Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Therapeutic Potential of MAPK/ERK Inhibitors in the Treatment of Colorectal Cancer

Author(s): Mehran Pashirzad*, Reihaneh Khorasanian*, Maryam Mahmoudi Fard*, Mohammad-Hassan Arjmand , Hadis Langari, Majid Khazaei, Saman Soleimanpour, Majid Rezayi, Gordon A. Ferns, Seyed Mahdi Hassanian and Amir Avan*

Volume 21, Issue 11, 2021

Published on: 02 December, 2021

Page: [932 - 943] Pages: 12

DOI: 10.2174/1568009621666211103113339

Price: $65

Abstract

The MAPK/ERK signaling pathway regulates cancer cell proliferation, apoptosis, inflammation, angiogenesis, metastasis and drug resistance. Mutations and up-regulation of components of the MAPK/ERK signaling pathway, as well as over-activation of this critical signaling pathway, are frequently observed in colorectal carcinomas. Targeting the MAPK/ERK signaling pathway, using specific pharmacological inhibitors, elicits potent anti-tumor effects, supporting the therapeutic potential of these inhibitors in the treatment of CRC. Several drugs have recently been developed for the inhibition of the MEK/ERK pathway in preclinical and clinical settings, such as MEK162 and MK-2206. MEK1/2 inhibitors demonstrate promising efficacy and anticancer activity for the treatment of this malignancy. This review summarizes the current knowledge on the role of the MAPK/ERK signaling pathway in the pathogenesis of CRC and the potential clinical value of synthetic inhibitors of this pathway in preventing CRC progression for a better understanding, and hence, better management of colorectal cancer.

Keywords: MAPK signaling pathway, ERK signaling pathway, ERK inhibitors, MEK1/2 inhibitors, tumor progression, colorectal cancer.

Graphical Abstract

[1]
Parker, S.L.; Tong, T.; Bolden, S.; Wingo, P.A. Cancer statistics, 1997. CA Cancer J. Clin., 1997, 47(1), 5-27.
[http://dx.doi.org/10.3322/canjclin.47.1.5] [PMID: 8996076]
[2]
Parkin, D.M.; Muir, C.S. Cancer incidence in five continents. Comparability and quality of data. IARC Sci. Publ., 1992, 120, 45-173.
[PMID: 1284606]
[3]
Calvert, P.M.; Frucht, H. The genetics of colorectal cancer. Ann. Intern. Med., 2002, 137(7), 603-612.
[http://dx.doi.org/10.7326/0003-4819-137-7-200210010-00012] [PMID: 12353948]
[4]
Coppedè, F.; Lopomo, A.; Spisni, R.; Migliore, L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J. Gastroenterol., 2014, 20(4), 943-956.
[http://dx.doi.org/10.3748/wjg.v20.i4.943] [PMID: 24574767]
[5]
Yang, S-H.; Sharrocks, A.D.; Whitmarsh, A.J. MAP kinase signalling cascades and transcriptional regulation. Gene, 2013, 513(1), 1-13.
[http://dx.doi.org/10.1016/j.gene.2012.10.033] [PMID: 23123731]
[6]
Seger, R.; Krebs, E.G. The MAPK signaling cascade. FASEB J., 1995, 9(9), 726-735.
[http://dx.doi.org/10.1096/fasebj.9.9.7601337] [PMID: 7601337]
[7]
Lewis, T.S.; Shapiro, P.S.; Ahn, N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res., 1998, 74, 49-139.
[http://dx.doi.org/10.1016/S0065-230X(08)60765-4] [PMID: 9561267]
[8]
Troppmair, J.; Bruder, J.T.; Munoz, H.; Lloyd, P.A.; Kyriakis, J.; Banerjee, P.; Avruch, J.; Rapp, U.R. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. J. Biol. Chem., 1994, 269(9), 7030-7035.
[http://dx.doi.org/10.1016/S0021-9258(17)37478-1] [PMID: 8120067]
[9]
Taupin, D.; Podolsky, D.K. Mitogen-activated protein kinase activation regulates intestinal epithelial differentiation. Gastroenterology, 1999, 116(5), 1072-1080.
[http://dx.doi.org/10.1016/S0016-5085(99)70010-7] [PMID: 10220499]
[10]
Wang, X.; Wang, Q.; Hu, W.; Evers, B.M. Regulation of phorbol ester-mediated TRAF1 induction in human colon cancer cells through a PKC/RAF/ERK/NF-kappaB-dependent pathway. Oncogene, 2004, 23(10), 1885-1895.
[http://dx.doi.org/10.1038/sj.onc.1207312] [PMID: 14981539]
[11]
Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature, 2002, 418(6901), 934.
[http://dx.doi.org/10.1038/418934a] [PMID: 12198537]
[12]
Watanabe, M.; Ishiwata, T.; Nishigai, K.; Moriyama, Y.; Asano, G. Overexpression of keratinocyte growth factor in cancer cells and enterochromaffin cells in human colorectal cancer. Pathol. Int., 2000, 50(5), 363-372.
[http://dx.doi.org/10.1046/j.1440-1827.2000.01054.x] [PMID: 10849325]
[13]
Theodosiou, A.; Ashworth, A. MAP kinase phosphatases. Genome Biol., 2002, 3(7), S3009.
[http://dx.doi.org/10.1186/gb-2002-3-7-reviews3009] [PMID: 12184814]
[14]
Lyons, J.F.; Wilhelm, S.; Hibner, B.; Bollag, G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer, 2001, 8(3), 219-225.
[http://dx.doi.org/10.1677/erc.0.0080219] [PMID: 11566613]
[15]
De Luca, A.; Maiello, M.R.; D'Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets, 2012, 16(Sup 2), S17-27.
[16]
Hommes, D.W.; Peppelenbosch, M.P.; van Deventer, S.J. Mitogen Activated Protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut, 2003, 52(1), 144-151.
[http://dx.doi.org/10.1136/gut.52.1.144] [PMID: 12477778]
[17]
Robinson, M.J.; Cobb, M.H. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol., 1997, 9(2), 180-186.
[http://dx.doi.org/10.1016/S0955-0674(97)80061-0] [PMID: 9069255]
[18]
Schulze, W.X.; Deng, L.; Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol., 2005, 1(1), 2005.0008.
[http://dx.doi.org/10.1038/msb4100012]
[19]
Zarich, N.; Oliva, J.L.; Martínez, N.; Jorge, R.; Ballester, A.; Gutiérrez-Eisman, S.; García-Vargas, S.; Rojas, J.M. Grb2 is a negative modulator of the intrinsic Ras-GEF activity of hSos1. Mol. Biol. Cell, 2006, 17(8), 3591-3597.
[http://dx.doi.org/10.1091/mbc.e05-12-1104] [PMID: 16760435]
[20]
Das, R.; Vonderhaar, B.K. Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene, 1996, 13(6), 1139-1145.
[PMID: 8808687]
[21]
Yan, J.; Roy, S.; Apolloni, A.; Lane, A.; Hancock, J.F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem., 1998, 273(37), 24052-24056.
[http://dx.doi.org/10.1074/jbc.273.37.24052] [PMID: 9727023]
[22]
Marinissen, M.J.; Gutkind, J.S. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci., 2001, 22(7), 368-376.
[http://dx.doi.org/10.1016/S0165-6147(00)01678-3] [PMID: 11431032]
[23]
Peyssonnaux, C.; Eychène, A. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell, 2001, 93(1-2), 53-62.
[http://dx.doi.org/10.1016/S0248-4900(01)01125-X] [PMID: 11730323]
[24]
Khavari, T.A.; Rinn, J. Ras/Erk MAPK signaling in epidermal homeostasis and neoplasia. Cell Cycle, 2007, 6(23), 2928-2931.
[http://dx.doi.org/10.4161/cc.6.23.4998] [PMID: 18000402]
[25]
Chen, D.B.; Davis, J.S. Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Mol. Cell. Endocrinol., 2003, 200(1-2), 141-154.
[http://dx.doi.org/10.1016/S0303-7207(02)00379-9] [PMID: 12644307]
[26]
Pullikuth, A.K.; Catling, A.D. Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective. Cell. Signal., 2007, 19(8), 1621-1632.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.012] [PMID: 17553668]
[27]
Sun, Y.; Liu, W-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[28]
Schmid, R-S.; Pruitt, W.M.; Maness, P.F. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J. Neurosci., 2000, 20(11), 4177-4188.
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-04177.2000] [PMID: 10818153]
[29]
Sutherland, C.; Leighton, I.A.; Cohen, P. Inactivation of glycogen synthase kinase-3 β by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J., 1993, 296(Pt 1), 15-19.
[http://dx.doi.org/10.1042/bj2960015] [PMID: 8250835]
[30]
Torres, M.A.; Eldar-Finkelman, H.; Krebs, E.G.; Moon, R.T. Regulation of ribosomal S6 protein kinase-p90(RSK), glycogen synthase kinase 3, and β-catenin in early Xenopus development. Mol. Cell. Biol., 1999, 19(2), 1427-1437.
[http://dx.doi.org/10.1128/MCB.19.2.1427] [PMID: 9891076]
[31]
Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999, 286(5443), 1358-1362.
[http://dx.doi.org/10.1126/science.286.5443.1358] [PMID: 10558990]
[32]
Shimamura, A.; Ballif, B.A.; Richards, S.A.; Blenis, J. Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr. Biol., 2000, 10(3), 127-135.
[http://dx.doi.org/10.1016/S0960-9822(00)00310-9] [PMID: 10679322]
[33]
Chen, R-H.; Abate, C.; Blenis, J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA, 1993, 90(23), 10952-10956.
[http://dx.doi.org/10.1073/pnas.90.23.10952] [PMID: 8248197]
[34]
Fujita, N.; Sato, S.; Tsuruo, T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem., 2003, 278(49), 49254-49260.
[http://dx.doi.org/10.1074/jbc.M306614200] [PMID: 14504289]
[35]
Smith, J.A.; Poteet-Smith, C.E.; Xu, Y.; Errington, T.M.; Hecht, S.M.; Lannigan, D.A. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res., 2005, 65(3), 1027-1034.
[PMID: 15705904]
[36]
Clark, D.E.; Errington, T.M.; Smith, J.A.; Frierson, H.F., Jr; Weber, M.J.; Lannigan, D.A. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res., 2005, 65(8), 3108-3116.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3151] [PMID: 15833840]
[37]
Wolf, I.; Rubinfeld, H.; Yoon, S.; Marmor, G.; Hanoch, T.; Seger, R. Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J. Biol. Chem., 2001, 276(27), 24490-24497.
[http://dx.doi.org/10.1074/jbc.M103352200] [PMID: 11328824]
[38]
Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev., 1998, 12(15), 2245-2262.
[http://dx.doi.org/10.1101/gad.12.15.2245] [PMID: 9694791]
[39]
Sherr, C.J.; Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 1999, 13(12), 1501-1512.
[http://dx.doi.org/10.1101/gad.13.12.1501] [PMID: 10385618]
[40]
Coleman, M.L.; Marshall, C.J.; Olson, M.F. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat. Rev. Mol. Cell Biol., 2004, 5(5), 355-366.
[http://dx.doi.org/10.1038/nrm1365] [PMID: 15122349]
[41]
Sears, R.C.; Nevins, J.R. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem., 2002, 277(14), 11617-11620.
[http://dx.doi.org/10.1074/jbc.R100063200] [PMID: 11805123]
[42]
Meloche, S.; Seuwen, K.; Pagès, G.; Pouysségur, J. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol. Endocrinol., 1992, 6(5), 845-854.
[PMID: 1603090]
[43]
Weber, J.D.; Raben, D.M.; Phillips, P.J.; Baldassare, J.J. Sustained activation of Extracellular-signal-Regulated Kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J., 1997, 326(Pt 1), 61-68.
[http://dx.doi.org/10.1042/bj3260061] [PMID: 9337851]
[44]
Yamamoto, T.; Ebisuya, M.; Ashida, F.; Okamoto, K.; Yonehara, S.; Nishida, E. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol., 2006, 16(12), 1171-1182.
[http://dx.doi.org/10.1016/j.cub.2006.04.044] [PMID: 16782007]
[45]
Suzuki, T.; K-Tsuzuku, J.; Ajima, R.; Nakamura, T.; Yoshida, Y.; Yamamoto, T. Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev., 2002, 16(11), 1356-1370.
[http://dx.doi.org/10.1101/gad.962802] [PMID: 12050114]
[46]
Pfarr, C.M.; Mechta, F.; Spyrou, G.; Lallemand, D.; Carillo, S.; Yaniv, M. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell, 1994, 76(4), 747-760.
[http://dx.doi.org/10.1016/0092-8674(94)90513-4] [PMID: 8124713]
[47]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[48]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[49]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[50]
Flaherty, K.; Puzanov, I.; Sosman, J.; Kim, K.; Ribas, A.; McArthur, G. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J. Clin. Oncol., 2009, 27(15)(Suppl.), 9000.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.9000]
[51]
Kwabi-Addo, B.; Wang, J.; Erdem, H.; Vaid, A.; Castro, P.; Ayala, G.; Ittmann, M. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res., 2004, 64(14), 4728-4735.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3759] [PMID: 15256439]
[52]
Lo, T.L.; Fong, C.W.; Yusoff, P.; McKie, A.B.; Chua, M-S.; Leung, H.Y.; Guy, G.R. Sprouty and cancer: the first terms report. Cancer Lett., 2006, 242(2), 141-150.
[http://dx.doi.org/10.1016/j.canlet.2005.12.032] [PMID: 16469433]
[53]
Calvisi, D.F.; Ladu, S.; Gorden, A.; Farina, M.; Lee, J-S.; Conner, E.A.; Schroeder, I.; Factor, V.M.; Thorgeirsson, S.S. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J. Clin. Invest., 2007, 117(9), 2713-2722.
[http://dx.doi.org/10.1172/JCI31457] [PMID: 17717605]
[54]
Lo, T.L.; Yusoff, P.; Fong, C.W.; Guo, K.; McCaw, B.J.; Phillips, W.A.; Yang, H.; Wong, E.S.; Leong, H.F.; Zeng, Q.; Putti, T.C.; Guy, G.R. The RAS/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res., 2004, 64(17), 6127-6136.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1207] [PMID: 15342396]
[55]
Poulikakos, P.I.; Zhang, C.; Bollag, G.; Shokat, K.M.; Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 2010, 464(7287), 427-430.
[http://dx.doi.org/10.1038/nature08902] [PMID: 20179705]
[56]
Solit, D.B.; Garraway, L.A.; Pratilas, C.A.; Sawai, A.; Getz, G.; Basso, A.; Ye, Q.; Lobo, J.M.; She, Y.; Osman, I.; Golub, T.R.; Sebolt-Leopold, J.; Sellers, W.R.; Rosen, N. BRAF mutation predicts sensitivity to MEK inhibition. Nature, 2006, 439(7074), 358-362.
[http://dx.doi.org/10.1038/nature04304] [PMID: 16273091]
[57]
Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.A.; Wong, B.; Tsang, G.; West, B.L.; Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K.Y.; Artis, D.R.; Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm, M.; Lin, P.S.; Lee, R.J.; Grippo, J.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; Chapman, P.B.; Flaherty, K.T.; Xu, X.; Nathanson, K.L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467(7315), 596-599.
[http://dx.doi.org/10.1038/nature09454] [PMID: 20823850]
[58]
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol., 2005, 6(5), 322-327.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[59]
Gong, J.; Cho, M.; Fakih, M. RAS and BRAF in metastatic colorectal cancer management. J. Gastrointest. Oncol., 2016, 7(5), 687-704.
[http://dx.doi.org/10.21037/jgo.2016.06.12] [PMID: 27747083]
[60]
Italiano, A.; Hostein, I.; Soubeyran, I.; Fabas, T.; Benchimol, D.; Evrard, S.; Gugenheim, J.; Becouarn, Y.; Brunet, R.; Fonck, M.; François, E.; Saint-Paul, M.C.; Pedeutour, F. KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann. Surg. Oncol., 2010, 17(5), 1429-1434.
[http://dx.doi.org/10.1245/s10434-009-0864-z] [PMID: 20049644]
[61]
Benvenuti, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Zanon, C.; Moroni, M.; Veronese, S.; Siena, S.; Bardelli, A. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res., 2007, 67(6), 2643-2648.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4158] [PMID: 17363584]
[62]
Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689.
[PMID: 2547513]
[63]
Urosevic, J.; Garcia-Albéniz, X.; Planet, E.; Real, S.; Céspedes, M.V.; Guiu, M.; Fernandez, E.; Bellmunt, A.; Gawrzak, S.; Pavlovic, M.; Mangues, R.; Dolado, I.; Barriga, F.M.; Nadal, C.; Kemeny, N.; Batlle, E.; Nebreda, A.R.; Gomis, R.R. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat. Cell Biol., 2014, 16(7), 685-694.
[http://dx.doi.org/10.1038/ncb2977] [PMID: 24880666]
[64]
Scheffzek, K.; Ahmadian, M.R.; Kabsch, W.; Wiesmüller, L.; Lautwein, A.; Schmitz, F.; Wittinghofer, A. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 1997, 277(5324), 333-338.
[http://dx.doi.org/10.1126/science.277.5324.333] [PMID: 9219684]
[65]
Hatzivassiliou, G.; Haling, J.R.; Chen, H.; Song, K.; Price, S.; Heald, R.; Hewitt, J.F.; Zak, M.; Peck, A.; Orr, C.; Merchant, M.; Hoeflich, K.P.; Chan, J.; Luoh, S.M.; Anderson, D.J.; Ludlam, M.J.; Wiesmann, C.; Ultsch, M.; Friedman, L.S.; Malek, S.; Belvin, M. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature, 2013, 501(7466), 232-236.
[http://dx.doi.org/10.1038/nature12441] [PMID: 23934108]
[66]
Blaj, C.; Schmidt, E.M.; Lamprecht, S.; Hermeking, H.; Jung, A.; Kirchner, T.; Horst, D. Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res., 2017, 77(7), 1763-1774.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2821] [PMID: 28202525]
[67]
Lochhead, P.; Kuchiba, A.; Imamura, Y.; Liao, X.; Yamauchi, M.; Nishihara, R.; Qian, Z.R.; Morikawa, T.; Shen, J.; Meyerhardt, J.A.; Fuchs, C.S.; Ogino, S. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J. Natl. Cancer Inst., 2013, 105(15), 1151-1156.
[http://dx.doi.org/10.1093/jnci/djt173] [PMID: 23878352]
[68]
Lièvre, A.; Rouleau, E.; Buecher, B.; Mitry, E. Clinical significance of BRAF mutations in colorectal cancer. Bull. Cancer, 2010, 97(12), 1441-1452.
[PMID: 21220223]
[69]
Rizzo, S.; Bronte, G.; Fanale, D.; Corsini, L.; Silvestris, N.; Santini, D.; Gulotta, G.; Bazan, V.; Gebbia, N.; Fulfaro, F.; Russo, A. Prognostic vs. predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy? Cancer Treat. Rev., 2010, 36(Suppl. 3), S56-S61.
[http://dx.doi.org/10.1016/S0305-7372(10)70021-9] [PMID: 21129611]
[70]
Chen, D.; Huang, J-F.; Liu, K.; Zhang, L-Q.; Yang, Z.; Chuai, Z-R.; Wang, Y.X.; Shi, D.C.; Huang, Q.; Fu, W.L. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS One, 2014, 9(3), e90607.
[http://dx.doi.org/10.1371/journal.pone.0090607] [PMID: 24594804]
[71]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[72]
Ljuslinder, I.; Melin, B.; Henriksson, M.L.; Öberg, Å.; Palmqvist, R. Increased epidermal growth factor receptor expression at the invasive margin is a negative prognostic factor in colorectal cancer. Int. J. Cancer, 2011, 128(9), 2031-2037.
[http://dx.doi.org/10.1002/ijc.25559] [PMID: 20635387]
[73]
Neumann, J.; Wehweck, L.; Maatz, S.; Engel, J.; Kirchner, T.; Jung, A. Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Arch., 2013, 463(4), 509-523.
[http://dx.doi.org/10.1007/s00428-013-1450-0] [PMID: 23934607]
[74]
Galizia, G.; Lieto, E.; Ferraraccio, F.; De Vita, F.; Castellano, P.; Orditura, M.; Imperatore, V.; La Mura, A.; La Manna, G.; Pinto, M.; Catalano, G.; Pignatelli, C.; Ciardiello, F. Prognostic significance of epidermal growth factor receptor expression in colon cancer patients undergoing curative surgery. Ann. Surg. Oncol., 2006, 13(6), 823-835.
[http://dx.doi.org/10.1245/ASO.2006.05.052] [PMID: 16614884]
[75]
Huang, C-W.; Chen, Y-T.; Tsai, H-L.; Yeh, Y-S.; Su, W-C.; Ma, C-J.; Tsai, T.N.; Wang, J.Y. EGFR expression in patients with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function. Oncotarget, 2017, 8(70), 114663-114676.
[http://dx.doi.org/10.18632/oncotarget.23072] [PMID: 29383110]
[76]
Shimamoto, Y.; Nukatsuka, M.; Takechi, T.; Fukushima, M. Association between mRNA expression of chemotherapy-related genes and clinicopathological features in colorectal cancer: A large-scale population analysis. Int. J. Mol. Med., 2016, 37(2), 319-328.
[http://dx.doi.org/10.3892/ijmm.2015.2427] [PMID: 26676887]
[77]
Dong, C.; Davis, R.J.; Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol., 2002, 20(1), 55-72.
[http://dx.doi.org/10.1146/annurev.immunol.20.091301.131133] [PMID: 11861597]
[78]
Knowles, L.M.; Milner, J.A. Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells. J. Nutr., 2003, 133(9), 2901-2906.
[http://dx.doi.org/10.1093/jn/133.9.2901] [PMID: 12949385]
[79]
Tian, X-Q.; Guo, F-F.; Sun, D-F.; Wang, Y-C.; Yang, L.; Chen, S-L.; Hong, J.; Fang, J.Y. Downregulation of ZNF278 arrests the cell cycle and decreases the proliferation of colorectal cancer cells via inhibition of the ERK/MAPK pathway. Oncol. Rep., 2017, 38(6), 3685-3692.
[http://dx.doi.org/10.3892/or.2017.6031] [PMID: 29039562]
[80]
Xiang, S.; Xiang, T.; Xiao, Q.; Li, Y.; Shao, B.; Luo, T. Zinc-finger protein 545 is inactivated due to promoter methylation and functions as a tumor suppressor through the Wnt/β-catenin, PI3K/AKT and MAPK/ERK signaling pathways in colorectal cancer. Int. J. Oncol., 2017, 51(3), 801-811.
[http://dx.doi.org/10.3892/ijo.2017.4064] [PMID: 28677721]
[81]
Zhang, X.; Liu, K.; Zhang, T.; Wang, Z.; Qin, X.; Jing, X.; Wu, H.; Ji, X.; He, Y.; Zhao, R. Cortactin promotes colorectal cancer cell proliferation by activating the EGFR-MAPK pathway. Oncotarget, 2017, 8(1), 1541-1554.
[http://dx.doi.org/10.18632/oncotarget.13652] [PMID: 27903975]
[82]
Chowchaikong, N.; Nilwarangkoon, S.; Laphookhieo, S.; Tanunyutthawongse, C.; Watanapokasin, R. p38 inhibitor inhibits the apoptosis of cowanin-treated human colorectal adenocarcinoma cells. Int. J. Oncol., 2018, 52(6), 2031-2040.
[http://dx.doi.org/10.3892/ijo.2018.4353] [PMID: 29620273]
[83]
Huang, R.H.; Quan, Y.J.; Chen, J.H.; Wang, T.F.; Xu, M.; Ye, M.; Yuan, H.; Zhang, C.J.; Liu, X.J.; Min, Z.J. Osteopontin promotes cell migration and invasion, and inhibits apoptosis and autophagy in colorectal cancer by activating the p38 MAPK signaling pathway. Cell. Physiol. Biochem., 2017, 41(5), 1851-1864.
[http://dx.doi.org/10.1159/000471933] [PMID: 28376477]
[84]
Zhang, N.; Lu, C.; Chen, L. miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol. Lett., 2016, 12(6), 4589-4597.
[http://dx.doi.org/10.3892/ol.2016.5249] [PMID: 28105166]
[85]
Yang, C.; Cui, X.; Dai, X.; Liao, W. Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncol. Lett., 2016, 11(2), 1549-1554.
[http://dx.doi.org/10.3892/ol.2016.4097] [PMID: 26893778]
[86]
Yang, W.; Redpath, R.E.; Zhang, C.; Ning, N. Long non-coding RNA H19 promotes the migration and invasion of colon cancer cells via MAPK signaling pathway. Oncol. Lett., 2018, 16(3), 3365-3372.
[http://dx.doi.org/10.3892/ol.2018.9052] [PMID: 30127936]
[87]
Xu, J.; Zhou, J.; Dai, H.; Liu, F.; Li, W.; Wang, W.; Guo, F. CHIP functions as an oncogene by promoting colorectal cancer metastasis via activation of MAPK and AKT signaling and suppression of E-cadherin. J. Transl. Med., 2018, 16(1), 169.
[http://dx.doi.org/10.1186/s12967-018-1540-5] [PMID: 29921293]
[88]
Xiang, T.; Fei, R.; Wang, Z.; Shen, Z.; Qian, J.; Chen, W. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol. Rep., 2016, 35(1), 205-210.
[http://dx.doi.org/10.3892/or.2015.4363] [PMID: 26530054]
[89]
Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012, 483(7387), 100-103.
[http://dx.doi.org/10.1038/nature10868] [PMID: 22281684]
[90]
McCubrey, JA; Milella, M; Tafuri, A; Martelli, AM; Lunghi, P; Bonati, A Targeting the Raf/MEK/ERK pathway with small- molecule inhibitors. Curr. Opin. Investig. Drugs, 2008, 9(6), 614-630.
[91]
Tie, J.; Gibbs, P.; Lipton, L.; Christie, M.; Jorissen, R.N.; Burgess, A.W.; Croxford, M.; Jones, I.; Langland, R.; Kosmider, S.; McKay, D.; Bollag, G.; Nolop, K.; Sieber, O.M.; Desai, J. Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int. J. Cancer, 2011, 128(9), 2075-2084.
[http://dx.doi.org/10.1002/ijc.25555] [PMID: 20635392]
[92]
Price, T.J.; Hardingham, J.E.; Lee, C.K.; Weickhardt, A.; Townsend, A.R.; Wrin, J.W.; Chua, A.; Shivasami, A.; Cummins, M.M.; Murone, C.; Tebbutt, N.C. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J. Clin. Oncol., 2011, 29(19), 2675-2682.
[http://dx.doi.org/10.1200/JCO.2010.34.5520] [PMID: 21646616]
[93]
Mao, M.; Tian, F.; Mariadason, J.M.; Tsao, C.C.; Lemos, R., Jr; Dayyani, F.; Gopal, Y.N.; Jiang, Z.Q.; Wistuba, I.I.; Tang, X.M.; Bornman, W.G.; Bollag, G.; Mills, G.B.; Powis, G.; Desai, J.; Gallick, G.E.; Davies, M.A.; Kopetz, S. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents. Clin. Cancer Res., 2013, 19(3), 657-667.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1446] [PMID: 23251002]
[94]
Yang, H.; Higgins, B.; Kolinsky, K.; Packman, K.; Bradley, W.D.; Lee, R.J.; Schostack, K.; Simcox, M.E.; Kopetz, S.; Heimbrook, D.; Lestini, B.; Bollag, G.; Su, F. Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res., 2012, 72(3), 779-789.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2941] [PMID: 22180495]
[95]
Yaeger, R.; Cercek, A.; O'Reilly, E.M.; Reidy, D.L.; Kemeny, N.E.; Wolinsky, T. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res., 2015, 21(6), 1313-1320.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2779] [PMID: 25589621]
[96]
Di Nicolantonio, F.; Martini, M.; Molinari, F.; Sartore-Bianchi, A.; Arena, S.; Saletti, P.; De Dosso, S.; Mazzucchelli, L.; Frattini, M.; Siena, S.; Bardelli, A. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(35), 5705-5712.
[http://dx.doi.org/10.1200/JCO.2008.18.0786] [PMID: 19001320]
[97]
Ahronian, L.G.; Sennott, E.M.; Van Allen, E.M.; Wagle, N.; Kwak, E.L.; Faris, J.E.; Godfrey, J.T.; Nishimura, K.; Lynch, K.D.; Mermel, C.H.; Lockerman, E.L.; Kalsy, A.; Gurski, J.M., Jr; Bahl, S.; Anderka, K.; Green, L.M.; Lennon, N.J.; Huynh, T.G.; Mino-Kenudson, M.; Getz, G.; Dias-Santagata, D.; Iafrate, A.J.; Engelman, J.A.; Garraway, L.A.; Corcoran, R.B. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov., 2015, 5(4), 358-367.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1518] [PMID: 25673644]
[98]
Yamaguchi, T.; Kakefuda, R.; Tajima, N.; Sowa, Y.; Sakai, T. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int. J. Oncol., 2011, 39(1), 23-31.
[PMID: 21523318]
[99]
Allen, L.F.; Sebolt-Leopold, J.; Meyer, M.B. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol., 2003, 30(5 Suppl 16), 105-116.
[http://dx.doi.org/10.1053/j.seminoncol.2003.08.012] [PMID: 21523318]
[100]
Sebolt-Leopold, J.S.; Dudley, D.T.; Herrera, R.; Van Becelaere, K.; Wiland, A.; Gowan, R.C.; Tecle, H.; Barrett, S.D.; Bridges, A.; Przybranowski, S.; Leopold, W.R.; Saltiel, A.R. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med., 1999, 5(7), 810-816.
[http://dx.doi.org/10.1038/10533] [PMID: 10395327]
[101]
Davies, B.R.; Logie, A.; McKay, J.S.; Martin, P.; Steele, S.; Jenkins, R.; Cockerill, M.; Cartlidge, S.; Smith, P.D. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol. Cancer Ther., 2007, 6(8), 2209-2219.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0231] [PMID: 17699718]
[102]
Bennouna, J.; Lang, I.; Valladares-Ayerbes, M.; Boer, K.; Adenis, A.; Escudero, P.; Kim, T.Y.; Pover, G.M.; Morris, C.D.; Douillard, J.Y. A Phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest. New Drugs, 2011, 29(5), 1021-1028.
[http://dx.doi.org/10.1007/s10637-010-9392-8] [PMID: 20127139]
[103]
Spreafico, A.; Tentler, J.J.; Pitts, T.M.; Tan, A.C.; Gregory, M.A.; Arcaroli, J.J.; Klauck, P.J.; McManus, M.C.; Hansen, R.J.; Kim, J.; Micel, L.N.; Selby, H.M.; Newton, T.P.; McPhillips, K.L.; Gustafson, D.L.; Degregori, J.V.; Messersmith, W.A.; Winn, R.A.; Eckhardt, S.G. Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clin. Cancer Res., 2013, 19(15), 4149-4162.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3140] [PMID: 23757356]
[104]
Hacohen, N.; Kramer, S.; Sutherland, D.; Hiromi, Y.; Krasnow, M.A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 1998, 92(2), 253-263.
[http://dx.doi.org/10.1016/S0092-8674(00)80919-8] [PMID: 9458049]
[105]
Wakioka, T.; Sasaki, A.; Kato, R.; Shouda, T.; Matsumoto, A.; Miyoshi, K.; Tsuneoka, M.; Komiya, S.; Baron, R.; Yoshimura, A. Spred is a Sprouty-related suppressor of Ras signalling. Nature, 2001, 412(6847), 647-651.
[http://dx.doi.org/10.1038/35088082] [PMID: 11493923]
[106]
Fürthauer, M.; Lin, W.; Ang, S-L.; Thisse, B.; Thisse, C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat. Cell Biol., 2002, 4(2), 170-174.
[http://dx.doi.org/10.1038/ncb750] [PMID: 11802165]
[107]
Ozaki, K.; Miyazaki, S.; Tanimura, S.; Kohno, M. Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. J. Cell Sci., 2005, 118(Pt 24), 5861-5871.
[http://dx.doi.org/10.1242/jcs.02711] [PMID: 16339969]
[108]
Sasaki, A.; Taketomi, T.; Kato, R.; Saeki, K.; Nonami, A.; Sasaki, M.; Kuriyama, M.; Saito, N.; Shibuya, M.; Yoshimura, A. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat. Cell Biol., 2003, 5(5), 427-432.
[http://dx.doi.org/10.1038/ncb978] [PMID: 12717443]
[109]
Torii, S.; Nakayama, K.; Yamamoto, T.; Nishida, E. Regulatory mechanisms and function of ERK MAP kinases. J. Biochem., 2004, 136(5), 557-561.
[http://dx.doi.org/10.1093/jb/mvh159] [PMID: 15632293]
[110]
Holgren, C.; Dougherty, U.; Edwin, F.; Cerasi, D.; Taylor, I.; Fichera, A.; Joseph, L.; Bissonnette, M.; Khare, S. Sprouty-2 controls c-Met expression and metastatic potential of colon cancer cells: sprouty/c-Met upregulation in human colonic adenocarcinomas. Oncogene, 2010, 29(38), 5241-5253.
[http://dx.doi.org/10.1038/onc.2010.264] [PMID: 20661223]
[111]
Zhang, Q.; Shim, K.; Wright, K.; Jurkevich, A.; Khare, S. Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer. Mol. Carcinog., 2016, 55(9), 1355-1368.
[http://dx.doi.org/10.1002/mc.22379] [PMID: 26293890]
[112]
Zhou, X.; Xie, S.; Yuan, C.; Jiang, L.; Huang, X.; Li, L.; Chen, Y.; Luo, L.; Zhang, J.; Wang, D.; Liu, L.; Shi, W.; Han, L.; Tang, N.; Ji, Y. Lower expression of SPRY4 predicts a poor prognosis and regulates cell proliferation in colorectal cancer. Cell. Physiol. Biochem., 2016, 40(6), 1433-1442.
[http://dx.doi.org/10.1159/000453195] [PMID: 27997895]
[113]
Yeung, K.; Seitz, T.; Li, S.; Janosch, P.; McFerran, B.; Kaiser, C.; Fee, F.; Katsanakis, K.D.; Rose, D.W.; Mischak, H.; Sedivy, J.M.; Kolch, W. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401(6749), 173-177.
[http://dx.doi.org/10.1038/43686] [PMID: 10490027]
[114]
Fu, Z.; Smith, P.C.; Zhang, L.; Rubin, M.A.; Dunn, R.L.; Yao, Z.; Keller, E.T. Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J. Natl. Cancer Inst., 2003, 95(12), 878-889.
[http://dx.doi.org/10.1093/jnci/95.12.878] [PMID: 12813171]
[115]
Hagan, S.; Al-Mulla, F.; Mallon, E.; Oien, K.; Ferrier, R.; Gusterson, B.; García, J.J.; Kolch, W. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin. Cancer Res., 2005, 11(20), 7392-7397.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0283] [PMID: 16243812]
[116]
Schuierer, M.M.; Bataille, F.; Hagan, S.; Kolch, W.; Bosserhoff, A-K. Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res., 2004, 64(15), 5186-5192.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3861] [PMID: 15289323]
[117]
Minoo, P.; Zlobec, I.; Baker, K.; Tornillo, L.; Terracciano, L.; Jass, J.R.; Lugli, A. Loss of Raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am. J. Clin. Pathol., 2007, 127(5), 820-827.
[http://dx.doi.org/10.1309/5D7MM22DAVGDT1R8] [PMID: 17439843]
[118]
Al-Mulla, F.; Hagan, S.; Behbehani, A.I.; Bitar, M.S.; George, S.S.; Going, J.J.; García, J.J.; Scott, L.; Fyfe, N.; Murray, G.I.; Kolch, W. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J. Clin. Oncol., 2006, 24(36), 5672-5679.
[http://dx.doi.org/10.1200/JCO.2006.07.5499] [PMID: 17179102]
[119]
Yu, M.; Xu, C.; Zhang, H.; Lun, J.; Wang, L.; Zhang, G.; Fang, J. The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK. Biochem. Biophys. Res. Commun., 2021, 563, 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.068] [PMID: 34052504]
[120]
Ahmed, T.A.; Adamopoulos, C.; Karoulia, Z.; Wu, X.; Sachidanandam, R.; Aaronson, S.A.; Poulikakos, P.I. SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-dependent tumors. Cell Rep., 2019, 26(1), 65-78.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.12.013] [PMID: 30605687]
[121]
Lito, P.; Saborowski, A.; Yue, J.; Solomon, M.; Joseph, E.; Gadal, S.; Saborowski, M.; Kastenhuber, E.; Fellmann, C.; Ohara, K.; Morikami, K.; Miura, T.; Lukacs, C.; Ishii, N.; Lowe, S.; Rosen, N. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell, 2014, 25(5), 697-710.
[http://dx.doi.org/10.1016/j.ccr.2014.03.011] [PMID: 24746704]
[122]
Posch, C.; Moslehi, H.; Feeney, L.; Green, G.A.; Ebaee, A.; Feichtenschlager, V.; Chong, K.; Peng, L.; Dimon, M.T.; Phillips, T.; Daud, A.I.; McCalmont, T.H.; LeBoit, P.E.; Ortiz-Urda, S. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 4015-4020.
[http://dx.doi.org/10.1073/pnas.1216013110] [PMID: 23431193]
[123]
Soares, H.P.; Ming, M.; Mellon, M.; Young, S.H.; Han, L.; Sinnet-Smith, J.; Rozengurt, E. Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK pathway in human pancreatic cancer cells through suppression of mTORC2. Mol. Cancer Ther., 2015, 14(4), 1014-1023.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0669] [PMID: 25673820]
[124]
Junttila, M.R.; Devasthali, V.; Cheng, J.H.; Castillo, J.; Metcalfe, C.; Clermont, A.C.; Otter, D.D.; Chan, E.; Bou-Reslan, H.; Cao, T.; Forrest, W.; Nannini, M.A.; French, D.; Carano, R.; Merchant, M.; Hoeflich, K.P.; Singh, M. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer. Mol. Cancer Ther., 2015, 14(1), 40-47.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0030] [PMID: 25376606]
[125]
Bedard, P.L.; Tabernero, J.; Janku, F.; Wainberg, Z.A.; Paz-Ares, L.; Vansteenkiste, J.; Van Cutsem, E.; Pérez-García, J.; Stathis, A.; Britten, C.D.; Le, N.; Carter, K.; Demanse, D.; Csonka, D.; Peters, M.; Zubel, A.; Nauwelaerts, H.; Sessa, C. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res., 2015, 21(4), 730-738.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1814] [PMID: 25500057]
[126]
Tolcher, A.W.; Khan, K.; Ong, M.; Banerji, U.; Papadimitrakopoulou, V.; Gandara, D.R.; Patnaik, A.; Baird, R.D.; Olmos, D.; Garrett, C.R.; Skolnik, J.M.; Rubin, E.H.; Smith, P.D.; Huang, P.; Learoyd, M.; Shannon, K.A.; Morosky, A.; Tetteh, E.; Jou, Y.M.; Papadopoulos, K.P.; Moreno, V.; Kaiser, B.; Yap, T.A.; Yan, L.; de Bono, J.S. Antitumor activity in RAS-driven tumors by blocking AKT and MEK. Clin. Cancer Res., 2015, 21(4), 739-748.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1901] [PMID: 25516890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy