Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Letter Article

In Vitro Antitumor Evaluation of Acrylic Acid Derivatives Bearing Quinolinone Moiety as Novel Anticancer Agents

Author(s): Islam Zaki *, Sarah A. Eid , Mohamed S. Elghareb, Al-Shimaa M. Abas, Gaber Mersal and Faten Z. Mohammed

Volume 22, Issue 9, 2022

Published on: 12 January, 2022

Page: [1634 - 1642] Pages: 9

DOI: 10.2174/1871520621666211103105255

Price: $65

Abstract

Background: Due to the emergence of resistance to available anticancer agents, the demand for new cytotoxic agents has grown.

Objective: This study aims at synthesis and cytotoxic evaluation of new acrylic acid derivatives bearing quinolinone and halogenated quinolinone derivatives against three cancer cell lines.

Methods: New acrylic acid derivatives bearing quinolinone and halogenated quinolinone moieties were synthesized and screened for their cytotoxic activity against breast MCF-7, liver HepG2, and colon HCT-116 cancer cell lines.

Results: Molecules 3 and 8 showed the most potent cytotoxic activity against HCT-116. DNA flow cytometry assay showed cell cycle arrest at the G1 phase and cellular apoptosis. Moreover, molecules 3 and 8 showed cyclin-dependent kinase 2 (CDK2) inhibitory activity compared to the untreated control sample.

Conclusion: Acrylic acid derivatives bearing quinolinone and halogenated quinolinone moieties represent an important core and could be used as a lead for further development of drug compounds in order to achieve promising therapeutic results.

Keywords: Acrylic acid, quinoline, cell cycle analysis, annexin V, CDK-2, MCF-7.

Graphical Abstract

[1]
López-Grueso, M.J.; Lagal, D.J.; García-Jiménez, Á.F.; Tarradas, R.M.; Carmona-Hidalgo, B.; Peinado, J.; Requejo-Aguilar, R.; Bárcena, J.A.; Padilla, C.A. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol., 2020, 37, 101737.
[http://dx.doi.org/10.1016/j.redox.2020.101737] [PMID: 33035814]
[2]
Kent, L.N.; Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer, 2019, 19(6), 326-338.
[http://dx.doi.org/10.1038/s41568-019-0143-7] [PMID: 31053804]
[3]
Mast, J.M.; Hinds, J.W.; Tse, D.; Axelrod, K.; Kuppusamy, M.L.; Kmiec, M.M.; Bognár, B.; Kálai, T.; Kuppusamy, P. Selective induction of cellular toxicity and anti-tumor efficacy by n-methylpiperazinyl diarylidenylpiperidone and its pro-nitroxide conjugate through ROS-mediated mitochondrial dysfunction and G2/M cell-cycle arrest in human pancreatic cancer. Cell Biochem. Biophys., 2020, 78(2), 191-202.
[http://dx.doi.org/10.1007/s12013-020-00919-0] [PMID: 32449075]
[4]
Singh, R.; Bhardwaj, V.; Das, P.; Purohit, R. Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: a computational perspective. J. Biomol. Struct. Dyn., 2020, 38(17), 5126-5135.
[http://dx.doi.org/10.1080/07391102.2019.1696709] [PMID: 31760872]
[5]
Sharma, S.; Zhang, T.; Michowski, W.; Rebecca, V.W.; Xiao, M.; Ferretti, R.; Suski, J.M.; Bronson, R.T.; Paulo, J.A.; Frederick, D.; Fassl, A.; Boland, G.M.; Geng, Y.; Lees, J.A.; Medema, R.H.; Herlyn, M.; Gygi, S.P.; Sicinski, P. Targeting the cyclin-dependent kinase 5 in metastatic melanoma. Proc. Natl. Acad. Sci. USA, 2020, 117(14), 8001-8012.
[http://dx.doi.org/10.1073/pnas.1912617117] [PMID: 32193336]
[6]
Yamamura, M.; Sato, Y.; Takahashi, K.; Sasaki, M.; Harada, K. The cyclin dependent kinase pathway involving CDK1 is a potential therapeutic target for cholangiocarcinoma. Oncol. Rep., 2020, 43(1), 306-317.
[PMID: 31746435]
[7]
Sarkar, B.; Ullah, M.A.; Islam, S.S.; Rahman, M.D.H.; Araf, Y. Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2. J. Recept. Signal Transduction 2020, 1-17.
[8]
Whittaker, S.R.; Barlow, C.; Martin, M.P.; Mancusi, C.; Wagner, S.; Self, A.; Barrie, E.; Te Poele, R.; Sharp, S.; Brown, N.; Wilson, S.; Jackson, W.; Fischer, P.M.; Clarke, P.A.; Walton, M.I.; McDonald, E.; Blagg, J.; Noble, M.; Garrett, M.D.; Workman, P. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor. Mol. Oncol., 2018, 12(3), 287-304.
[http://dx.doi.org/10.1002/1878-0261.12148] [PMID: 29063678]
[9]
Henri, P.; Prevel, C.; Pellerano, M.; Lacotte, J.; Stoebner, P.E.; Morris, M.C.; Meunier, L. Psoriatic epidermis is associated with upregulation of CDK2 and inhibition of CDK4 activity. Br. J. Dermatol., 2020, 182(3), 678-689.
[http://dx.doi.org/10.1111/bjd.18178] [PMID: 31145809]
[10]
Feelders, R.A.; Newell-Price, J.; Pivonello, R.; Nieman, L.K.; Hofland, L.J.; Lacroix, A. Advances in the medical treatment of Cushing’s syndrome. Lancet Diabetes Endocrinol., 2019, 7(4), 300-312.
[http://dx.doi.org/10.1016/S2213-8587(18)30155-4] [PMID: 30033041]
[11]
Ding, L.; Cao, J.; Lin, W.; Chen, H.; Xiong, X.; Ao, H.; Yu, M.; Lin, J.; Cui, Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci., 2020, 21(6), 1960.
[http://dx.doi.org/10.3390/ijms21061960] [PMID: 32183020]
[12]
Liu, F-Y.; Wang, L-P.; Wang, Q.; Han, P.; Zhuang, W-P.; Li, M-J.; Yuan, H. miR-302b regulates cell cycles by targeting CDK2 via ERK signaling pathway in gastric cancer. Cancer Med., 2016, 5(9), 2302-2313.
[http://dx.doi.org/10.1002/cam4.818] [PMID: 27465546]
[13]
Sun, Y-S.; Thakur, K.; Hu, F.; Zhang, J-G.; Wei, Z-J. Icariside II inhibits tumorigenesis via inhibiting AKT/Cyclin E/CDK 2 pathway and activating mitochondria-dependent pathway. Pharmacol. Res., 2020, 152, 104616.
[http://dx.doi.org/10.1016/j.phrs.2019.104616] [PMID: 31883767]
[14]
Zaki, I.; Imam, A. Design, synthesis, and cytotoxic screening of new quinoline derivatives over MCF-7 breast cancer cell line. Russ. J. Bioorganic Chem., 2020, 46(6), 1099-1109.
[http://dx.doi.org/10.1134/S1068162020060096]
[15]
Gaber, A.; Alsanie, W.F.; Alhomrani, M.; Alamri, A.S.; El-Deen, I.M.; Refat, M.S. Synthesis and characterization of some new coumarin derivatives as probable breast anticancer MCF-7 drugs. Cryst., 2021, 11(5), 565-578.
[http://dx.doi.org/10.3390/cryst11050565]
[16]
Li, J-J.; Wang, C-G.; Yu, J-F.; Wang, P.; Yu, J-Q. Cu-catalyzed C-H alkenylation of benzoic acid and acrylic acid derivatives with vinyl boronates. Org. Lett., 2020, 22(12), 4692-4696.
[http://dx.doi.org/10.1021/acs.orglett.0c01469] [PMID: 32511925]
[17]
Gaber, A.; Alsanie, W.F.; Alhomrani, M.; Alamri, A.S.; El-Deen, I.M.; Refat, M.S. Synthesis of 1-[(Aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic Acid Derivatives and Their Breast Anticancer Activity. Cryst., 2021, 11(5), 571-582.
[http://dx.doi.org/10.3390/cryst11050571]
[18]
El-Aziz, R.M.A.; Zaki, I.; El-Deen, I.M.; Abd-Rahman, M.S.; Mohammed, F.Z. In vitro anticancer evaluation of some synthesized 2H-quinolinone and halogenated 2H-quinolinone derivatives as therapeutic agents. Anticancer. Agents Med. Chem., 2020, 20(18), 2304-2315.
[http://dx.doi.org/10.2174/1871520620666200811122753] [PMID: 32781965]
[19]
Zaki, I.; Ramadan, H.M.M.; El-Sayed, E.H.; Abd El-Moneim, M. Design, synthesis, and cytotoxicity screening of new synthesized imidazolidine-2-thiones as VEGFR-2 enzyme inhibitors. Arch. Pharm. (Weinheim), 2020, 353(11), e2000121.
[http://dx.doi.org/10.1002/ardp.202000121] [PMID: 32757353]
[20]
Adil, A.G. Synthesis and Biological Evaluation of Some N-Substituted Quinoxaline Derivatives as Antitumor Agents. Russ. J. Bioorganic Chem., 2020, 46(3), 409-416.
[http://dx.doi.org/10.1134/S1068162020030097]
[21]
Mohamed, K.O.; Zaki, I.; El-Deen, I.M.; Abdelhameid, M.K. A new class of diamide scaffold: Design, synthesis and biological evaluation as potent antimitotic agents, tubulin polymerization inhibition and apoptosis inducing activity studies. Bioorg. Chem., 2019, 84, 399-409.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.007] [PMID: 30551066]
[23]
Chavan, O.S.; Baseer, M.A. Comparative study of various synthetic methods of 7-hydroxy-4-methyl coumarins via Pechmann reaction. Chem. Sinica, 2014, 5(5), 67-70.
[24]
Moustafa, A.M.Y.; Bakare, S.B. Synthesis of some hybrid 7-hydroxy quinolinone derivatives as anti breast cancer drugs. Res. Chem. Intermed., 2019, 45(7), 3895-3912.
[http://dx.doi.org/10.1007/s11164-019-03827-y]
[25]
Zaki, I.; Abdelhameid, M.K.; El-Deen, I.M.; Abdel Wahab, A.H.A.; Ashmawy, A.M.; Mohamed, K.O. Design, synthesis and screening of 1, 2, 4-triazinone derivatives as potential antitumor agents with apoptosis inducing activity on MCF-7 breast cancer cell line. Eur. J. Med. Chem., 2018, 156, 563-579.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.003] [PMID: 30025350]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy