their fungicidal activities. Org. Chem. Front., 2019, 6, 213.
[http://dx.doi.org/10.1039/C8QO01118D]
[104]
Maezono, S.M.B.; Park, G.E.; Lee, Y.R. Regiospecific construction of diverse and polyfunctionalized γ-pyrone cores by indium(III)- catalyzed annulation of diazodicarbonyls with active methylenes, 4-hydroxycoumarins, or 4-hydroxyquinolinone. Org. Chem. Front., 2018, 5, 3447-3453.
[http://dx.doi.org/10.1039/C8QO01006D]
[105]
Chen, M.N.; Di, J.Q.Q.; Li, J.M.; Mo, L.P.; Zhang, Z.H. Eosin Y-catalyzed one-pot synthesis of spiro[4H-pyran-oxindole] under visible light irradiation. Tetrahedron, 2020, 76131059
[http://dx.doi.org/10.1016/j.tet.2020.131059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy