Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Current Challenges in Targeting Tumor Desmoplasia to Improve the Efficacy of Immunotherapy

Author(s): Anna Kasperska*, Jędrzej Borowczak*, Krzysztof Szczerbowski*, Ewa Stec, Navid Ahmadi and Łukasz Szylber

Volume 21, Issue 11, 2021

Published on: 26 November, 2021

Page: [919 - 931] Pages: 13

DOI: 10.2174/1568009621666210825101456

Price: $65

Abstract

Desmoplasia is crucial for the development, progression and treatment of immune-resistant malignancies. Targeting desmoplasia-related metabolic pathways appears to be an interesting approach to expand our stock of disposable anti-tumor agents. CXCL12/CXCR4 axis inhibition reduces fibrosis, alleviates immunosuppression and significantly enhances the efficacy of PD-1 immunotherapy. CD40L substitute therapy may increase the activity of T-cells, downregulate CD40+, prolong patients’ survival and prevent cancer progression. Although FAPα antagonists used in preclinical models did not lead to permanent cure, an alleviation of immune-resistance, modification of desmoplasia and a decrease in angiogenesis were observed. Targeting DDR2 may enhance the effect of anti-PD-1 treatment in multiple neoplasm cell lines and has the ability to overcome the adaptation to BRAF-targeted therapy in melanoma. Reprogramming desmoplasia could potentially cooperate not only with present treatment, but also other potential therapeutic targets. We present the most promising metabolic pathways related to desmoplasia and discuss the emerging strategies to improve the efficacy of immunotherapy.

Keywords: Cancer, immunotherapy, desmoplasia, immunoresistance, CXCR-4, PD-L1.

Graphical Abstract

[1]
Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007, 121(1), 1-14.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x] [PMID: 17386080]
[2]
Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol., 2017, 18(12), e731-e741.
[http://dx.doi.org/10.1016/S1470-2045(17)30607-1] [PMID: 29208439]
[3]
Conforti, L. The ion channel network in T lymphocytes, a target for immunotherapy. Clin. Immunol., 2012, 142(2), 105-106.
[http://dx.doi.org/10.1016/j.clim.2011.11.009] [PMID: 22189042]
[4]
Tsai, K.K.; Zarzoso, I.; Daud, A.I. PD-1 and PD-L1 antibodies for melanoma. Hum. Vaccin. Immunother., 2014, 10(11), 3111-3116.
[http://dx.doi.org/10.4161/21645515.2014.983409] [PMID: 25625924]
[5]
Simeone, E.; Ascierto, P.A. Anti-PD-1 and PD-L1 antibodies in metastatic melanoma. Melanoma Manag., 2017, 4(4), 175-178.
[http://dx.doi.org/10.2217/mmt-2017-0018] [PMID: 30190923]
[6]
Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer, 2007, 96(12), 1788-1795.
[http://dx.doi.org/10.1038/sj.bjc.6603813] [PMID: 17519900]
[7]
Sitohy, B.; Nagy, J.A.; Dvorak, H.F. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res., 2012, 72(8), 1909-1914.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3406] [PMID: 22508695]
[8]
Wang, L.M.; Silva, M.A.; D’Costa, Z.; Bockelmann, R.; Soonawalla, Z.; Liu, S.; O’Neill, E.; Mukherjee, S.; McKenna, W.G.; Muschel, R.; Fokas, E. The prognostic role of desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7(4), 4183-4194.
[http://dx.doi.org/10.18632/oncotarget.6770] [PMID: 26716653]
[9]
Chandler, C.; Liu, T.; Buckanovich, R.; Coffman, L.G. The double edge sword of fibrosis in cancer. Transl. Res., 2019, 209, 55-67.
[http://dx.doi.org/10.1016/j.trsl.2019.02.006] [PMID: 30871956]
[10]
Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med., 2012, 18(7), 1028-1040.
[http://dx.doi.org/10.1038/nm.2807] [PMID: 22772564]
[11]
Rybinski, B.; Franco-Barraza, J.; Cukierman, E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol. Genomics, 2014, 46(7), 223-244.
[http://dx.doi.org/10.1152/physiolgenomics.00158.2013] [PMID: 24520152]
[12]
Stark, A.P.; Sacks, G.D.; Rochefort, M.M.; Donahue, T.R.; Reber, H.A.; Tomlinson, J.S.; Dawson, D.W.; Eibl, G.; Hines, O.J. Long-term survival in patients with pancreatic ductal adenocarcinoma. Surgery, 2016, 159(6), 1520-1527.
[http://dx.doi.org/10.1016/j.surg.2015.12.024] [PMID: 26847803]
[13]
Zippi, M.; De Toma, G.; Minervini, G.; Cassieri, C.; Pica, R.; Colarusso, D.; Stock, S.; Crispino, P. Desmoplasia influenced recurrence of disease and mortality in stage III colorectal cancer within five years after surgery and adjuvant therapy. Saudi J. Gastroenterol., 2017, 23(1), 39-44.
[http://dx.doi.org/10.4103/1319-3767.199114] [PMID: 28139499]
[14]
Caporale, A.; Vestri, A.R.; Benvenuto, E.; Mariotti, M.; Cosenza, U.M.; Scarpini, M.; Giuliani, A.; Mingazzini, P.; Angelico, F. Is desmoplasia a protective factor for survival in patients with colorectal carcinoma? Clin. Gastroenterol. Hepatol., 2005, 3(4), 370-375.
[http://dx.doi.org/10.1016/S1542-3565(04)00674-3] [PMID: 15822042]
[15]
Monteran, L.; Erez, N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol., 2019, 10, 1835.
[http://dx.doi.org/10.3389/fimmu.2019.01835] [PMID: 31428105]
[16]
Ohue, Y.; Nishikawa, H.; Regulatory, T. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 2019, 110(7), 2080-2089.
[http://dx.doi.org/10.1111/cas.14069] [PMID: 31102428]
[17]
Marks, E.I.; Yee, N.S. Immunotherapeutic approaches in biliary tract carcinoma: Current status and emerging strategies. World J. Gastrointest. Oncol., 2015, 7(11), 338-346.
[http://dx.doi.org/10.4251/wjgo.v7.i11.338] [PMID: 26600933]
[18]
Takahashi, R.; Yoshitomi, M.; Yutani, S.; Shirahama, T.; Noguchi, M.; Yamada, A.; Itoh, K.; Sasada, T. Current status of immunotherapy for the treatment of biliary tract cancer. Hum. Vaccin. Immunother., 2013, 9(5), 1069-1072.
[http://dx.doi.org/10.4161/hv.23844] [PMID: 23376808]
[19]
Noguchi, M.; Sasada, T.; Itoh, K. Personalized peptide vaccination: a new approach for advanced cancer as therapeutic cancer vaccine. Cancer Immunol. Immunother., 2013, 62(5), 919-929.
[http://dx.doi.org/10.1007/s00262-012-1379-1] [PMID: 23197273]
[20]
Kwiecien, I.; Skirecki, T.; Polubiec-Kownacka, M.; Raniszewska, A.; Domagala-Kulawik, J. Immunophenotype of T Cells expressing programmed death-1 and cytotoxic T cell antigen-4 in early lung cancer: Local vs. systemic immune response. Cancers (Basel), 2019, 11(4), E567.
[http://dx.doi.org/10.3390/cancers11040567] [PMID: 31010080]
[21]
Merika, E.E.; Syrigos, K.N.; Saif, M.W. Desmoplasia in pancreatic cancer. Can we fight it? Gastroenterol. Res. Pract., 2012, 2012, 781765.
[http://dx.doi.org/10.1155/2012/781765] [PMID: 23125850]
[22]
Vonderheide, R.H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med., 2020, 71, 47-58.
[http://dx.doi.org/10.1146/annurev-med-062518-045435] [PMID: 31412220]
[23]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[24]
Glassy, M.C.; Gupta, R. Technical and ethical limitations in making human monoclonal antibodies (an overview). Methods Mol. Biol., 2014, 1060, 9-36.
[http://dx.doi.org/10.1007/978-1-62703-586-6_2] [PMID: 24037834]
[25]
Gao, M-Q.; Kim, B.G.; Kang, S.; Choi, Y.P.; Park, H.; Kang, K.S.; Cho, N.H. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J. Cell Sci., 2010, 123(Pt 20), 3507-3514.
[http://dx.doi.org/10.1242/jcs.072900] [PMID: 20841377]
[26]
Brennen, W.N.; Rosen, D.M.; Wang, H.; Isaacs, J.T.; Denmeade, S.R. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst., 2012, 104(17), 1320-1334.
[http://dx.doi.org/10.1093/jnci/djs336] [PMID: 22911669]
[27]
Fabre, M.; Ferrer, C.; Domínguez-Hormaetxe, S.; Bockorny, B.; Murias, L.; Seifert, O.; Eisler, S.A.; Kontermann, R.E.; Pfizenmaier, K.; Lee, S.Y.; Vivanco, M.D.; López-Casas, P.P.; Perea, S.; Abbas, M.; Richter, W.; Simon, L.; Hidalgo, M. OMTX705, a novel FAP-targeting ADC demonstrates activity in chemotherapy and pembrolizumab-resistant solid tumor models. Clin. Cancer Res., 2020, 26(13), 3420-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2238] [PMID: 32161121]
[28]
Kraman, M.; Bambrough, P.J.; Arnold, J.N.; Roberts, E.W.; Magiera, L.; Jones, J.O.; Gopinathan, A.; Tuveson, D.A.; Fearon, D.T. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science, 2010, 330(6005), 827-830.
[http://dx.doi.org/10.1126/science.1195300] [PMID: 21051638]
[29]
Brennen, W.N.; Isaacs, J.T.; Denmeade, S.R. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther., 2012, 11(2), 257-266.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0340] [PMID: 22323494]
[30]
Terai, H.; Tan, L.; Beauchamp, E.M.; Hatcher, J.M.; Liu, Q.; Meyerson, M.; Gray, N.S.; Hammerman, P.S. Characterization of DDR2 inhibitors for the treatment of DDR2 mutated nonsmall cell lung cancer. ACS Chem. Biol., 2015, 10(12), 2687-2696.
[http://dx.doi.org/10.1021/acschembio.5b00655] [PMID: 26390252]
[31]
Xie, B.; Lin, W.; Ye, J.; Wang, X.; Zhang, B.; Xiong, S.; Li, H.; Tan, G. DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J. Exp. Clin. Cancer Res., 2015, 34, 101.
[http://dx.doi.org/10.1186/s13046-015-0218-6] [PMID: 26362312]
[32]
Bayer, S.V.; Grither, W.R.; Brenot, A.; Hwang, P.Y.; Barcus, C.E.; Ernst, M.; Pence, P.; Walter, C.; Pathak, A.; Longmore, G.D. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. eLife, 2019, 8, e45508.
[http://dx.doi.org/10.7554/eLife.45508] [PMID: 31144616]
[33]
Zhang, K.; Corsa, C.A.; Ponik, S.M.; Prior, J.L.; Piwnica-Worms, D.; Eliceiri, K.W.; Keely, P.J.; Longmore, G.D. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell Biol., 2013, 15(6), 677-687.
[http://dx.doi.org/10.1038/ncb2743] [PMID: 23644467]
[34]
Brunner, A.M.; Costa, D.B.; Heist, R.S.; Garcia, E.; Lindeman, N.I.; Sholl, L.M.; Oxnard, G.R.; Johnson, B.E.; Hammerman, P.S. Treatment-related toxicities in a phase II trial of dasatinib in patients with squamous cell carcinoma of the lung. J. Thorac. Oncol., 2013, 8(11), 1434-1437.
[http://dx.doi.org/10.1097/JTO.0b013e3182a47162] [PMID: 24128713]
[35]
Hammerman, P.S.; Sos, M.L.; Ramos, A.H.; Xu, C.; Dutt, A.; Zhou, W.; Brace, L.E.; Woods, B.A.; Lin, W.; Zhang, J.; Deng, X.; Lim, S.M.; Heynck, S.; Peifer, M.; Simard, J.R.; Lawrence, M.S.; Onofrio, R.C.; Salvesen, H.B.; Seidel, D.; Zander, T.; Heuckmann, J.M.; Soltermann, A.; Moch, H.; Koker, M.; Leenders, F.; Gabler, F.; Querings, S.; Ansén, S.; Brambilla, E.; Brambilla, C.; Lorimier, P.; Brustugun, O.T.; Helland, A.; Petersen, I.; Clement, J.H.; Groen, H.; Timens, W.; Sietsma, H.; Stoelben, E.; Wolf, J.; Beer, D.G.; Tsao, M.S.; Hanna, M.; Hatton, C.; Eck, M.J.; Janne, P.A.; Johnson, B.E.; Winckler, W.; Greulich, H.; Bass, A.J.; Cho, J.; Rauh, D.; Gray, N.S.; Wong, K-K.; Haura, E.B.; Thomas, R.K.; Meyerson, M. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov., 2011, 1(1), 78-89.
[http://dx.doi.org/10.1158/2159-8274.CD-11-0005] [PMID: 22328973]
[36]
Wang, Z.; Zhao, J.; Zhao, H.; A, S.; Liu, Z.; Zhang, Y.; Liu, X.; Wang, F. Infiltrating CD4/CD8 high T cells shows good prognostic impact in pancreatic cancer. Int. J. Clin. Exp. Pathol., 2017, 10(8), 8820-8828.
[PMID: 31966748]
[37]
Hiraoka, N.; Onozato, K.; Kosuge, T.; Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res., 2006, 12(18), 5423-5434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0369] [PMID: 17000676]
[38]
Diaz-Montero, C.M.; Salem, M.L.; Nishimura, M.I.; Garrett-Mayer, E.; Cole, D.J.; Montero, A.J. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother., 2009, 58(1), 49-59.
[http://dx.doi.org/10.1007/s00262-008-0523-4] [PMID: 18446337]
[39]
Zhang, J.; Wang, Y.F.; Wu, B.; Zhong, Z.X.; Wang, K.X.; Yang, L.Q.; Wang, Y.Q.; Li, Y.Q.; Gao, J.; Li, Z.S. Intraepithelial attack rather than intratumorally infiltration of CD8+T lymphocytes is a favorable prognostic indicator in pancreatic ductal adenocarcinoma. Curr. Mol. Med., 2017, 17(10), 689-698.
[http://dx.doi.org/10.2174/1566524018666180308115705] [PMID: 29521231]
[40]
Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T cells in tumor microenvironment. Comput. Struct. Biotechnol. J., 2018, 17, 1-13.
[http://dx.doi.org/10.1016/j.csbj.2018.11.004] [PMID: 30581539]
[41]
Zhang, Y-F.; Jiang, S-H.; Hu, L-P.; Huang, P-Q.; Wang, X.; Li, J.; Zhang, X-L.; Nie, H-Z.; Zhang, Z-G. Targeting the tumor microenvironment for pancreatic ductal adenocarcinoma therapy. Linchuang Zhongliuxue Zazhi, 2019, 8(2), 18.
[http://dx.doi.org/10.21037/cco.2019.03.02] [PMID: 31070038]
[42]
Grage-Griebenow, E.; Schäfer, H.; Sebens, S. The fatal alliance of cancer and T cells: How pancreatic tumor cells gather immunosuppressive T cells. OncoImmunology, 2014, 3, e29382.
[http://dx.doi.org/10.4161/onci.29382] [PMID: 25114835]
[43]
Nakatsuka, S.; Oji, Y.; Horiuchi, T.; Kanda, T.; Kitagawa, M.; Takeuchi, T.; Kawano, K.; Kuwae, Y.; Yamauchi, A.; Okumura, M.; Kitamura, Y.; Oka, Y.; Kawase, I.; Sugiyama, H.; Aozasa, K. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod. Pathol., 2006, 19(6), 804-814.
[http://dx.doi.org/10.1038/modpathol.3800588] [PMID: 16547468]
[44]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[45]
Cui, Y.; Guo, G. Immunomodulatory function of the tumor suppressor p53 in host immune response and the tumor microenvironment. Int. J. Mol. Sci., 2016, 17(11), E1942.
[http://dx.doi.org/10.3390/ijms17111942] [PMID: 27869779]
[46]
Kabacaoglu, D.; Ciecielski, K.J.; Ruess, D.A.; Algül, H. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: Current limitations and future options. Front. Immunol., 2018, 9, 1878.
[http://dx.doi.org/10.3389/fimmu.2018.01878] [PMID: 30158932]
[47]
Pandey, V.; Storz, P. Targeting the tumor microenvironment in pancreatic ductal adenocarcinoma. Expert Rev. Anticancer Ther., 2019, 19(6), 473-482.
[http://dx.doi.org/10.1080/14737140.2019.1622417] [PMID: 31148495]
[48]
Sanif, R.; Nurwany, R. Prognostic significance of CD4/CD8 ratio in patients with advanced cervical cancer. J. Phys. Conf. Ser., 2019, 1246(1), 012053.
[http://dx.doi.org/10.1088/1742-6596/1246/1/012053]
[49]
Matkowski, R.; Gisterek, I.; Halon, A.; Lacko, A.; Szewczyk, K.; Staszek, U.; Pudelko, M.; Szynglarewicz, B.; Szelachowska, J.; Zolnierek, A.; Kornafel, J. The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer Res., 2009, 29(7), 2445-2451.
[PMID: 19596912]
[50]
Hernberg, M.M.; Hahka-Kemppinen, M.H.; Pyrhönen, S.O. The prognostic role of CD4+ and CD8+ lymphocytes during chemoimmunotherapy in metastatic melanoma. Melanoma Res., 2004, 14(6), 493-500.
[http://dx.doi.org/10.1097/00008390-200412000-00009] [PMID: 15577320]
[51]
Yang, X.; Ren, H.; Sun, Y.; Shao, Y.; Zhang, L.; Li, H.; Zhang, X.; Yang, X.; Yu, W.; Fu, J. Prognostic significance of CD4/CD8 ratio in patients with breast cancer. Available from: http://www.ijcep.com/files/ijcep0047644.pdf Accessed May 26, 2021.
[52]
Chen, I.X.; Chauhan, V.P.; Posada, J.; Ng, M.R.; Wu, M.W.; Adstamongkonkul, P.; Huang, P.; Lindeman, N.; Langer, R.; Jain, R.K. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(10), 4558-4566.
[http://dx.doi.org/10.1073/pnas.1815515116] [PMID: 30700545]
[53]
Diana, A.; Wang, L.M.; D’Costa, Z.; Allen, P.; Azad, A.; Silva, M.A.; Soonawalla, Z.; Liu, S.; McKenna, W.G.; Muschel, R.J.; Fokas, E. Prognostic value, localization and correlation of PD-1/PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7(27), 40992-41004.
[http://dx.doi.org/10.18632/oncotarget.10038] [PMID: 27329602]
[54]
Wen, X.; He, X.; Jiao, F.; Wang, C.; Sun, Y.; Ren, X.; Li, Q. Fibroblast activation protein-α-positive fibroblasts promote gastric cancer progression and resistance to immune checkpoint blockade. Oncol. Res., 2017, 25(4), 629-640.
[http://dx.doi.org/10.3727/096504016X14768383625385] [PMID: 27983931]
[55]
Watt, J.; Kocher, H.M. The desmoplastic stroma of pancreatic cancer is a barrier to immune cell infiltration. OncoImmunology, 2013, 2(12), e26788.
[http://dx.doi.org/10.4161/onci.26788] [PMID: 24498555]
[56]
Nakakubo, Y.; Miyamoto, M.; Cho, Y.; Hida, Y.; Oshikiri, T.; Suzuoki, M.; Hiraoka, K.; Itoh, T.; Kondo, S.; Katoh, H. Clinical significance of immune cell infiltration within gallbladder cancer. Br. J. Cancer, 2003, 89(9), 1736-1742.
[http://dx.doi.org/10.1038/sj.bjc.6601331] [PMID: 14583778]
[57]
Nowicki, T.S.; Hu-Lieskovan, S.; Ribas, A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J., 2018, 24(1), 47-53.
[http://dx.doi.org/10.1097/PPO.0000000000000303] [PMID: 29360728]
[58]
Tashima, Y.; Kuwata, T.; Yoneda, K.; Hirai, A.; Mori, M.; Kanayama, M.; Imanishi, N.; Kuroda, K.; Ichiki, Y.; Tanaka, F. Prognostic impact of PD-L1 expression in correlation with neutrophil- to-lymphocyte ratio in squamous cell carcinoma of the lung. Sci. Rep., 2020, 10(1), 1243.
[http://dx.doi.org/10.1038/s41598-019-57321-x] [PMID: 31988315]
[59]
Takada, K.; Toyokawa, G.; Shoji, F.; Okamoto, T.; Maehara, Y. The significance of the PD-L1 expression in non-small-cell lung cancer: Trenchant double swords as predictive and prognostic markers. Clin. Lung Cancer, 2018, 19(2), 120-129.
[http://dx.doi.org/10.1016/j.cllc.2017.10.014] [PMID: 29153898]
[60]
Skelton, R.A.; Javed, A.; Zheng, L.; He, J. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J. Surg. Oncol., 2017, 116(1), 55-62.
[http://dx.doi.org/10.1002/jso.24642] [PMID: 28628715]
[61]
Van Audenaerde, J.R.; Marcq, E.; von Scheidt, B.; Davey, A.S.; Oliver, A.J.; De Waele, J.; Quatannens, D.; Van Loenhout, J.; Pauwels, P.; Roeyen, G.; Lardon, F.; Slaney, C.Y.; Peeters, M.; Kershaw, M.H.; Darcy, P.K.; Smits, E.L. Novel combination immunotherapy for pancreatic cancer: potent anti-tumor effects with CD40 agonist and interleukin-15 treatment. Clin. Transl. Immunology, 2020, 9(8), e1165.
[http://dx.doi.org/10.1002/cti2.1165] [PMID: 32821382]
[62]
van Elsas, M.J.; van Hall, T.; van der Burg, S.H. Future challenges in cancer resistance to immunotherapy. Cancers (Basel), 2020, 12(4), E935.
[http://dx.doi.org/10.3390/cancers12040935] [PMID: 32290124]
[63]
Sotomayor, E.M.; Borrello, I.; Tubb, E.; Rattis, F.M.; Bien, H.; Lu, Z.; Fein, S.; Schoenberger, S.; Levitsky, H.I. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat. Med., 1999, 5(7), 780-787.
[http://dx.doi.org/10.1038/10503] [PMID: 10395323]
[64]
Khalil, M.; Vonderheide, R.H. Anti-CD40 agonist antibodies: preclinical and clinical experience. Update Cancer Ther., 2007, 2(2), 61-65.
[http://dx.doi.org/10.1016/j.uct.2007.06.001] [PMID: 19587842]
[65]
Eriksson, E.; Milenova, I.; Wenthe, J.; Moreno, R.; Alemany, R.; Loskog, A. IL-6 signaling blockade during CD40-mediated immune activation favors antitumor factors by reducing TGF-β, collagen type I, and PD-L1/PD-1. J. Immunol., 2019, 202(3), 787-798.
[http://dx.doi.org/10.4049/jimmunol.1800717] [PMID: 30617223]
[66]
Nakagawa, H.; Liyanarachchi, S.; Davuluri, R.V.; Auer, H.; Martin, E.W., Jr; de la Chapelle, A.; Frankel, W.L. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene, 2004, 23(44), 7366-7377.
[http://dx.doi.org/10.1038/sj.onc.1208013] [PMID: 15326482]
[67]
Zainab, H.; Sultana, A.; Shaimaa, Stromal desmoplasia as a possible prognostic indicator in different grades of oral squamous cell carcinoma. J. Oral Maxillofac. Pathol., 2019, 23(3), 338-343.
[http://dx.doi.org/10.4103/jomfp.JOMFP_136_19] [PMID: 31942111]
[68]
Coulson-Thomas, V.J.; Coulson-Thomas, Y.M.; Gesteira, T.F.; de Paula, C.A.A.; Mader, A.M.; Waisberg, J.; Pinhal, M.A.; Friedl, A.; Toma, L.; Nader, H.B. Colorectal cancer desmoplastic reaction up-regulates collagen synthesis and restricts cancer cell invasion. Cell Tissue Res., 2011, 346(2), 223-236.
[http://dx.doi.org/10.1007/s00441-011-1254-y] [PMID: 21987222]
[69]
Anderson, K.G.; Stromnes, I.M.; Greenberg, P.D. Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies. Cancer Cell, 2017, 31(3), 311-325.
[http://dx.doi.org/10.1016/j.ccell.2017.02.008] [PMID: 28292435]
[70]
Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol., 2019, 12(1), 86.
[http://dx.doi.org/10.1186/s13045-019-0770-1] [PMID: 31462327]
[71]
Feig, C.; Gopinathan, A.; Neesse, A.; Chan, D.S.; Cook, N.; Tuveson, D.A. The pancreas cancer microenvironment. Clin. Cancer Res., 2012, 18(16), 4266-4276.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3114] [PMID: 22896693]
[72]
Rasheed, Z.A.; Matsui, W.; Maitra, A. Pathology of pancreatic stroma in PDAC. In: Pancreatic Cancer and Tumor Microenvironment; Grippo, P.J.; Munshi, H.G., Eds.; Transworld Research Network, 2012.
[73]
Su, S.; Chen, J.; Yao, H.; Liu, J.; Yu, S.; Lao, L.; Wang, M.; Luo, M.; Xing, Y.; Chen, F.; Huang, D.; Zhao, J.; Yang, L.; Liao, D.; Su, F.; Li, M.; Liu, Q.; Song, E. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell, 2018, 172(4), 841-856.e16.
[http://dx.doi.org/10.1016/j.cell.2018.01.009] [PMID: 29395328]
[74]
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer, 2016, 16(9), 582-598.
[http://dx.doi.org/10.1038/nrc.2016.73] [PMID: 27550820]
[75]
Chen, X.; Song, E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov., 2019, 18(2), 99-115.
[http://dx.doi.org/10.1038/s41573-018-0004-1] [PMID: 30470818]
[76]
Kobayashi, H.; Enomoto, A.; Woods, S.L.; Burt, A.D.; Takahashi, M.; Worthley, D.L. Cancer-associated fibroblasts in gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(5), 282-295.
[http://dx.doi.org/10.1038/s41575-019-0115-0] [PMID: 30778141]
[77]
Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121(3), 335-348.
[http://dx.doi.org/10.1016/j.cell.2005.02.034] [PMID: 15882617]
[78]
Yamamura, Y.; Asai, N.; Enomoto, A.; Kato, T.; Mii, S.; Kondo, Y.; Ushida, K.; Niimi, K.; Tsunoda, N.; Nagino, M.; Ichihara, S.; Furukawa, K.; Maeda, K.; Murohara, T.; Takahashi, M. Akt- Girdin signaling in cancer-associated fibroblasts contributes to tumor progression. Cancer Res., 2015, 75(5), 813-823.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1317] [PMID: 25732845]
[79]
Labernadie, A.; Kato, T.; Brugués, A.; Serra-Picamal, X.; Derzsi, S.; Arwert, E.; Weston, A.; González-Tarragó, V.; Elosegui-Artola, A.; Albertazzi, L.; Alcaraz, J.; Roca-Cusachs, P.; Sahai, E.; Trepat, X. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol., 2017, 19(3), 224-237.
[http://dx.doi.org/10.1038/ncb3478] [PMID: 28218910]
[80]
Özdemir, B.C.; Pentcheva-Hoang, T.; Carstens, J.L.; Zheng, X.; Wu, C-C.; Simpson, T.R.; Laklai, H.; Sugimoto, H.; Kahlert, C.; Novitskiy, S.V.; De Jesus-Acosta, A.; Sharma, P.; Heidari, P.; Mahmood, U.; Chin, L.; Moses, H.L.; Weaver, V.M.; Maitra, A.; Allison, J.P.; LeBleu, V.S.; Kalluri, R. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 2014, 25(6), 719-734.
[http://dx.doi.org/10.1016/j.ccr.2014.04.005] [PMID: 24856586]
[81]
Chen, Y.; Kim, J.; Yang, S.; Wang, H.; Wu, C-J.; Sugimoto, H.; LeBleu, V.S.; Kalluri, R. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell, 2021, 39(4), 548-565.e6.
[http://dx.doi.org/10.1016/j.ccell.2021.02.007] [PMID: 33667385]
[82]
Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.; Becerra, C.P.; Tattersall, I.W.; Westphalen, C.B.; Kitajewski, J.; Fernandez-Barrena, M.G.; Fernandez-Zapico, M.E.; Iacobuzio-Donahue, C.; Olive, K.P.; Stanger, B.Z. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 2014, 25(6), 735-747.
[http://dx.doi.org/10.1016/j.ccr.2014.04.021] [PMID: 24856585]
[83]
Lee, J.J.; Perera, R.M.; Wang, H.; Wu, D-C.; Liu, X.S.; Han, S.; Fitamant, J.; Jones, P.D.; Ghanta, K.S.; Kawano, S.; Nagle, J.M.; Deshpande, V.; Boucher, Y.; Kato, T.; Chen, J.K.; Willmann, J.K.; Bardeesy, N.; Beachy, P.A. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl. Acad. Sci. USA, 2014, 111(30), E3091-E3100.
[http://dx.doi.org/10.1073/pnas.1411679111] [PMID: 25024225]
[84]
Sun, L.; Zhang, L.; Yu, J.; Zhang, Y.; Pang, X.; Ma, C.; Shen, M.; Ruan, S.; Wasan, H.S.; Qiu, S. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: A systematic review and meta-analysis. Sci. Rep., 2020, 10(1), 2083.
[http://dx.doi.org/10.1038/s41598-020-58674-4] [PMID: 32034198]
[85]
Davis, A.A.; Patel, V.G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer, 2019, 7(1), 278.
[http://dx.doi.org/10.1186/s40425-019-0768-9] [PMID: 31655605]
[86]
Sun, J-Y.; Zhang, D.; Wu, S.; Xu, M.; Zhou, X.; Lu, X-J.; Ji, J. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark. Res., 2020, 8, 35.
[http://dx.doi.org/10.1186/s40364-020-00212-5] [PMID: 32864132]
[87]
Wu, A.; Maxwell, R.; Xia, Y.; Cardarelli, P.; Oyasu, M.; Belcaid, Z.; Kim, E.; Hung, A.; Luksik, A.S.; Garzon-Muvdi, T.; Jackson, C.M.; Mathios, D.; Theodros, D.; Cogswell, J.; Brem, H.; Pardoll, D.M.; Lim, M. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J. Neurooncol., 2019, 143(2), 241-249.
[http://dx.doi.org/10.1007/s11060-019-03172-5] [PMID: 31025274]
[88]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[89]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[90]
Jiang, Y.; Chen, M.; Nie, H.; Yuan, Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother., 2019, 15(5), 1111-1122.
[http://dx.doi.org/10.1080/21645515.2019.1571892] [PMID: 30888929]
[91]
Liang, Z.; Xie, W-J.; Zhao, M.; Cheng, G-P.; Wu, M-J. DDR2 facilitates papillary thyroid carcinoma epithelial mesenchymal transition by activating ERK2/Snail1 pathway. Oncol. Lett., 2017, 14(6), 8114-8121.
[http://dx.doi.org/10.3892/ol.2017.7250] [PMID: 29250189]
[92]
Xu, C.; Zheng, L.; Li, D.; Chen, G.; Gu, J.; Chen, J.; Yao, Q. CXCR4 overexpression is correlated with poor prognosis in colorectal cancer. Life Sci., 2018, 208, 333-340.
[http://dx.doi.org/10.1016/j.lfs.2018.04.050] [PMID: 29719205]
[93]
Rodriguez-Lara, V.; Ignacio, G-S.; Cerbón Cervantes, M.A. Estrogen induces CXCR4 overexpression and CXCR4/CXL12 pathway activation in lung adenocarcinoma cells in vitro. Endocr. Res., 2017, 42(3), 219-231.
[PMID: 28318328]
[94]
Walenkamp, A.M.E.; Lapa, C.; Herrmann, K.; Wester, H-J. CXCR4 ligands: The next big hit? J. Nucl. Med., 2017, 58(Suppl. 2), 77S-82S.
[http://dx.doi.org/10.2967/jnumed.116.186874] [PMID: 28864616]
[95]
Tu, M.M.; Lee, F.Y.F.; Jones, R.T.; Kimball, A.K.; Saravia, E.; Graziano, R.F.; Coleman, B.; Menard, K.; Yan, J.; Michaud, E.; Chang, H.; Abdel-Hafiz, H.A.; Rozhok, A.I.; Duex, J.E.; Agarwal, N.; Chauca-Diaz, A.; Johnson, L.K.; Ng, T.L.; Cambier, J.C.; Clambey, E.T.; Costello, J.C.; Korman, A.J.; Theodorescu, D. Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy. Sci. Adv., 2019, 5(2), eaav2437.
[http://dx.doi.org/10.1126/sciadv.aav2437] [PMID: 30801016]
[96]
Berestjuk, I.; Lecacheur, M.; Diazzi, S.; Rovera, C.; Prod’homme, V.; Mallavialle, A.; Larbret, F.; Pisano, S.; Audebert, S.; Passeron, T.; Gaggioli, C.; Girard, C.A.; Deckert, M.; Tartare-Deckert, S. Targeting DDR1 and DDR2 overcomes matrix-mediated melanoma cell adaptation to BRAF-targeted therapy. bioRxiv, 2019.
[97]
Liu, F.; Qi, L.; Liu, B.; Liu, J.; Zhang, H.; Che, D.; Cao, J.; Shen, J.; Geng, J.; Bi, Y.; Ye, L.; Pan, B.; Yu, Y. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS One, 2015, 10(3), e0116683.
[http://dx.doi.org/10.1371/journal.pone.0116683] [PMID: 25775399]
[98]
Cohen, S.J.; Alpaugh, R.K.; Palazzo, I.; Meropol, N.J.; Rogatko, A.; Xu, Z.; Hoffman, J.P.; Weiner, L.M.; Cheng, J.D. Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas, 2008, 37(2), 154-158.
[http://dx.doi.org/10.1097/MPA.0b013e31816618ce] [PMID: 18665076]
[99]
Herrera, M.; Herrera, A.; Domínguez, G.; Silva, J.; García, V.; García, J.M.; Gómez, I.; Soldevilla, B.; Muñoz, C.; Provencio, M.; Campos-Martin, Y.; García de Herreros, A.; Casal, I.; Bonilla, F.; Peña, C. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci., 2013, 104(4), 437-444.
[http://dx.doi.org/10.1111/cas.12096] [PMID: 23298232]
[100]
Henry, L.R.; Lee, H-O.; Lee, J.S.; Klein-Szanto, A.; Watts, P.; Ross, E.A.; Chen, W-T.; Cheng, J.D. Clinical implications of fibroblast activation protein in patients with colon cancer. Clin. Cancer Res., 2007, 13(6), 1736-1741.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1746] [PMID: 17363526]
[101]
Yuan, D.; Liu, B.; Liu, K.; Zhu, G.; Dai, Z.; Xie, Y. Overexpression of fibroblast activation protein and its clinical implications in patients with osteosarcoma. J. Surg. Oncol., 2013, 108(3), 157-162.
[http://dx.doi.org/10.1002/jso.23368] [PMID: 23813624]
[102]
Wang, Y-G.; Xu, L.; Jia, R-R.; Wu, Q.; Wang, T.; Wei, J.; Ma, J-L.; Shi, M.; Li, Z-S. DDR2 induces gastric cancer cell activities via activating mTORC2 signaling and is associated with clinicopathological characteristics of gastric cancer. Dig. Dis. Sci., 2016, 61(8), 2272-2283.
[http://dx.doi.org/10.1007/s10620-016-4116-3] [PMID: 27010547]
[103]
Mhawech-Fauceglia, P.; Wang, D.; Samrao, D.; Kim, G.; Lawrenson, K.; Meneses, T.; Liu, S.; Yessaian, A.; Pejovic, T. Clinical Implications of marker expression of carcinoma-associated fibroblasts (CAFs) in patients with epithelial ovarian carcinoma after treatment with neoadjuvant chemotherapy. Cancer Microenviron., 2014, 7(1-2), 33-39.
[http://dx.doi.org/10.1007/s12307-013-0140-4] [PMID: 24214412]
[104]
Qin, Q.; Zhang, C.; Yang, X.; Zhu, H.; Yang, B.; Cai, J.; Cheng, H.; Ma, J.; Lu, J.; Zhan, L.; Liu, J.; Liu, Z.; Xu, L.; Sun, X. Polymorphisms in XPD gene could predict clinical outcome of platinum-based chemotherapy for non-small cell lung cancer patients: a meta-analysis of 24 studies. PLoS One, 2013, 8(11), e79864.
[http://dx.doi.org/10.1371/journal.pone.0079864] [PMID: 24260311]
[105]
Wang, T.; Shi, W. Expression of fibroblast activation proteins in corneal stromal neovascularization. Curr. Eye Res., 2009, 34(2), 112-117.
[http://dx.doi.org/10.1080/02713680802607732] [PMID: 19219682]
[106]
Lindner, T.; Altmann, A.; Krämer, S.; Kleist, C.; Loktev, A.; Kratochwil, C.; Giesel, F.; Mier, W.; Marme, F.; Debus, J.; Haberkorn, U. Design and development of 99mTc-Labeled FAPI tracers for SPECT imaging and 188Re therapy. J. Nucl. Med., 2020, 61(10), 1507-1513.
[http://dx.doi.org/10.2967/jnumed.119.239731] [PMID: 32169911]
[107]
Gunderson, A.J.; Yamazaki, T.; McCarty, K.; Phillips, M.; Alice, A.; Bambina, S.; Zebertavage, L.; Friedman, D.; Cottam, B.; Newell, P.; Gough, M.J.; Crittenden, M.R.; Van der Veken, P.; Young, K.H. Blockade of fibroblast activation protein in combination with radiation treatment in murine models of pancreatic adenocarcinoma. PLoS One, 2019, 14(2), e0211117.
[http://dx.doi.org/10.1371/journal.pone.0211117] [PMID: 30726287]
[108]
Hettiarachchi, S.U.; Li, Y-H.; Roy, J.; Zhang, F.; Puchulu-Campanella, E.; Lindeman, S.D.; Srinivasarao, M.; Tsoyi, K.; Liang, X.; Ayaub, E.A.; Nickerson-Nutter, C.; Rosas, I.O.; Low, P.S. Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci. Transl. Med., 2020, 12(567), eaay3724.
[http://dx.doi.org/10.1126/scitranslmed.aay3724] [PMID: 33115948]
[109]
Kobayashi-Watanabe, N.; Sato, A.; Watanabe, T.; Abe, T.; Nakashima, C.; Sueoka, E.; Kimura, S.; Sueoka-Aragane, N. Functional analysis of Discoidin domain receptor 2 mutation and expression in squamous cell lung cancer. Lung Cancer, 2017, 110, 35-41.
[http://dx.doi.org/10.1016/j.lungcan.2017.05.017] [PMID: 28676216]
[110]
Xu, J.; Lu, W.; Zhang, S.; Zhu, C.; Ren, T.; Zhu, T.; Zhao, H.; Liu, Y.; Su, J. Overexpression of DDR2 contributes to cell invasion and migration in head and neck squamous cell carcinoma. Cancer Biol. Ther., 2014, 15(5), 612-622.
[http://dx.doi.org/10.4161/cbt.28181] [PMID: 24556606]
[111]
Velmurugan, B.K.; Chang, W-H.; Chung, C-M.; Yeh, C-M.; Lee, C-H.; Yeh, K-T.; Lin, S-H. DDR2 overexpression in oral squamous cell carcinoma is associated to lymph node metastasis. Cancer Biomark., 2018, 22(4), 747-753.
[http://dx.doi.org/10.3233/CBM-181302] [PMID: 29945346]
[112]
Tsai, M-C.; Li, W-M.; Huang, C-N.; Ke, H-L.; Li, C-C.; Yeh, H-C.; Chan, T-C.; Liang, P-I.; Yeh, B-W.; Wu, W-J.; Lim, S-W.; Li, C-F. DDR2 overexpression in urothelial carcinoma indicates an unfavorable prognosis: a large cohort study. Oncotarget, 2016, 7(48), 78918-78931.
[http://dx.doi.org/10.18632/oncotarget.12912] [PMID: 27793038]
[113]
Zhou, Y.; Cao, H-B.; Li, W-J.; Zhao, L. The CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin. J. Nat. Med., 2018, 16(11), 801-810.
[http://dx.doi.org/10.1016/S1875-5364(18)30122-5] [PMID: 30502762]
[114]
Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res., 2014, 124, 31-82.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1] [PMID: 25287686]
[115]
Zuo, J.; Wen, M.; Li, S.; Lv, X.; Wang, L.; Ai, X.; Lei, M. Overexpression of CXCR4 promotes invasion and migration of non-small cell lung cancer via EGFR and MMP-9. Oncol. Lett., 2017, 14(6), 7513-7521.
[http://dx.doi.org/10.3892/ol.2017.7168] [PMID: 29344197]
[116]
Guo, F.; Wang, Y.; Liu, J.; Mok, S.C.; Xue, F.; Zhang, W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene, 2016, 35(7), 816-826.
[http://dx.doi.org/10.1038/onc.2015.139] [PMID: 25961926]
[117]
Yu, Y.; Xiao, C-H.; Tan, L-D.; Wang, Q-S.; Li, X-Q.; Feng, Y-M. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br. J. Cancer, 2014, 110(3), 724-732.
[http://dx.doi.org/10.1038/bjc.2013.768] [PMID: 24335925]
[118]
Guyon, A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell. Neurosci., 2014, 8, 65.
[http://dx.doi.org/10.3389/fncel.2014.00065] [PMID: 24639628]
[119]
Liang, J.J.; Zhu, S.; Bruggeman, R.; Zaino, R.J.; Evans, D.B.; Fleming, J.B.; Gomez, H.F.; Zander, D.S.; Wang, H. High levels of expression of human stromal cell-derived factor-1 are associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev., 2010, 19(10), 2598-2604.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0405] [PMID: 20732965]
[120]
Popple, A.; Durrant, L.G.; Spendlove, I.; Rolland, P.; Scott, I.V.; Deen, S.; Ramage, J.M. The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer. Br. J. Cancer, 2012, 106(7), 1306-1313.
[http://dx.doi.org/10.1038/bjc.2012.49] [PMID: 22415233]
[121]
Zhou, W.; Jiang, Z.; Liu, N.; Xu, F.; Wen, P.; Liu, Y.; Zhong, W.; Song, X.; Chang, X.; Zhang, X.; Wei, G.; Yu, J. Down-regulation of CXCL12 mRNA expression by promoter hypermethylation and its association with metastatic progression in human breast carcinomas. J. Cancer Res. Clin. Oncol., 2009, 135(1), 91-102.
[http://dx.doi.org/10.1007/s00432-008-0435-x] [PMID: 18670789]
[122]
Peng, G-L.; Li, L.; Guo, Y-W.; Yu, P.; Yin, X-J.; Wang, S.; Liu, C-P. CD8+ cytotoxic and FoxP3+ regulatory T lymphocytes serve as prognostic factors in breast cancer. Am. J. Transl. Res., 2019, 11(8), 5039-5053.
[PMID: 31497220]
[123]
D’Alterio, C.; Buoncervello, M.; Ieranò, C.; Napolitano, M.; Portella, L.; Rea, G.; Barbieri, A.; Luciano, A.; Scognamiglio, G.; Tatangelo, F.; Anniciello, A.M.; Monaco, M.; Cavalcanti, E.; Maiolino, P.; Romagnoli, G.; Arra, C.; Botti, G.; Gabriele, L.; Scala, S. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. J. Exp. Clin. Cancer Res., 2019, 38(1), 432.
[http://dx.doi.org/10.1186/s13046-019-1420-8] [PMID: 31661001]
[124]
Zemek, R.M.; Chin, W.L.; Nowak, A.K.; Millward, M.J.; Lake, R.A.; Lesterhuis, W.J. Sensitizing the tumor microenvironment to immune checkpoint therapy. Front. Immunol., 2020, 11, 223.
[http://dx.doi.org/10.3389/fimmu.2020.00223] [PMID: 32133005]
[125]
Homet Moreno, B.; Zaretsky, J.M.; Garcia-Diaz, A.; Tsoi, J.; Parisi, G.; Robert, L.; Meeth, K.; Ndoye, A.; Bosenberg, M.; Weeraratna, A.T.; Graeber, T.G.; Comin-Anduix, B.; Hu-Lieskovan, S.; Ribas, A. Response to programmed cell death-1 blockade in a murine melanoma syngeneic model requires costimulation, CD4, and CD8 T cells. Cancer Immunol. Res., 2016, 4(10), 845-857.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0060] [PMID: 27589875]
[126]
D’Alterio, C.; Zannetti, A.; Trotta, A.M.; Ieranò, C.; Napolitano, M.; Rea, G.; Greco, A.; Maiolino, P.; Albanese, S.; Scognamiglio, G.; Tatangelo, F.; Tafuto, S.; Portella, L.; Santagata, S.; Nasti, G.; Ottaiano, A.; Pacelli, R.; Delrio, P.; Botti, G.; Scala, S. New CXCR4 antagonist peptide R (Pep R) improves standard therapy in colorectal cancer. Cancers (Basel), 2020, 12(7), E1952.
[http://dx.doi.org/10.3390/cancers12071952] [PMID: 32708431]
[127]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]
[128]
Chen, Y.; Ramjiawan, R.R.; Reiberger, T.; Ng, M.R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E.C.; Reddy, T.P.; Fan, C.; Huang, P.; Bardeesy, N.; Zhu, A.X.; Jain, R.K.; Duda, D.G. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology, 2015, 61(5), 1591-1602.
[http://dx.doi.org/10.1002/hep.27665] [PMID: 25529917]
[129]
Zboralski, D.; Hoehlig, K.; Eulberg, D.; Frömming, A.; Vater, A. Increasing Tumor-infiltrating t cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol. Res., 2017, 5(11), 950-956.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0303] [PMID: 28963140]
[130]
Zeng, Y.; Li, B.; Liang, Y.; Reeves, P.M.; Qu, X.; Ran, C.; Liu, Q.; Callahan, M.V.; Sluder, A.E.; Gelfand, J.A.; Chen, H.; Poznansky, M.C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J., 2019, 33(5), 6596-6608.
[http://dx.doi.org/10.1096/fj.201802067RR] [PMID: 30802149]
[131]
Santagata, S.; Napolitano, M.; D’Alterio, C.; Desicato, S.; Maro, S.D.; Marinelli, L.; Fragale, A.; Buoncervello, M.; Persico, F.; Gabriele, L.; Novellino, E.; Longo, N.; Pignata, S.; Perdonà, S.; Scala, S. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer. Oncotarget, 2017, 8(44), 77110-77120.
[http://dx.doi.org/10.18632/oncotarget.20363] [PMID: 29100374]
[132]
Li, Z.; Wang, Y.; Shen, Y.; Qian, C.; Oupicky, D.; Sun, M. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy. Sci. Adv., 2020, 6(20), eaaz9240.
[http://dx.doi.org/10.1126/sciadv.aaz9240] [PMID: 32440550]
[133]
Biasci, D.; Smoragiewicz, M.; Connell, C.M.; Wang, Z.; Gao, Y.; Thaventhiran, J.E.D.; Basu, B.; Magiera, L.; Johnson, T.I.; Bax, L.; Gopinathan, A.; Isherwood, C.; Gallagher, F.A.; Pawula, M.; Hudecova, I.; Gale, D.; Rosenfeld, N.; Barmpounakis, P.; Popa, E.C.; Brais, R.; Godfrey, E.; Mir, F.; Richards, F.M.; Fearon, D.T.; Janowitz, T.; Jodrell, D.I. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc. Natl. Acad. Sci. USA, 2020, 117(46), 28960-28970.
[http://dx.doi.org/10.1073/pnas.2013644117] [PMID: 33127761]
[134]
Hendrix, C.W.; Collier, A.C.; Lederman, M.M.; Schols, D.; Pollard, R.B.; Brown, S.; Jackson, J.B.; Coombs, R.W.; Glesby, M.J.; Flexner, C.W.; Bridger, G.J.; Badel, K.; MacFarland, R.T.; Henson, G.W.; Calandra, G. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J. Acquir. Immune Defic. Syndr., 2004, 37(2), 1253-1262.
[http://dx.doi.org/10.1097/01.qai.0000137371.80695.ef] [PMID: 15385732]
[135]
Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front. Cell Dev. Biol., 2020, 8, 672.
[http://dx.doi.org/10.3389/fcell.2020.00672] [PMID: 32793604]
[136]
Saxena, R.; Wang, Y.; Mier, J.W. CXCR4 inhibition modulates the tumor microenvironment and retards the growth of B16-OVA melanoma and Renca tumors. Melanoma Res., 2020, 30(1), 14-25.
[http://dx.doi.org/10.1097/CMR.0000000000000639] [PMID: 31524789]
[137]
Bremnes, R.M.; Dønnem, T.; Al-Saad, S.; Al-Shibli, K.; Andersen, S.; Sirera, R.; Camps, C.; Marinez, I.; Busund, L-T. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(1), 209-217.
[http://dx.doi.org/10.1097/JTO.0b013e3181f8a1bd] [PMID: 21107292]
[138]
Koperek, O.; Scheuba, C.; Cherenko, M.; Neuhold, N.; De Micco, C.; Schmid, K.W.; Niederle, B.; Kaserer, K. Desmoplasia in medullary thyroid carcinoma: a reliable indicator of metastatic potential. Histopathology, 2008, 52(5), 623-630.
[http://dx.doi.org/10.1111/j.1365-2559.2008.03002.x] [PMID: 18370959]
[139]
Scheuba, C.; Kaserer, K.; Kaczirek, K.; Asari, R.; Niederle, B. Desmoplastic stromal reaction in medullary thyroid cancer-an intraoperative “marker” for lymph node metastases. World J. Surg., 2006, 30(5), 853-859.
[http://dx.doi.org/10.1007/s00268-005-0391-4] [PMID: 16680600]
[140]
Koperek, O.; Scheuba, C.; Puri, C.; Birner, P.; Haslinger, C.; Rettig, W.; Niederle, B.; Kaserer, K.; Garin Chesa, P. Molecular characterization of the desmoplastic tumor stroma in medullary thyroid carcinoma. Int. J. Oncol., 2007, 31(1), 59-67.
[http://dx.doi.org/10.3892/ijo.31.1.59] [PMID: 17549405]
[141]
Liu, R.; Li, H.; Liu, L.; Yu, J.; Ren, X. Fibroblast activation protein: A potential therapeutic target in cancer. Cancer Biol. Ther., 2012, 13(3), 123-129.
[http://dx.doi.org/10.4161/cbt.13.3.18696] [PMID: 22236832]
[142]
Loeffler, M.; Krüger, J.A.; Niethammer, A.G.; Reisfeld, R.A. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest., 2006, 116(7), 1955-1962.
[http://dx.doi.org/10.1172/JCI26532] [PMID: 16794736]
[143]
Lindner, T.; Loktev, A.; Giesel, F.; Kratochwil, C.; Altmann, A.; Haberkorn, U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem, 2019, 4(1), 16.
[http://dx.doi.org/10.1186/s41181-019-0069-0] [PMID: 31659499]
[144]
Lo, A.; Wang, L.S.; Scholler, J.; Monslow, J.; Avery, D.; Newick, K.; O’Brien, S.; Evans, R.A.; Bajor, D.J.; Clendenin, C.; Durham, A.C.; Buza, E.L.; Vonderheide, R.H.; June, C.H.; Albelda, S.M.; Puré, E. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res., 2015, 75(14), 2800-2810.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3041] [PMID: 25979873]
[145]
Wasinski, B.; Sohail, A.; Bonfil, R.D.; Kim, S.; Saliganan, A.; Polin, L.; Bouhamdan, M.; Kim, H.C.; Prunotto, M.; Fridman, R. Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts. Sci. Rep., 2020, 10(1), 2309.
[http://dx.doi.org/10.1038/s41598-020-59028-w] [PMID: 32047176]
[146]
Park, J-W.; Lee, Y-S.; Kim, J.S.; Lee, S-K.; Kim, B.H.; Lee, J.A.; Lee, N.O.; Kim, S.H.; Hong, E.K. Downregulation of discoidin domain receptor 2 decreases tumor growth of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1973-1983.
[http://dx.doi.org/10.1007/s00432-015-1967-5] [PMID: 25842034]
[147]
Chen, Y.; Liu, Y-C.; Sung, Y-C.; Ramjiawan, R.R.; Lin, T-T.; Chang, C-C.; Jeng, K-S.; Chang, C-F.; Liu, C-H.; Gao, D-Y.; Hsu, F-F.; Duyverman, A.M.; Kitahara, S.; Huang, P.; Dima, S.; Popescu, I.; Flaherty, K.T.; Zhu, A.X.; Bardeesy, N.; Jain, R.K.; Benes, C.H.; Duda, D.G. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci. Rep., 2017, 7, 44123.
[http://dx.doi.org/10.1038/srep44123] [PMID: 28276530]
[148]
Shao, Y-Y.; Li, Y-S.; Hsu, H-W.; Lin, H.; Wang, H-Y.; Wo, R.R.; Cheng, A-L.; Hsu, C-H. Potent activity of composite cyclin dependent kinase inhibition against hepatocellular carcinoma. Cancers (Basel), 2019, 11(10), E1433.
[http://dx.doi.org/10.3390/cancers11101433] [PMID: 31561409]
[149]
Shen, S.; Dean, D.C.; Yu, Z.; Duan, Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol. Res., 2019, 49(10), 1097-1108.
[http://dx.doi.org/10.1111/hepr.13353] [PMID: 31009153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy