Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Recent Advances in the Development of Pyrazolopyridines as Anticancer Agents

Author(s): Xiaotong Gu and Shutao Ma*

Volume 22, Issue 9, 2022

Published on: 05 January, 2022

Page: [1643 - 1657] Pages: 15

DOI: 10.2174/1871520621666210901102832

Price: $65

conference banner
Abstract

Cancer, especially malignant tumor, is a serious threat to people's life and health. It is recognized as an enormous challenge in the 21st century. Continuous efforts are needed to overcome this problem. Pyrazolopyridine nucleus, similar in structure to purine, shows a variety of biological activities, which is mainly attributed to the antagonistic nature towards the natural purines in many biological processes. This has aroused enormous attention for many researchers. At present, a large number of new chemical entities containing pyrazolopyridine nucleus have been found as anticancer agents. In this review we summarize novel pyrazolopyridine-containing derivatives with biological activities. Furthermore, we outline the relationships between the structures of variously modified pyrazolopyridines and their anticancer activity.

Keywords: Cancer, anticancer agents, pyrazolopyridines, heterocyclic compounds, biological activity, structures-activity relationship.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[3]
Meanwell, N.A. A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry. Adv. Heterocycl. Chem., 2017, 123.
[http://dx.doi.org/10.1016/bs.aihch.2016.11.002]
[4]
Cantini, N.; Khlebnikov, A.I.; Crocetti, L.; Schepetkin, I.A.; Floresta, G.; Guerrini, G.; Vergelli, C.; Bartolucci, G.; Quinn, M.T.; Giovannoni, M.P. Exploration of nitrogen heterocycle scaffolds for the development of potent human neutrophil elastase inhibitors. Bioorg. Med. Chem., 2021, 29115836
[http://dx.doi.org/10.1016/j.bmc.2020.115836] [PMID: 33218895]
[5]
Huart, A.S.; Saxty, B.; Merritt, A.; Nekulova, M.; Lewis, S.; Huang, Y.; Vojtesek, B.; Kettleborough, C.; Hupp, T.R. A Casein kinase 1/Checkpoint kinase 1 pyrazolo-pyridine protein kinase inhibitor as novel activator of the p53 pathway. Bioorg. Med. Chem. Lett., 2013, 23(20), 5578-5585.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.046] [PMID: 24007918]
[6]
Mathieu, S.; Gradl, S.N.; Ren, L.; Wen, Z.; Aliagas, I.; Gunzner-Toste, J.; Lee, W.; Pulk, R.; Zhao, G.; Alicke, B.; Boggs, J.W.; Buckmelter, A.J.; Choo, E.F.; Dinkel, V.; Gloor, S.L.; Gould, S.E.; Hansen, J.D.; Hastings, G.; Hatzivassiliou, G.; Laird, E.R.; Moreno, D.; Ran, Y.; Voegtli, W.C.; Wenglowsky, S.; Grina, J.; Rudolph, J. Potent and selective aminopyrimidine-based B-Raf inhibitors with favorable physicochemical and pharmacokinetic properties. J. Med. Chem., 2012, 55(6), 2869-2881.
[http://dx.doi.org/10.1021/jm300016v] [PMID: 22335519]
[7]
Wenglowsky, S.; Moreno, D.; Laird, E.R.; Gloor, S.L.; Ren, L.; Risom, T.; Rudolph, J.; Sturgis, H.L.; Voegtli, W.C. Pyrazolopyridine inhibitors of B-Raf(V600E). Part 4: Rational design and kinase selectivity profile of cell potent type II inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(19), 6237-6241.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.007] [PMID: 22954737]
[8]
Hamajima, T.; Takahashi, F.; Kato, K.; Sugano, Y.; Yamaki, S.; Moritomo, A.; Kubo, S.; Nakamura, K.; Yamagami, K.; Hamakawa, N.; Yokoo, K.; Fukahori, H. Optimization and in vivo evaluation of pyrazolopyridines as a potent and selective PI3Kδ inhibitor. Bioorg. Med. Chem., 2018, 26(14), 3917-3924.
[http://dx.doi.org/10.1016/j.bmc.2018.06.012] [PMID: 29907471]
[9]
Lu, Z.; Ott, G.R.; Anand, R.; Liu, R-Q.; Covington, M.B.; Vaddi, K.; Qian, M.; Newton, R.C.; Christ, D.D.; Trzaskos, J.; Duan, J.J. Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-α converting enzyme (TACE): Discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1¢ substituents. Bioorg. Med. Chem. Lett., 2008, 18(6), 1958-1962.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.120] [PMID: 18282708]
[10]
Boechat, N. The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines and pyrazolopyrimidines. Molecules, 2019, 24(22)
[11]
Kale, A.; Medishetti, N.; Kanugala, S. C, G.K.; Atmakur, K. Na2S-promoted reduction of azides in water: Synthesis of pyrazolopyridines in one pot and evaluation of antimicrobial activity. Org. Biomol. Chem., 2019, 17(12), 3186-3194.
[http://dx.doi.org/10.1039/C8OB03171A] [PMID: 30839017]
[12]
Xing, Y.; Zuo, J.; Krogstad, P.; Jung, M.E. Synthesis and structure-activity relationship (SAR) studies of novel pyrazolopyridine derivatives as inhibitors of enterovirus replication. J. Med. Chem., 2018, 61(4), 1688-1703.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01863] [PMID: 29346733]
[13]
Dennis Bilavendran, J.; Manikandan, A.; Thangarasu, P.; Sivakumar, K. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments. Bioorg. Chem., 2020, 94103484
[http://dx.doi.org/10.1016/j.bioorg.2019.103484] [PMID: 31796215]
[14]
Sun, X.; Hong, Z.; Liu, M.; Guo, S.; Yang, D.; Wang, Y.; Lan, T.; Gao, L.; Qi, H.; Gong, P.; Liu, Y. Design, synthesis, and biological activity of novel tetrahydropyrazolopyridone derivatives as FXa inhibitors with potent anticoagulant activity. Bioorg. Med. Chem., 2017, 25(10), 2800-2810.
[http://dx.doi.org/10.1016/j.bmc.2017.03.055] [PMID: 28389110]
[15]
Saito, M.S.; Lourenço, A.L.; Dias, L.R.S.; Freitas, A.C.C.; Vitorino, M.I.; Albuquerque, M.G.; Rodrigues, C.R.; Cabral, L.M.; Dias, E.P.; Castro, H.C.; Satlher, P.C. Antiplatelet pyrazolopyridines derivatives: Pharmacological, biochemical and toxicological characterization. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1591-1601.
[http://dx.doi.org/10.3109/14756366.2016.1158712] [PMID: 27000933]
[16]
Manjunatha, U.H.; Vinayak, S.; Zambriski, J.A.; Chao, A.T.; Sy, T.; Noble, C.G.; Bonamy, G.M.C.; Kondreddi, R.R.; Zou, B.; Gedeck, P.; Brooks, C.F.; Herbert, G.T.; Sateriale, A.; Tandel, J.; Noh, S.; Lakshminarayana, S.B.; Lim, S.H.; Goodman, L.B.; Bodenreider, C.; Feng, G.; Zhang, L.; Blasco, F.; Wagner, J.; Leong, F.J.; Striepen, B.; Diagana, T.T. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature, 2017, 546(7658), 376-380.
[http://dx.doi.org/10.1038/nature22337] [PMID: 28562588]
[17]
Hardy, C. The chemistry of pyrazolopyridines.Advances in heterocyclic chemistry; Elsevier, 1984, Vol. 36, pp. 343-409.
[18]
Dyadyuchenko, L.V.; Dmitrieva, I.G. Microwave-assisted synthesis of pyrazolo [3, 4-b] pyridine derivatives (microreview). Chem. Heterocycl. Compd., 2020, 56(11), 1414-1416.
[http://dx.doi.org/10.1007/s10593-020-02830-1]
[19]
Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; Lemelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem., 2014, 57(8), 3369-3381.
[http://dx.doi.org/10.1021/jm500002k] [PMID: 24669888]
[20]
Jian, X.E.; Yang, F.; Jiang, C.S.; You, W.W.; Zhao, P.L. Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues. Bioorg. Med. Chem. Lett., 2020, 30(8)127025
[http://dx.doi.org/10.1016/j.bmcl.2020.127025] [PMID: 32063430]
[21]
Lasota, J.; Miettinen, M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology, 2008, 53(3), 245-266.
[http://dx.doi.org/10.1111/j.1365-2559.2008.02977.x] [PMID: 18312355]
[22]
Keretsu, S.; Ghosh, S.; Cho, S.J. Molecular modeling study of c-KIT/PDGFRα dual inhibitors for the treatment of gastrointestinal stromal tumors. Int. J. Mol. Sci., 2020, 21(21)E8232
[http://dx.doi.org/10.3390/ijms21218232] [PMID: 33153146]
[23]
Li, Y.; Han, C.; Wang, J.; Yang, Y.; Zhang, J.; Zhang, S.; Yang, L. Insight into the structural features of pyrazolopyrimidine- and pyrazolopyridine-based B-Raf(V600E) kinase inhibitors by computational explorations. Chem. Biol. Drug Des., 2014, 83(6), 643-655.
[http://dx.doi.org/10.1111/cbdd.12276] [PMID: 24373283]
[24]
Yoon, S.; Seger, R. The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors, 2006, 24(1), 21-44.
[http://dx.doi.org/10.1080/02699050500284218] [PMID: 16393692]
[25]
Bagdanoff, J.T.; Jain, R.; Han, W.; Poon, D.; Lee, P.S.; Bellamacina, C.; Lindvall, M. Ligand efficient tetrahydro-pyrazolopyridines as inhibitors of ERK2 kinase. Bioorg. Med. Chem. Lett., 2015, 25(17), 3626-3629.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.063] [PMID: 26144345]
[26]
Sattler, M.; Salgia, R. c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy. Curr. Oncol. Rep., 2007, 9(2), 102-108.
[http://dx.doi.org/10.1007/s11912-007-0005-4] [PMID: 17288874]
[27]
Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; Niederle, B.; Cohen, E.E.; Wirth, L.J.; Ali, H.; Hessel, C.; Yaron, Y.; Ball, D.; Nelkin, B.; Sherman, S.I. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol., 2013, 31(29), 3639-3646.
[http://dx.doi.org/10.1200/JCO.2012.48.4659] [PMID: 24002501]
[28]
Liu, N.; Wang, Y.; Huang, G.; Ji, C.; Fan, W.; Li, H.; Cheng, Y.; Tian, H. Design, synthesis and biological evaluation of 1H-pyrrolo[2,3-b]pyridine and 1H-pyrazolo[3,4-b]pyridine derivatives as c-Met inhibitors. Bioorg. Chem., 2016, 65, 146-158.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.009] [PMID: 26950400]
[29]
Zhang, L.; Zhang, B.; Zhao, J.; Zhi, Y.; Wang, L.; Lu, T.; Chen, Y. Structure-based design, synthesis, and evaluation of 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives as novel c-Met inhibitors. Eur. J. Med. Chem., 2017, 138, 942-951.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.057] [PMID: 28755635]
[30]
Deshpande, A.; Sicinski, P.; Hinds, P.W. Cyclins and cdks in development and cancer: A perspective. Oncogene, 2005, 24(17), 2909-2915.
[http://dx.doi.org/10.1038/sj.onc.1208618] [PMID: 15838524]
[31]
Jing, L.; Tang, Y.; Xiao, Z. Discovery of novel CDK inhibitors via scaffold hopping from CAN508. Bioorg. Med. Chem. Lett., 2018, 28(8), 1386-1391.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.054] [PMID: 29550093]
[32]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.G.; Shapiro, D.N.; Saltman, D.L.; Look, A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1994, 263(5151), 1281-1284.
[http://dx.doi.org/10.1126/science.8122112] [PMID: 8122112]
[33]
Nam, Y.; Hwang, D.; Kim, N.; Seo, H.S.; Selim, K.B.; Sim, T. Identification of 1H-pyrazolo[3,4-b]pyridine derivatives as potent ALK-L1196M inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1426-1438.
[http://dx.doi.org/10.1080/14756366.2019.1639694] [PMID: 31401883]
[34]
Zhai, M.; Liu, S.; Gao, M.; Wang, L.; Sun, J.; Du, J.; Guan, Q.; Bao, K.; Zuo, D.; Wu, Y.; Zhang, W. 3,5-Diaryl-1H-pyrazolo[3,4-b]pyridines as potent tubulin polymerization inhibitors: Rational design, synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 168, 426-435.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.053] [PMID: 30831410]
[35]
Abozeid, M.A.; El-Sawi, A.A.; Abdelmoteleb, M.; Awad, H.; Abdel-Aziz, M.M.; Abdel-Rahman, A-R.H.; El-Desoky, E-S.I. Synthesis of novel naphthalene-heterocycle hybrids with potent antitumor, anti-inflammatory and antituberculosis activities. RSC Advances, 2020, 10(70), 42998-43009.
[http://dx.doi.org/10.1039/D0RA08526J]
[36]
Belov, A.A.; Mohammadi, M. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb. Perspect. Biol., 2013, 5(6)a015958
[http://dx.doi.org/10.1101/cshperspect.a015958] [PMID: 23732477]
[37]
Zhao, B.; Li, Y.; Xu, P.; Dai, Y.; Luo, C.; Sun, Y.; Ai, J.; Geng, M.; Duan, W. Discovery of substituted 1H-pyrazolo[3,4-b]pyridine derivatives as potent and selective FGFR kinase inhibitors. ACS Med. Chem. Lett., 2016, 7(6), 629-634.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00066] [PMID: 27326339]
[38]
Yahya, S.M.M.; Abdelhamid, A.O.; Abd-Elhalim, M.M.; Elsayed, G.H.; Eskander, E.F. The effect of newly synthesized progesterone derivatives on apoptotic and angiogenic pathway in MCF-7 breast cancer cells. Steroids, 2017, 126, 15-23.
[http://dx.doi.org/10.1016/j.steroids.2017.08.002] [PMID: 28797724]
[39]
Pawar, C.; Pansare, D.; Shinde, D. Synthesis and antiproliferative activity of 3-(substituted)-4,5,6,7-tetrahydro-6-(substituted)-1H-pyrazolo[3,4-c]pyridine derivatives. Eur. J. Chem., 2017, 8(4), 400-409.
[http://dx.doi.org/10.5155/eurjchem.8.4.400-409.1645]
[40]
Chen, C.; Pan, P.; Deng, Z.; Wang, D.; Wu, Q.; Xu, L.; Hou, T.; Cui, S. Discovery of 3,6-diaryl-1H-pyrazolo[3,4-b]pyridines as potent anaplastic lymphoma kinase (ALK) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(7), 912-916.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.037] [PMID: 30777610]
[41]
Hao, S.Y.; Qi, Z.Y.; Wang, S.; Wang, X.R.; Chen, S.W. Synthesis and bioevaluation of N-(3,4,5-trimethoxyphenyl)-1H-pyrazolo[3,4-b]pyridin-3-amines as tubulin polymerization inhibitors with anti-angiogenic effects. Bioorg. Med. Chem., 2021, 31115985
[http://dx.doi.org/10.1016/j.bmc.2020.115985] [PMID: 33421913]
[42]
Gavriil, E.S.; Lougiakis, N.; Pouli, N.; Marakos, P.; Skaltsounis, A.L.; Nam, S.; Jove, R.; Horne, D.; Gioti, K.; Pratsinis, H.; Kletsas, D.; Tenta, R. Synthesis and antiproliferative activity of new pyrazolo[3,4-c]pyridines. Med. Chem., 2016, 12(999)
[PMID: 27978787]
[43]
Mohamed, A.M.; El-Sayed, W.A.; Alsharari, M.A.; Al-Qalawi, H.R.; Germoush, M.O. Anticancer activities of some newly synthesized pyrazole and pyrimidine derivatives. Arch. Pharm. Res., 2013, 36(9), 1055-1065.
[http://dx.doi.org/10.1007/s12272-013-0163-x] [PMID: 23737106]
[44]
Takai, N.; Hamanaka, R.; Yoshimatsu, J.; Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene, 2005, 24(2), 287-291.
[http://dx.doi.org/10.1038/sj.onc.1208272] [PMID: 15640844]
[45]
Sun, S.; Zhang, L.; Lu, S.; Liu, H.; Yuan, H.; Chen, Y.; Lu, T. De novodesign of PLK1 inhibitors based on 2-amino aromatic heterocyclic scaffold: 3D-QSAR and molecular fragment replacement. Mol. Simul., 2013, 39(12), 975-987.
[http://dx.doi.org/10.1080/08927022.2013.784761]
[46]
Nagender, P.; Naresh Kumar, R.; Malla Reddy, G.; Krishna Swaroop, D.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(18), 4427-4432.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.006] [PMID: 27528432]
[47]
Göckeritz, E.; Kerwien, S.; Baumann, M.; Wigger, M.; Vondey, V.; Neumann, L.; Landwehr, T.; Wendtner, C.M.; Klein, C.; Liu, N.; Hallek, M.; Frenzel, L.P.; Krause, G. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells. Int. J. Cancer, 2015, 137(9), 2234-2242.
[http://dx.doi.org/10.1002/ijc.29579] [PMID: 25912635]
[48]
Hamajima, T.; Takahashi, F.; Kato, K.; Mukoyoshi, K.; Yoshihara, K.; Yamaki, S.; Sugano, Y.; Moritomo, A.; Yamagami, K.; Yokoo, K.; Fukahori, H. Discovery and biological evaluation of novel pyrazolopyridine derivatives as potent and orally available PI3Kδ inhibitors. Bioorg. Med. Chem., 2018, 26(9), 2410-2419.
[http://dx.doi.org/10.1016/j.bmc.2018.03.042] [PMID: 29631787]
[49]
Orlikova, B.; Chaouni, W.; Schumacher, M.; Aadil, M.; Diederich, M.; Kirsch, G. Synthesis and bioactivity of novel amino-pyrazolopyridines. Eur. J. Med. Chem., 2014, 85, 450-457.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.008] [PMID: 25108361]
[50]
Cytotoxic effects of newly synthesized heterocyclic candidates containing nicotinonitrile and pyrazole moieties on hepatocellular and cervical carcinomas. Molecules, 2019, 24(10)
[51]
Hamza, E.K.; Hamdy, N.A.; Zarie, E.S.; Fakhr, I.M.I.; Elwahy, A.H.M.; Awad, H.M. Synthesis and in vitro evaluation of novel tetralin-pyrazolo[3,4-b]pyridine hybrids as potential anticancer agents. J. Heterocycl. Chem., 2019, 57(1), 182-196.
[http://dx.doi.org/10.1002/jhet.3764]
[52]
Giannouli, V.; Lougiakis, N.; Kostakis, I.K.; Pouli, N.; Tenta, R. Design and synthesis of new substituted pyrazolopyridines with potent antiproliferative activity. Med. Chem., 2019, 15(2)
[http://dx.doi.org/10.2174/1573406415666190222130225]
[53]
Hertel, L.; Kroin, J.; Misner, J.; Tustin, J. Synthesis of 2-deoxy-2, 2-difluoro-D-ribose and 2-deoxy-2, 2'-difluoro-D-ribofuranosyl nucleosides. J. Org. Chem., 1988, 53(11), 2406-2409.
[http://dx.doi.org/10.1021/jo00246a002]
[54]
Filler, R.; Kobayashi, Y.; Yagupolskii, L.M. Organofluorine compounds in medicinal chemistry and biomedical applications; Elsevier, 1993.
[55]
Smart, B.E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem., 2001, 109(1), 3-11.
[http://dx.doi.org/10.1016/S0022-1139(01)00375-X]
[56]
Chavva, K.; Pillalamarri, S.; Banda, V.; Gautham, S.; Gaddamedi, J.; Yedla, P.; Kumar, C.G.; Banda, N. Synthesis and biological evaluation of novel alkyl amide functionalized trifluoromethyl substituted pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23(21), 5893-5895.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.089] [PMID: 24060486]
[57]
Kurumurthy, C.; Veeraswamy, B.; Sambasiva Rao, P.; Santhosh Kumar, G.; Shanthan Rao, P.; Loka Reddy, V.; Venkateswara Rao, J.; Narsaiah, B. Synthesis of novel 1,2,3-triazole tagged pyrazolo[3,4-b]pyridine derivatives and their cytotoxic activity. Bioorg. Med. Chem. Lett., 2014, 24(3), 746-749.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.107] [PMID: 24424132]
[58]
El-Borai, M.A.; Awad, M.K.; Rizk, H.F.; Atlam, F.M. Design, synthesis and docking study of novel imidazolyl pyrazolopyridine derivatives as antitumor agents targeting MCF7 cell line. Curr. Org. Synth., 2018, 15(2), 275-285.
[http://dx.doi.org/10.2174/1570179414666170512125759]
[59]
Ravula, S.; Bobbala, R.R.; Kolli, B. Synthesis of novel isoxazole functionalized pyrazolo[3,4-b]pyridine derivatives; their anticancer activity. J. Heterocycl. Chem., 2020, 57(6), 2535-2538.
[http://dx.doi.org/10.1002/jhet.3968]
[60]
El-Borai, M.A.; Rizk, H.F.; Beltagy, D.M.; El-Deeb, I.Y. Microwave-assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities. Eur. J. Med. Chem., 2013, 66, 415-422.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.043] [PMID: 23831694]
[61]
Miliutina, M.; Janke, J.; Hassan, S.; Zaib, S.; Iqbal, J.; Lecka, J.; Sévigny, J.; Villinger, A.; Friedrich, A.; Lochbrunner, S.; Langer, P. A domino reaction of 3-chlorochromones with aminoheterocycles. Synthesis of pyrazolopyridines and benzofuropyridines and their optical and ecto-5'-nucleotidase inhibitory effects. Org. Biomol. Chem., 2018, 16(5), 717-732.
[http://dx.doi.org/10.1039/C7OB02729J] [PMID: 29303198]
[62]
Michailidou, M.; Giannouli, V.; Kotsikoris, V.; Papadodima, O.; Kontogianni, G.; Kostakis, I.K.; Lougiakis, N.; Chatziioannou, A.; Kolisis, F.N.; Marakos, P.; Pouli, N.; Loutrari, H. Novel pyrazolopyridine derivatives as potential angiogenesis inhibitors: Synthesis, biological evaluation and transcriptome-based mechanistic analysis. Eur. J. Med. Chem., 2016, 121, 143-157.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.035] [PMID: 27240270]
[63]
Eissa, I.H.; El-Naggar, A.M.; El-Hashash, M.A. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg. Chem., 2016, 67, 43-56.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.006] [PMID: 27253830]
[64]
El-Gohary, N.S.; Shaaban, M.I. Design, synthesis, antimicrobial, antiquorum-sensing and antitumor evaluation of new series of pyrazolopyridine derivatives. Eur. J. Med. Chem., 2018, 157, 729-742.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.008] [PMID: 30138804]
[65]
El-borai, M.A.; Rizk, H.F.; Abd-Aal, M.F.; El-Deeb, I.Y. Synthesis of pyrazolo[3,4-b]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities - Part 1. Eur. J. Med. Chem., 2012, 48, 92-96.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.038] [PMID: 22178093]
[66]
Li, A.; Dawson, J.C.; Forero-Vargas, M.; Spence, H.J.; Yu, X.; König, I.; Anderson, K.; Machesky, L.M. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr. Biol., 2010, 20(4), 339-345.
[http://dx.doi.org/10.1016/j.cub.2009.12.035] [PMID: 20137952]
[67]
Francis, S.; Croft, D.; Schüttelkopf, A.W.; Parry, C.; Pugliese, A.; Cameron, K.; Claydon, S.; Drysdale, M.; Gardner, C.; Gohlke, A.; Goodwin, G.; Gray, C.H.; Konczal, J.; McDonald, L.; Mezna, M.; Pannifer, A.; Paul, N.R.; Machesky, L.; McKinnon, H.; Bower, J. Structure-based design, synthesis and biological evaluation of a novel series of isoquinolone and pyrazolo[4,3-c]pyridine inhibitors of fascin 1 as potential anti-metastatic agents. Bioorg. Med. Chem. Lett., 2019, 29(8), 1023-1029.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.035] [PMID: 30773430]
[68]
Lichitsky, B.V.; Komogortsev, A.N.; Dudinov, A.A.; Krayushkin, M.M.; Khodot, E.N.; Samet, A.V.; Silyanova, E.A.; Konyushkin, L.D.; Karpov, A.S.; Gorses, D.; Radimerski, T.; Semenova, M.N.; Kiselyov, A.S.; Semenov, V.V. Benzimidazolyl-pyrazolo[3,4-b]pyridinones, selective inhibitors of MOLT-4 leukemia cell growth and sea urchin embryo spiculogenesis: Target quest. ACS Comb. Sci., 2019, 21(12), 805-816.
[http://dx.doi.org/10.1021/acscombsci.9b00135] [PMID: 31689077]
[69]
Roshan, A.A.; Mamaghani, M.; Mahmoodi, N.O.; Shirini, F. An efficient regioselective sonochemical synthesis of novel 4-aryl-3-methyl-4,5-dihydro-1H-pyrazolo[3,4-b]pyridin-6(7H)-ones. Chin. Chem. Lett., 2012, 23(4), 399-402.
[http://dx.doi.org/10.1016/j.cclet.2011.12.009]
[70]
Steinberg, G.R.; Carling, D. AMP-activated protein kinase: The current landscape for drug development. Nat. Rev. Drug Discov., 2019, 18(7), 527-551.
[http://dx.doi.org/10.1038/s41573-019-0019-2] [PMID: 30867601]
[71]
Zheng, B.; Peng, Y.; Wu, W.; Ma, J.; Zhang, Y.; Guo, Y.; Sun, S.; Chen, Z.; Li, Q.; Hu, G. Synthesis and structure-activity relationships of pyrazolo-[3,4-b]pyridine derivatives as adenosine 5¢-monophosphate-activated protein kinase activators. Arch. Pharm. (Weinheim), 2019, 352(8)e1900066
[http://dx.doi.org/10.1002/ardp.201900066] [PMID: 31373047]
[72]
Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; Zhao, G.; Marsh, K.; Kym, P.; Jung, P.; Camp, H.S.; Frevert, E. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab., 2006, 3(6), 403-416.
[http://dx.doi.org/10.1016/j.cmet.2006.05.005] [PMID: 16753576]
[73]
Kamal, A.; Babu, K.S.; Vishnu Vardhan, M.V.; Hussaini, S.M.; Mahesh, R.; Shaik, S.P.; Alarifi, A. Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles. Bioorg. Med. Chem. Lett., 2015, 25(10), 2199-2202.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.054] [PMID: 25870131]
[74]
Insuasty, D.; Abonia, R.; Insuasty, B.; Quiroga, J.; Laali, K.K.; Nogueras, M.; Cobo, J. Microwave-assisted synthesis of diversely substituted quinoline-based dihydropyridopyrimidine and dihydropyrazolopyridine hybrids. ACS Comb. Sci., 2017, 19(8), 555-563.
[http://dx.doi.org/10.1021/acscombsci.7b00091] [PMID: 28723092]
[75]
El-Gohary, N.S.; Hawas, S.S.; Gabr, M.T.; Shaaban, M.I.; El- Ashmawy, M.B. New series of fused pyrazolopyridines: Synthesis, molecular modeling, antimicrobial, antiquorum-sensing and antitumor activities. Bioorg. Chem., 2019. 92, 103109.
[http://dx.doi.org/10.1016/j.bioorg.2019.103109] [PMID: 31521987]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy