Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Modulation of Long Non-coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-review on Antitumor Effects

Author(s): Tamires Cunha Almeida, Janaína Brandão Seibert , Tatiane Roquete Amparo , Gustavo Henrique Bianco de Souza , Glenda Nicioli da Silva and Orlando David Henrique dos Santos*

Volume 22, Issue 9, 2022

Published on: 13 January, 2022

Page: [1232 - 1255] Pages: 24

DOI: 10.2174/1389557521666211101161548

Price: $65

Abstract

The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinicalpathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.

Keywords: lncRNAs, cancer, antitumor activity, secondary metabolites, phytocompounds, plants.

Graphical Abstract

[1]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global Cancer Observatory: cancer today; International Agency for Research on Cancer: Lyon, 2019.
[2]
WHO report on cancer: setting priorities, investing wisely and providing care for all; World Health Organization, 2020.
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285]
[4]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47.
[http://dx.doi.org/10.3390/biom10010047]
[5]
Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol., 2014, 65, 1140-1151.
[http://dx.doi.org/10.1016/j.eururo.2013.12.003]
[6]
Chen, L.L.; Carmichael, G.G. Decoding the function of nuclear long non-coding RNAs. Curr. Opin. Cell Biol., 2010, 22, 357-364.
[http://dx.doi.org/10.1016/j.ceb.2010.03.003]
[7]
Neguembor, M.V.; Jothi, M.; Gabellini, D. Long noncoding RNAs, emerging players in muscle differentiation and disease. Skelet. Muscle, 2014, 4, 8.
[http://dx.doi.org/10.1186/2044-5040-4-8]
[8]
Kopp, F.; Mendell, J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018, 172(3), 393-407.
[http://dx.doi.org/10.1016/j.cell.2018.01.011]
[9]
Dizaji, B.F. Strategies to target long non-coding RNAs in cancer treatment: Progress and challenges. Egypt. J. Med. Hum. Genet., 2020, 21, 41.
[http://dx.doi.org/10.1186/s43042-020-00074-4]
[10]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24, 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y]
[11]
Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M.R.; Chamani, J. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn., 2021, 39(3), 1029-1043.
[http://dx.doi.org/10.1080/07391102.2020.1724568]
[12]
Mokaberi, P.; Babayan-Mashhadi, F.; Zadeh, Z.A.T.; Saberi, M.R.; Chamani, J. Analysis of the interaction behavior between nanocurcumin and two human serum proteins: Combining spectroscopy and molecular stimulation to understand protein-protein interaction. J. Biomol. Struct. Dyn., 2021, 39(9), 3358-3377.
[13]
Dareini, M.; Tehranizadeh, Z.A.; Marjani, N.; Taheri, R.; Aslani-Firoozabadi, S.; Talebi, A.; Eidgahi, N.N.; Saberi, M.R.; Chamani, J. A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: Experimental and in silico approaches. Spectrochim. Acta A Mol. Spectroscopy (Springf.), 2020, 228, 117528.
[http://dx.doi.org/10.1016/j.saa.2019.117528]
[14]
Bentley, K.W. The Alkaloids; Interscience: New York, 1957.
[15]
Tsai, P.L.; Tsai, T.H. Hepatobiliary excretion of berberine. Drug Metab. Dispos., 2004, 32(4), 405-412.
[http://dx.doi.org/10.1124/dmd.32.4.405]
[16]
Singh, A.; Bajpai, V.; Srivastava, M.; Arya, K.R.; Kumar, B. Rapid screening and distribution of bioactive compounds in different parts of Berberis petiolaris using direct analysis in real time mass spectrometry. J. Pharm. Anal., 2015, 5(5), 332-335.
[http://dx.doi.org/10.1016/j.jpha.2015.05.002]
[17]
Ahmad, S.; Hussain, A.; Hussain, A.; Abdullah, I.; Ali, M.S.; Froeyen, M.; Mirza, M.U. Quantification of Berberine in Berberis vulgaris L. Root extract and its curative and prophylactic role in cisplatin-induced in vivo toxicity and in vitro cytotoxicity. Antioxidants, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/antiox8060185]
[18]
Roudini, L.; Eidgahi, N.N.; Rahimi, H.R.; Saberi, M.R.; Tehranizadeh, Z.A.; Beigoli, S.; Chamani, J. Determining the interaction behavior of calf thymus DNA with berberine hydrochloride in the presence of linker histone: A biophysical study. J. Biomol. Struct. Dyn., 2019, 38(2), 364-381.
[http://dx.doi.org/10.1080/07391102.2019.1574240]
[19]
Hermawan, A.; Putri, H. Identification of potential gene associated with berberine in overcoming tamoxifen resistance by functional network analysis. J. Appl. Pharm. Sci., 2020, 10(7), 9-18.
[20]
Liu, J.; Chen, Z.; Cui, Y.; Wei, H.; Zhu, Z.; Mao, F.; Wang, Y.; Liu, Y. Berberine promotes XIAP-mediated cells apoptosis by upregulation of miR-24-3p in acute lymphoblastic leukemia. Aging (Albany NY), 2020, 12(4), 3298-3311.
[http://dx.doi.org/10.18632/aging.102813]
[21]
Park, G.B.; Park, S.H.; Kim, D.; Kim, Y.S.; Yoon, S.H.; Hur, D.Y. Berberine induces mitochondrial apoptosis of EBV-transformed B cells through p53-mediated regulation of XAF1 and GADD45alpha. Int. J. Oncol., 2016, 49, 411-421.
[http://dx.doi.org/10.3892/ijo.2016.3502]
[22]
Ponnusamy, L.; Kothandan, G.; Manoharan, R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(11), 165897.
[http://dx.doi.org/10.1016/j.bbadis.2020.165897]
[23]
Li, L.; Wang, X.; Sharvan, R.; Gao, J.; Qu, S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed. Pharmacother., 2017, 95, 1225-1231.
[http://dx.doi.org/10.1016/j.biopha.2017.09.010]
[24]
Yi, T.; Zhuang, L.; Song, G.; Zhang, B.; Li, G.; Hu, T. Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells. Nutr. Cancer, 2015, 67(3), 523-531.
[http://dx.doi.org/10.1080/01635581.2015.1004733]
[25]
Dai, W.; Mu, L.; Cui, Y.; Li, Y.; Chen, P.; Xie, H.; Wang, X. Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) Cancer Susceptibility Candidate 2 (CASC2)/AU-binding Factor 1 (AUF1)/B-cell CLL/lymphoma 2 (Bcl-2) axis. Med. Sci. Monit., 2019, 25, 730-738.
[http://dx.doi.org/10.12659/MSM.912082]
[26]
Dai, W.; Mu, L.; Cui, Y.; Li, Y.; Chen, P.; Xie, H.; Wang, X. Long non-coding RNA CASC2 enhances berberine-induced cytotoxicity in colorectal cancer cells by silencing BCL2. Mol. Med. Rep., 2019, 20(2), 995-1006.
[http://dx.doi.org/10.3892/mmr.2019.10326]
[27]
Jiang, L.; Zhang, M.; Wang, S.; Xiao, Y.; Wu, J.; Zhou, Y.; Fang, X. LINC01018 and SMIM25 sponged miR-182-5p in endometriosis revealed by the ceRNA network construction. Int. J. Immunopathol. Pharmacol., 2020, 34, 2058738420976309.
[28]
Wang, S.; Xu, M.; Sun, Z.; Yu, X.; Deng, Y.; Chang, H. LINC01018 confers a novel tumor suppressor role in hepatocellular carcinoma through sponging microRNA-182-5p. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(2), G116-G126.
[http://dx.doi.org/10.1152/ajpgi.00005.2019]
[29]
Yu, X.; Zheng, H.; Tse, G.; Zhang, L.; Wu, W.K.K. CASC2: An emerging tumour-suppressing long noncoding RNA in human cancers and melanoma. Cell Prolif., 2018, 51(6), e12506.
[http://dx.doi.org/10.1111/cpr.12506]
[30]
Li, Z.X.; Zhu, Q.N.; Zhang, H.B.; Hu, Y.; Wang, G.; Zhu, Y.S. MALAT1: A potential biomarker in cancer. Cancer Manag. Res., 2018, 10, 6757-6768.
[http://dx.doi.org/10.2147/CMAR.S169406]
[31]
Liu, H.; Ye, T.; Yang, X.; Lv, P.; Wu, X.; Zhou, H.; Zeng, J.; Tang, K.; Ye, Z. A panel of four-lncRNA signature as a potential biomarker for predicting survival in clear cell renal cell carcinoma. J. Cancer, 2020, 11(14), 4274-4283.
[http://dx.doi.org/10.7150/jca.40421]
[32]
Du, Y.; Yang, H.; Li, Y.; Guo, W.; Zhang, Y.; Shen, H.; Xing, L.; Li, Y.; Wu, W.; Zhang, X. Long non-coding RNA LINC01137 contributes to oral squamous cell carcinoma development and is negatively regulated by miR-22-3p. Cell. Oncol., 2021, 44(3), 595-609.
[http://dx.doi.org/10.1007/s13402-021-00586-0]
[33]
Ding, Y.; Yang, D.Z.; Zhai, Y.N.; Xue, K.; Xu, F.; Gu, X.Y.; Wang, S.M. Microarray expression profiling of long non-coding RNAs in epithelial ovarian cancer. Oncol. Lett., 2017, 14(2), 2523-2530.
[http://dx.doi.org/10.3892/ol.2017.6448]
[34]
Ding, X.; Zhu, F.S.; Li, M.; Gao, S.G. Induction of apoptosis in human hepatoma SMMC-7721 cells by solamargine from Solanum nigrum L. J. Ethnopharmacol., 2012, 139(2), 599-604.
[http://dx.doi.org/10.1016/j.jep.2011.11.058]
[35]
Lai, Y.J.; Tai, C.J.; Wang, C.W.; Choong, C.Y.; Lee, B.H.; Shi, Y.C.; Tai, C.J. Anti-Cancer Activity of Solanum nigrum (AESN) through suppression of mitochondrial function and Epithelial-Mesenchymal Transition (EMT) in breast cancer cells. Molecules, 2016, 21(5), 553.
[http://dx.doi.org/10.3390/molecules21050553]
[36]
Li, X.; Zhao, Y.; Wu, W.K.; Liu, S.; Cui, M.; Lou, H. Solamargine induces apoptosis associated with p53 transcription-dependent and transcription-independent pathways in human osteosarcoma U2OS cells. Life Sci., 2011, 88(7-8), 314-321.
[http://dx.doi.org/10.1016/j.lfs.2010.12.006]
[37]
Zhang, X.; Yan, Z.; Xu, T.; An, Z.; Chen, W.; Wang, X.; Huang, M.; Zhu, F. Solamargine derived from Solanum nigrum induces apoptosis of human cholangiocarcinoma QBC939 cells. Oncol. Lett., 2018, 15(5), 6329-6335.
[38]
Al Sinani, S.S.; Eltayeb, E.A.; Coomber, B.L.; Adham, S.A. Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int., 2016, 16, 11.
[http://dx.doi.org/10.1186/s12935-016-0287-4]
[39]
Sani, I.K.; Marashi, S.H.; Kalalinia, F. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol. In Vitro, 2015, 29(5), 893-900.
[http://dx.doi.org/10.1016/j.tiv.2015.03.012]
[40]
Xie, X.; Zhang, X.; Chen, J.; Tang, X.; Wang, M.; Zhang, L.; Guo, Z.; Shen, W. Fe3O4-solamargine induces apoptosis and inhibits metastasis of pancreatic cancer cells. Int. J. Oncol., 2019, 54(3), 905-915.
[41]
Li, X.; Zhao, Y.; Ji, M.; Liu, S.S.; Cui, M.; Lou, H.X. Induction of actin disruption and downregulation of P-glycoprotein expression by solamargine in multidrug-resistant K562/A02 cells. Chin. Med. J. (Engl.), 2011, 124(13), 2038-2044.
[42]
Burger, T.; Mokoka, T.; Fouché, G.; Steenkamp, P.; Steenkamp, V.; Cordier, W. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition. BMC Complement. Altern. Med., 2018, 18(1), 137.
[http://dx.doi.org/10.1186/s12906-018-2208-7]
[43]
Fu, R.; Wang, X.; Hu, Y.; Du, H.; Dong, B.; Ao, S.; Zhang, L.; Sun, Z.; Zhang, L.; Lv, G.; Ji, J. Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway. Int. J. Oncol., 2019, 54(5), 1545-1554.
[http://dx.doi.org/10.3892/ijo.2019.4744]
[44]
Wu, J.; Tang, X.J.; Ma, C.J.; Shi, Y.; Wu, W.Y.; Hann, S.S. The regulation and interaction of colon cancer-associated transcript-1 and miR7-5p contribute to the inhibition of SP1 expression by solamargine in human nasopharyngeal carcinoma cells. Phytother. Res., 2020, 34(1), 201-213.
[http://dx.doi.org/10.1002/ptr.6555]
[45]
Klec, C.; Prinz, F.; Pichler, M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis. Mol. Oncol., 2019, 13(1), 46-60.
[http://dx.doi.org/10.1002/1878-0261.12404]
[46]
Adriaens, C.; Standaert, L.; Barra, J.; Latil, M.; Verfaillie, A.; Kalev, P.; Boeckx, B.; Wijnhoven, P.W.; Radaelli, E.; Vermi, W.; Leucci, E.; Lapouge, G.; Beck, B.; Oord, J.; Nakagawa, S.; Hirose, T.; Sablina, A.A.; Lambrechts, D.; Aerts, S.; Blanpain, C.; Mrine, J.C. p53 induces formation of NEAT1 lncRNA‐containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med., 2016, 22, 861-868.
[http://dx.doi.org/10.1038/nm.4135]
[47]
Idogawa, M.; Ohashi, T.; Sasaki, Y.; Nakase, H.; Tokino, T. Long non‐coding RNA NEAT1 is a transcriptional target of p53 and modulates p53‐induced transactivation and tumor‐suppressor function. Int. J. Cancer, 2017, 140, 2785-2791.
[http://dx.doi.org/10.1002/ijc.30689]
[48]
Mello, S.S.; Sinow, C.; Raj, N.; Mazur, P.K.; Bieging-Rolett, K.; Broz, D.K.; Imam, J.F.C.; Vogel, H.; Wood, L.D.; Sage, J.; Hirose, T.; Nakagawa, S.; Rinn, J.; Attardi, L.D. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev., 2017, 31(11), 1095-1108.
[http://dx.doi.org/10.1101/gad.284661.116]
[49]
Zhang, C.; Wang, W.; Lin, J.; Xiao, J.; Tian, Y. LncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion. Int. Braz J Urol, 2019, 45(3), 549-559.
[http://dx.doi.org/10.1590/s1677-5538.ibju.2018.0450]
[50]
You, Z.; Liu, C.; Wang, C.; Ling, Z.; Wang, Y.; Wang, Y.; Zhang, M.; Chen, S.; Xu, B.; Guan, H.; Chen, M. LncRNA CCAT1 promotes prostate cancer cell proliferation by interacting with DDX5 and MIR-28-5P. Mol. Cancer Ther., 2019, 18(12), 2469-2479.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0095]
[51]
Hu, M.; Zhang, Q.; Tian, X.H.; Wang, J.L.; Niu, Y.X.; Li, G. lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol. Carcinog., 2019, 58(12), 2207-2217.
[http://dx.doi.org/10.1002/mc.23109]
[52]
Chen, S.; Liu, Y.; Wang, Y.; Xue, Z. LncRNA CCAT1 promotes colorectal cancer tumorigenesis via A miR-181b-5p/TUSC3 Axis. OncoTargets Ther., 2019, 12, 9215-9225.
[http://dx.doi.org/10.2147/OTT.S216718]
[53]
Vuolo, M.M.; Lima, V.S.; Marostica, M.R. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In: Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, , 2019; p. pp. 33-50.
[54]
Vaishampayan, U.; Hussain, M.; Banerjee, M.; Seren, S.; Sarkar, F.H.; Fontana, J.; Forman, J.D.; Cher, M.L.; Powell, I.; Pontes, J.E.; Kucuk, O. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr. Cancer, 2007, 59(1), 1-7.
[http://dx.doi.org/10.1080/01635580701413934]
[55]
Flaig, T.W.; Glodé, M.; Gustafson, D.; van Bokhoven, A.; Tao, Y.; Wilson, S.; Su, L.J.; Li, Y.; Harrison, G.; Agarwal, R.; Crawford, E.D.; Lucia, M.S.; Pollak, M. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate, 2010, 70(8), 848-855.
[http://dx.doi.org/10.1002/pros.21118]
[56]
Lazzeroni, M.; Guerrieri-Gonzaga, A.; Gandini, S.; Johansson, H.; Serrano, D.; Cazzaniga, M.; Aristarco, V.; Puccio, A.; Mora, S.; Caldarella, P.; Pagani, G.; Pruneri, G.; Riva, A.; Petrangolini, G.; Morazzoni, P.; DeCensi, A.; Bonanni, B. A presurgical study of oral silybin-phosphatidylcholine in patients with early breast cancer. Cancer Prev. Res. (Phila.), 2016, 9(1), 89-95.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0123]
[57]
Bilir, B.; Sharma, N.V.; Lee, J.; Hammarstrom, B.; Svindland, A.; Kucuk, O.; Moreno, C.S. Effects of genistein supplementation on genome-wide DNA methylation and gene expression in patients with localized prostate cancer. Int. J. Oncol., 2017, 51(1), 223-234.
[http://dx.doi.org/10.3892/ijo.2017.4017]
[58]
Pintova, S.; Dharmupari, S.; Moshier, E.; Zubizarreta, N.; Ang, C.; Holcombe, R.F. Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study. Cancer Chemother. Pharmacol., 2019, 84(3), 591-598.
[http://dx.doi.org/10.1007/s00280-019-03886-3]
[59]
Wang, M.; Firrman, J.; Liu, L.; Yam, K. A review on flavonoid apigenin: Dietary Intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res. Int., 2019, 2019, 7010467.
[http://dx.doi.org/10.1155/2019/7010467]
[60]
Pan, F.F.; Zhang, Y.B.; Shi, C.J.; Zhang, F.W.; Zhang, J.F.; Fu, W.M. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. Eur. J. Pharmacol., 2021, 893, 173810.
[http://dx.doi.org/10.1016/j.ejphar.2020.173810]
[61]
Zhi, H.J.; Zhu, H.Y.; Zhang, Y.Y.; Lu, Y.; Li, H.; Chen, D.F. In vivo effect of quantified flavonoids-enriched extract of Scutellaria Baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine, 2019, 57, 105-116.
[http://dx.doi.org/10.1016/j.phymed.2018.12.009]
[62]
Yu, X.; Cao, Y.; Tang, L.; Yang, Y.; Chen, F.; Xia, J. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N. J. Cell. Biochem., 2018, 119(8), 6842-6856.
[http://dx.doi.org/10.1002/jcb.26881]
[63]
Yu, X.; Tang, W.; Yang, Y.; Tang, L.; Dai, R.; Pu, B.; Feng, C.; Xia, J. Long noncoding RNA NKILA enhances the anti-cancer effects of baicalein in hepatocellular carcinoma via the regulation of NF-κB signaling. Chem. Biol. Interact., 2018, 285, 48-58.
[http://dx.doi.org/10.1016/j.cbi.2018.02.027]
[64]
Yu, X.; Yang, Y.; Li, Y.; Cao, Y.; Tang, L.; Chen, F.; Xia, J. Baicalein inhibits cervical cancer progression via downregulating long noncoding RNA BDLNR and its downstream PI3K/Akt pathway. Int. J. Biochem. Biol., 2018, 94, 107-118.
[http://dx.doi.org/10.1016/j.biocel.2017.11.009]
[65]
Han, J.; Zhou, W.; Jia, M.; Wen, J.; Jiang, J.; Shi, J.; Zhang, K.; Ma, H.; Liu, J.; Ren, J.; Dai, M.; Hu, Z.; Hang, D.; Li, N.; Shen, H. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer. Mol. Genet. Genomics, 2016, 291(4), 1743-1748.
[http://dx.doi.org/10.1007/s00438-016-1217-9]
[66]
Gupta, S.C.; Awasthee, N.; Rai, V.; Chava, S.; Gunda, V.; Challagundla, K.B. Long non-coding RNAs and nuclear factor-kappaB crosstalk in cancer and other human diseases. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188316.
[http://dx.doi.org/10.1016/j.bbcan.2019.188316]
[67]
Wang, K.L.; Yu, Y.C.; Hsia, S.M. Perspectives on the role of isoliquiritigenin in cancer. Cancers (Basel), 2021, 13(1), 115.
[http://dx.doi.org/10.3390/cancers13010115]
[68]
Wang, C.; Chen, Y.; Wang, Y.; Liu, X.; Liu, Y.; Li, Y.; Chen, H.; Fan, C.; Wu, D.; Yang, J. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J. Exp. Clin. Cancer Res., 2019, 38(1), 371.
[http://dx.doi.org/10.1186/s13046-019-1361-2]
[69]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050]
[70]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177]
[71]
Tsai, P.H.; Cheng, C.H.; Lin, C.Y.; Huang, Y.T.; Lee, L.T.; Kandaswami, C.C.; Lin, Y.C.; Lee, K.P.; Hung, C.C.; Hwang, J.J.; Ke, F.C.; Chang, G.D.; Lee, M.T. Dietary flavonoids luteolin and quercetin suppressed cancer stem cell properties and metastatic potential of isolated prostate cancer cells. Anticancer Res., 2016, 36(12), 6367-6380.
[http://dx.doi.org/10.21873/anticanres.11234]
[72]
Lin, T.H.; Hsu, W.H.; Tsai, P.H.; Huang, Y.T.; Lin, C.W.; Chen, K.C.; Tsai, I.H.; Kandaswami, C.C.; Huang, C.J.; Chang, G.D.; Lee, M.T.; Cheng, C.H. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct., 2017, 8(4), 1558-1568.
[http://dx.doi.org/10.1039/C6FO00551A]
[73]
Chen, K.C.; Hsu, W.H.; Ho, J.Y.; Lin, C.W.; Chu, C.Y.; Kandaswami, C.C.; Lee, M.T.; Cheng, C.H. Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. Yao Wu Shi Pin Fen Xi, 2018, 26(3), 1180-1191.
[74]
Fan, J.J.; Hsu, W.H.; Lee, K.H.; Chen, K.C.; Lin, C.W.; Lee, Y.A.; Ko, T.P.; Lee, L.T.; Lee, M.T.; Chang, M.S.; Cheng, C.H. Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants, 2019, 8(11), 557.
[http://dx.doi.org/10.3390/antiox8110557]
[75]
Liu, C.; Lin, Y.; Xu, J.; Chu, H.; Hao, S.; Liu, X.; Song, X.; Jiang, L.; Zheng, H. Luteolin suppresses tumor progression through lncRNA BANCR and its downstream TSHR/CCND1 signaling in thyroid carcinoma. Int. J. Clin. Exp. Pathol., 2017, 10(9), 9591-9598.
[76]
Lu, X.; Chen, D.; Yang, F.; Xing, N. Quercetin inhibits Epithelial-to-Mesenchymal Transition (EMT) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1. Cancer Manag. Res., 2020, 12, 1741-1750.
[http://dx.doi.org/10.2147/CMAR.S241093]
[77]
Liu, X.F.; Hao, J.L.; Xie, T.; Pant, O.P.; Lu, C.B.; Lu, C.W.; Zhou, D.D. The BRAF activated non-coding RNA: A pivotal long non-coding RNA in human malignancies. Cell Prolif., 2018, 51(4), e12449.
[http://dx.doi.org/10.1111/cpr.12449]
[78]
Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev., 2017, 16, 195-218.
[http://dx.doi.org/10.1007/s11101-016-9470-4]
[79]
Ji, L.; Ma, L. MEG3 is restored by schisandrin A and represses tumor growth in choriocarcinoma cells. J. Biochem. Mol. Toxicol., 2020, 34(4), e22455.
[http://dx.doi.org/10.1002/jbt.22455]
[80]
Bi, Y.; Fu, Y.; Wang, S.; Chen, X.; Cai, X. Schizandrin A exerts anti-tumor effects on A375 cells by down-regulating H19. Braz. J. Med. Biol. Res., 2019, 52(10), e8385.
[http://dx.doi.org/10.1590/1414-431x20198385]
[81]
Jiang, Y.; Zhang, Q.; Bao, J.; Du, C.; Wang, J.; Tong, Q.; Liu, C. Schisandrin B inhibits the proliferation and invasion of glioma cells by regulating the HOTAIR-micoRNA-125a-mTOR pathway. Neuroreport, 2017, 28(2), 93-100.
[http://dx.doi.org/10.1097/WNR.0000000000000717]
[82]
Wang, P.; Chen, D.; Ma, H.; Li, Y. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. Oncol. Ther., 2017, 10, 5137.
[83]
Zhang, C.; Yu, M.; Li, X.; Zhang, Z.; Han, C.; Yan, B. Overexpression of long noncoding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol., 2017, 39(6), 1010428317701311.
[http://dx.doi.org/10.1177/1010428317701311]
[84]
Xu, G.; Meng, L.; Yuan, D.; Li, K.; Zhang, Y.; Dang, C.; Zhu, K. MEG3/miR-21 axis affects cell mobility by suppressing epithelial-mesenchymal transition in gastric cancer. Oncol. Rep., 2018, 40(1), 39-48.
[http://dx.doi.org/10.3892/or.2018.6424]
[85]
Ma, L.; Wang, F.; Du, C.; Zhang, Z.; Guo, H.; Xie, X.; Gao, H.; Zhuang, Y.; Kornmann, M.; Gao, H.; Tian, X.; Yang, Y. Long non-coding RNA MEG3 functions as a tumour suppressor and has prognostic predictive value in human pancreatic cancer. Oncol. Rep., 2018, 39(3), 1132-1140.
[http://dx.doi.org/10.3892/or.2018.6178]
[86]
Ghafouri-Fard, S.; Taheri, M. Maternally Expressed Gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed. Pharmacother., 2019, 118, 109129.
[http://dx.doi.org/10.1016/j.biopha.2019.109129]
[87]
Rajagopal, T.; Talluri, S.; Akshaya, R.L.; Dunna, N.R. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin. Chim. Acta, 2020, 503, 1-18.
[http://dx.doi.org/10.1016/j.cca.2019.12.028]
[88]
Ye, Y.; Shen, A.; Liu, A. Long non-coding RNA H19 and cancer: A competing endogenous RNA. Bull. Cancer, 2019, 106(12), 1152-1159.
[http://dx.doi.org/10.1016/j.bulcan.2019.08.011]
[89]
Liu, Y.; He, A.; Liu, B.; Huang, Z.; Mei, H. Potential role of lncRNA H19 as a cancer biomarker in human cancers detection and diagnosis: A pooled analysis based on 1585 subjects. BioMed Res. Int., 2019, 2019, 9056458.
[http://dx.doi.org/10.1155/2019/9056458]
[90]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195]
[91]
Shehzad, A.; Lee, Y.S. Molecular mechanisms of curcumin action: Signal transduction. Biofactors, 2013, 39, 27-36.
[http://dx.doi.org/10.1002/biof.1065]
[92]
Yoshida, K.; Toden, S.; Ravindranathan, P.; Han, H.; Goel, A. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis, 2017, 38(10), 1036-1046.
[http://dx.doi.org/10.1093/carcin/bgx065]
[93]
Zheng, Z.H.; You, H.Y.; Feng, Y.J.; Zhang, Z.T. LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells. Mol. Cell. Biochem., 2020.
[http://dx.doi.org/10.1007/s11010-020-03856-x]
[94]
Shen, Y.; Xu, J.; Pan, X.; Zhang, Y.; Weng, Y.; Zhou, D.; He, S. LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis. Cell Death Dis., 2020, 11(4), 278.
[http://dx.doi.org/10.1038/s41419-020-2485-1]
[95]
Wang, Y.; Chen, W.; Lian, J.; Zhang, H.; Yu, B.; Zhang, M.; Wei, F.; Wu, J.; Jiang, J.; Jia, Y.; Mo, F.; Zhang, S.; Liang, X.; Mou, X.; Tang, J. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1alpha. Cell Death Differ., 2020, 27(2), 695-710.
[http://dx.doi.org/10.1038/s41418-019-0381-y]
[96]
Kang, Y.; Jia, Y.; Wang, Q.; Zhao, Q.; Song, M.; Ni, R.; Wang, J. Long noncoding RNA KCNQ1OT1 promotes the progression of non-small cell lung cancer via regulating miR-204-5p/ATG3 axis. OncoTargets Ther., 2019, 12, 10787-10797.
[http://dx.doi.org/10.2147/OTT.S226044]
[97]
Fu, C.; Li, D.; Zhang, X.; Liu, N.; Chi, G.; Jin, X. LncRNA PVT1 facilitates tumorigenesis and progression of glioma via regulation of miR-128-3p/GREM1 axis and BMP signaling pathway. Neurotherapeutics, 2018, 15(4), 1139-1157.
[http://dx.doi.org/10.1007/s13311-018-0649-9]
[98]
Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol., 2004, 94(2-3), 219-243.
[http://dx.doi.org/10.1016/j.jep.2004.05.016]
[99]
Kim, Y.J.; Zhang, D.; Yang, D.C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv., 2015, 33(6 Pt 1), 717-735.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.001]
[100]
Wu, T-L.T.; Tong, Y.C.; Chen, I.H.; Niu, H.S.; Li, Y.; Cheng, J.T. Induction of apoptosis in prostate cancer by ginsenoside Rh2. Oncotarget, 2018, 9(13), 11109-11118.
[http://dx.doi.org/10.18632/oncotarget.24326]
[101]
Cong, Z.; Zhao, Q.; Yang, B.; Cong, D.; Zhou, Y.; Lei, X.; Zhang, X. Ginsenoside Rh3 inhibits proliferation and induces apoptosis of colorectal cancer cells. Pharmacology, 2020, 105(5-6), 329-338.
[http://dx.doi.org/10.1159/000503821]
[102]
Zhang, Q.; Hong, B.; Wu, S.; Niu, T. Inhibition of prostatic cancer growth by ginsenoside Rh2. Tumour Biol., 2015, 36(4), 2377-2381.
[http://dx.doi.org/10.1007/s13277-014-2845-5]
[103]
Yang, X.; Zou, J.; Cai, H.; Huang, X.; Yang, X.; Guo, D.; Cao, Y. Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPbeta/NF-kappaB signaling. Biomed. Pharmacother., 2017, 96, 1240-1245.
[http://dx.doi.org/10.1016/j.biopha.2017.11.092]
[104]
Tang, Y.C.; Zhang, Y.; Zhou, J.; Zhi, Q.; Wu, M.Y.; Gong, F.R.; Shen, M.; Liu, L.; Tao, M.; Shen, B.; Gu, D.M.; Yu, J.; Xu, M.D.; Gao, Y.; Li, W. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. Int. J. Oncol., 2018, 52(1), 127-138.
[105]
Huang, Y.; Huang, H.; Han, Z.; Li, W.; Mai, Z.; Yuan, R. Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNNM1. J. Nanosci. Nanotechnol., 2019, 19(4), 1942-1950.
[http://dx.doi.org/10.1166/jnn.2019.16404]
[106]
Wang, P.; Du, X.; Xiong, M.; Cui, J.; Yang, Q.; Wang, W.; Chen, Y.; Zhang, T. Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci. Rep., 2016, 6, 33709.
[http://dx.doi.org/10.1038/srep33709]
[107]
Peng, B.; He, R.; Xu, Q.; Yang, Y.; Hu, Q.; Hou, H.; Liu, X.; Li, J. Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway. Pharmacol. Res., 2019, 142, 1-13.
[http://dx.doi.org/10.1016/j.phrs.2019.02.003]
[108]
Zheng, X.; Zhou, Y.; Chen, W.; Chen, L.; Lu, J.; He, F.; Li, X.; Zhao, L. Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell. Physiol. Biochem., 2018, 51(3), 1340-1353.
[http://dx.doi.org/10.1159/000495552]
[109]
Li, J.; Qi, Y. Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1. Exp. Mol. Pathol., 2019, 106, 131-138.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.003]
[110]
Zou, J.; Su, H.; Zou, C.; Liang, X.; Fei, Z. Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling. J. Biochem. Mol. Toxicol., 2020, 34(6), e22480.
[http://dx.doi.org/10.1002/jbt.22480]
[111]
Chen, W-W.; Huang, Y-F.; Hu, Z-B.; Liu, Y-M.; Xiao, H-X.; Liu, D-B.; Zhuang, Y-Z. Microarray analysis of altered long non-coding RNA expression profile in liver cancer cells treated by ginsenoside Rh2. J. Asian Nat. Prod. Res., 2019, 742-753.
[http://dx.doi.org/10.1080/10286020.2018.1490273]
[112]
Jeong, D.; Ham, J.; Park, S.; Kim, H.W.; Kim, H.; Ji, H.W.; Kim, S.J. Ginsenoside Rh2 suppresses breast cancer cell proliferation by epigenetically regulating the long noncoding RNA C3orf67-AS1. Am. J. Chin. Med., 2019, 47(7), 1643-1658.
[http://dx.doi.org/10.1142/S0192415X19500848]
[113]
Lai, P.K.; Chan, J.Y.; Cheng, L.; Lau, C.P.; Han, S.Q.; Leung, P.C.; Fung, K.P.; Lau, C.B. Isolation of anti-inflammatory fractions and compounds from the root of Astragalus membranaceus. Phytother. Res., 2013, 27(4), 581-587.
[http://dx.doi.org/10.1002/ptr.4759]
[114]
Cheng, X.; Gu, J.; Zhang, M.; Yuan, J.; Zhao, B.; Jiang, J.; Jia, X. Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-alpha-ERK1/2-NF-kappaB pathway. Int. Immunopharmacol., 2014, 23(1), 304-313.
[http://dx.doi.org/10.1016/j.intimp.2014.08.027]
[115]
Qin, C.D.; Ma, D.N.; Ren, Z.G.; Zhu, X.D.; Wang, C.H.; Wang, Y.C.; Ye, B.G.; Cao, M.Q.; Gao, D.M.; Tang, Z.Y. Astragaloside IV inhibits metastasis in hepatoma cells through the suppression of epithelial-mesenchymal transition via the Akt/GSK-3beta/beta-catenin pathway. Oncol. Rep., 2017, 37(3), 1725-1735.
[http://dx.doi.org/10.3892/or.2017.5389]
[116]
Li, Y.; Ye, Y.; Chen, H. Astragaloside IV inhibits cell migration and viability of hepatocellular carcinoma cells via suppressing long noncoding RNA ATB. Biomed. Pharmacother., 2018, 99, 134-141.
[http://dx.doi.org/10.1016/j.biopha.2017.12.108]
[117]
Zhu, J.; Wen, K. Astragaloside IV inhibits TGF-beta1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-kappaB pathway in gastric cancer cells. Phytother. Res., 2018, 32(7), 1289-1296.
[http://dx.doi.org/10.1002/ptr.6057]
[118]
Ke, L.; Xu, S.B.; Wang, J.; Jiang, X.L.; Xu, M.Q. High expression of long non‐coding RNA ATB indicates a poor prognosis and regulates cell proliferation and metastasis in non‐small cell lung cancer. Clin. Transl. Oncol., 2017, 19, 599-605.
[http://dx.doi.org/10.1007/s12094-016-1572-3]
[119]
Xiong, J.; Liu, Y.; Jiang, L.; Zeng, Y.; Tang, W. High expression of long non‐coding RNA lncRNA‐ATB is correlated with metastases and promotes cell migration and invasion in renal cell carcinoma. Jpn. J. Clin. Oncol., 2016, 46, 378-384.
[http://dx.doi.org/10.1093/jjco/hyv214]
[120]
Shi, S.J.; Wang, L.J.; Yu, B.; Li, Y.H.; Jin, Y.; Bai, X.Z. LncRNA‐ATB promotes trastuzumab resistance and invasion‐metastasis cascade in breast cancer. Oncotarget, 2015, 6, 11652-11663.
[http://dx.doi.org/10.18632/oncotarget.3457]
[121]
Chen, F.; Li, Y.; Feng, Y.; He, X.; Wang, L. Evaluation of antimetastatic effect of lncRNA‐ATB siRNA delivered using ultrasound‐targeted microbubble destruction. DNA Cell Biol., 2016, 35, 393-397.
[http://dx.doi.org/10.1089/dna.2016.3254]
[122]
Li, J.; Li, Z.; Zheng, W.; Li, X.; Wang, Z.; Cui, Y.; Jiang, X. LncRNA-ATB: An indispensable cancer-related long noncoding RNA. Cell Prolif., 2017, 50(6), e12381.
[http://dx.doi.org/10.1111/cpr.12381]
[123]
Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609949]
[124]
Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[http://dx.doi.org/10.1517/13543784.2012.727395]
[125]
Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Scientif. World J., 2014, 2014, 953451.
[http://dx.doi.org/10.1155/2014/953451]
[126]
Islam, M.T. Diterpenes and their derivatives as potential anticancer agents. Phytother. Res., 2017, 31(5), 691-712.
[http://dx.doi.org/10.1002/ptr.5800]
[127]
Peron, G.; Marzaro, G.; Dall Acqua, S. Known triterpenes and their derivatives as scaffolds for the development of new therapeutic agents for cancer. Curr. Med. Chem., 2018, 25(10), 1259-1269.
[http://dx.doi.org/10.2174/0929867324666170818111933]
[128]
Abu-Izneid, T.; Rauf, A.; Shariati, M.A.; Khalil, A.A.; Imran, M.; Rebezov, M.; Uddin, M.S.; Mahomoodally, M.F.; Rengasamy, K.R.R. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol. Res., 2020, 161, 105165.
[http://dx.doi.org/10.1016/j.phrs.2020.105165]
[129]
Zhou, J.; Liu, M.; Chen, Y.; Xu, S.; Guo, Y.; Zhao, L. Cucurbitacin B suppresses proliferation of pancreatic cancer cells by ceRNA: Effect of miR‐146b‐5p and lncRNA‐AFAP1‐AS1. J. Cell. Physiol., 2019, 234(4), 4655-4667.
[http://dx.doi.org/10.1002/jcp.27264]
[130]
Lou, S.; Xu, J.; Wang, B.; Li, S.; Ren, J.; Hu, Z.; Xu, B.; Luo, F. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(8), 814-825.
[http://dx.doi.org/10.1093/abbs/gmz071]
[131]
Han, M.; Gu, Y.; Lu, P.; Li, J.; Cao, H.; Li, X.; Qian, X.; Yu, C.; Yang, Y.; Yang, X.; Han, N.; Dou, D.; Hu, J.; Dong, H. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol. Cancer, 2020, 19(1), 26.
[http://dx.doi.org/10.1186/s12943-020-1145-5]
[132]
Liu, Y.; Hu, Q.; Wang, X. AFAP1-AS1 induces cisplatin resistance in non-small cell lung cancer through PI3K/AKT pathway. Oncol. Lett., 2020, 19(1), 1024-1030.
[133]
Huang, N.; Guo, W.; Ren, K.; Li, W.; Jiang, Y.; Sun, J.; Dai, W.; Zhao, W. LncRNA AFAP1-AS1 supresses miR-139-5p and promotes cell proliferation and chemotherapy resistance of non-small cell lung cancer by competitively upregulating RRM2. Front. Oncol., 2019, 9, 1103.
[http://dx.doi.org/10.3389/fonc.2019.01103]
[134]
Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol., 2020, 257, 112829.
[http://dx.doi.org/10.1016/j.jep.2020.112829]
[135]
Ma, J.; Ding, Y. Geniposide suppresses growth, migration and invasion of MKN45 cells by down-regulation of lncRNA HULC. Exp. Mol. Pathol., 2018, 105(3), 252-259.
[http://dx.doi.org/10.1016/j.yexmp.2018.08.011]
[136]
Cai, Y.; Li, Y.; Sun, B.; Wang, H.; Zhang, W.; Zhao, Y.; Zhao, H.; Zhang, J.; Xu, J.; Wang, Y. LncRNA PTCSC3 and lncRNA HULC negatively affect each other to regulate cancer cell invasion and migration in gastric cancer. Cancer Manag. Res., 2020, 12, 8535-8543.
[http://dx.doi.org/10.2147/CMAR.S254944]
[137]
Liu, T.; Liu, Y.; Wei, C.; Yang, Z.; Chang, W.; Zhang, X. LncRNA HULC promotes the progression of gastric cancer by regulating miR-9-5p/MYH9 axis. Biomed. Pharmacother., 2020, 121, 109607.
[http://dx.doi.org/10.1016/j.biopha.2019.109607]
[138]
Zhao, Y.; Guo, Q.; Chen, J.; Hu, J.; Wang, S.; Sun, Y. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: A clinical and in vitro investigation. Oncol. Rep., 2014, 31(1), 358-364.
[http://dx.doi.org/10.3892/or.2013.2850]
[139]
Patel, M.J.; Tripathy, S.; Mukhopadhyay, K.D.; Wangjam, T.; Cabang, A.B.; Morris, J.; Wargovich, M.J. A supercritical CO2 extract of neem leaf (A. indica) and its bioactive liminoid, nimbolide, suppresses colon cancer in preclinical models by modulating pro-inflammatory pathways. Mol. Carcinog., 2018, 57(9), 1156-1165.
[http://dx.doi.org/10.1002/mc.22832]
[140]
Singh, P.R.; Priya, E.S.; Balakrishnan, S.; Arunkumar, R.; Sharmila, G.; Rajalakshmi, M.; Arunakaran, J. Nimbolide inhibits androgen independent prostate cancer cells survival and proliferation by modulating multiple pro-survival signaling pathways. Biomed. Pharmacother., 2016, 84, 1623-1634.
[http://dx.doi.org/10.1016/j.biopha.2016.10.076]
[141]
Babykutty, S.; Priya, P.S.; Nandini, R.J.; Kumar, M.A.; Nair, M.S.; Srinivas, P.; Gopala, S. Nimbolide retards tumor cell migration, invasion, and angiogenesis by downregulating MMP-2/9 expression via inhibiting ERK1/2 and reducing DNA-binding activity of NF-kappaB in colon cancer cells. Mol. Carcinog., 2012, 51(6), 475-490.
[http://dx.doi.org/10.1002/mc.20812]
[142]
Subramani, R.; Gonzalez, E.; Arumugam, A.; Nandy, S.; Gonzalez, V.; Medel, J.; Camacho, F.; Ortega, A.; Bonkoungou, S.; Narayan, M. Dwivedi Ak, Lakshmanaswamy, R. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci. Rep., 2016, 6, 19819.
[http://dx.doi.org/10.1038/srep19819]
[143]
Sophia, J.; Kowshik, J.; Dwivedi, A.; Bhutia, S.K.; Manavathi, B.; Mishra, R.; Nagini, S. Nimbolide, a neem limonoid inhibits cytoprotective autophagy to activate apoptosis via modulation of the PI3K/Akt/GSK-3beta signalling pathway in oral cancer. Cell Death Dis., 2018, 9(11), 1087.
[http://dx.doi.org/10.1038/s41419-018-1126-4]
[144]
Wu, Y.W.; Jiang, Y.Y.; Xiao, T.X.; Zhang, H.L. Determination of triptonide by cloud point extraction combined with MEKC. J. Sep. Sci., 2008, 31(5), 865-871.
[http://dx.doi.org/10.1002/jssc.200700463]
[145]
Wang, S.S.; Lv, Y.; Xu, X.C.; Zuo, Y.; Song, Y.; Wu, G.P.; Lu, P.H.; Zhang, Z.Q.; Chen, M.B. Triptonide inhibits human nasopharyngeal carcinoma cell growth via disrupting Lnc-RNA THOR-IGF2BP1 signaling. Cancer Lett., 2019, 443, 13-24.
[http://dx.doi.org/10.1016/j.canlet.2018.11.028]
[146]
Ge, J.; Han, T.; Shan, L.; Na, J.; Li, Y.; Wang, J. Long non-coding RNA THOR promotes ovarian cancer cells progression via IL-6/STAT3 pathway. J. Ovarian Res., 2020, 13(1), 72.
[http://dx.doi.org/10.1186/s13048-020-00672-1]
[147]
Yang, H.; Fu, G.; Liu, F.; Hu, C.; Lin, J.; Tan, Z.; Fu, Y.; Ji, F.; Cao, M. LncRNA THOR promotes tongue squamous cell carcinomas by stabilizing IGF2BP1 downstream targets. Biochimie, 2019, 165, 9-18.
[http://dx.doi.org/10.1016/j.biochi.2019.06.012]
[148]
Cheng, Z.; Lei, Z.; Yang, P.; Si, A.; Xiang, D.; Zhou, J.; Hüser, N. Long non-coding RNA THOR promotes cell proliferation and metastasis in hepatocellular carcinoma. Gene, 2018, 15(678), 129-136.
[http://dx.doi.org/10.1016/j.gene.2018.08.035]
[149]
Gao, L.; Cheng, X.L.; Cao, H. LncRNA THOR attenuates cisplatin sensitivity of nasopharyngeal carcinoma cells via enhancing cells stemness. Biochimie, 2018, 152, 63-72.
[http://dx.doi.org/10.1016/j.biochi.2018.06.015]
[150]
Dosoky, N.S.; Satyal, P.; Setzer, W.N. Variations in the volatile compositions of curcuma species. Foods, 2019, 8(2), 53.
[http://dx.doi.org/10.3390/foods8020053]
[151]
Yu, X.; Xu, M.; Li, N.; Li, Z.; Li, H.; Shao, S.; Zou, K.; Zou, L. Beta-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer. Biochem. Biophys. Res. Commun., 2017, 490(2), 514-520.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.071]
[152]
Cai, B.; Ma, L.; Nong, S.; Wu, Y.; Guo, X.; Pu, J. Beta-elemene induced anticancer effect in bladder cancer through upregulation of PTEN and suppression of AKT phosphorylation. Oncol. Lett., 2018, 16(5), 6019-6025.
[153]
Pan, Y.; Wang, W.; Huang, S.; Ni, W.; Wei, Z.; Cao, Y.; Yu, S.; Jia, Q.; Wu, Y.; Chai, C.; Zheng, Q.; Zhang, L.; Wang, A.; Sun, Z.; Huang, S.; Wang, S.; Chen, W.; Lu, Y. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J. Cell. Mol. Med., 2019, 23(10), 6846-6858.
[http://dx.doi.org/10.1111/jcmm.14568]
[154]
Deng, M.; Liu, B.; Song, H.; Yu, R.; Zou, D.; Chen, Y.; Ma, Y.; Lv, F.; Xu, L.; Zhang, Z.; Lv, Q.; Yang, X.; Che, X.; Qu, X.; Liu, Y.; Zhang, Y.; Hu, X. Beta-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway. Phytomedicine, 2020, 69, 153184.
[http://dx.doi.org/10.1016/j.phymed.2020.153184]
[155]
Hu, Z.; Wu, H.; Li, Y.; Hou, Q.; Wang, Y.; Li, S.; Xia, B.; Wu, S. β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression. Anticancer Drugs, 2015, 26(5), 531-539.
[http://dx.doi.org/10.1097/CAD.0000000000000216]
[156]
Song, C.; Qi, Y.; Zhang, J.; Guo, C.; Yuan, C. CDKN2B-AS1: An indispensable long non-coding RNA in multiple diseases. Curr. Pharm. Des., 2020, 26(41), 5335-5346.
[http://dx.doi.org/10.2174/1381612826666200806102424]
[157]
Chen, H.; Xin, Y.; Zhou, L.; Huang, J.; Tao, L.; Cheng, L.; Tian, J. Cisplatin and paclitaxel target significant long noncoding RNAs in laryngeal squamous cell carcinoma. Med. Oncol., 2014, 31(11), 246.
[http://dx.doi.org/10.1007/s12032-014-0246-7]
[158]
Xu, J.; Su, C.; Zhao, F.; Tao, J.; Hu, D.; Shi, A.; Pan, J.; Zhang, Y. Paclitaxel promotes lung cancer cell apoptosis via MEG3-P53 pathway activation. Biochem. Biophys. Res. Commun., 2018, 504(1), 123-128.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.142]
[159]
Zou, S.H.; Du, X.; Lin, H.; Wang, P.C.; Li, M. Paclitaxel inhibits the progression of cervical cancer by inhibiting autophagy via lncRNARP11-381N20.2. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3010-3017.
[160]
Kreuger, M.R.; Grootjans, S.; Biavatti, M.W.; Vandenabeele, P.; D’Herde, K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: Focus on parthenolide. Anticancer Drugs, 2012, 23(9), 883-896.
[http://dx.doi.org/10.1097/CAD.0b013e328356cad9]
[161]
Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today, 2010, 15(15-16), 668-678.
[http://dx.doi.org/10.1016/j.drudis.2010.06.002]
[162]
Jiang, H.; Shi, J.; Li, Y. Screening for compounds with aromatase inhibiting activities from Atractylodes macrocephala Koidz. Molecules, 2011, 16(4), 3146-3151.
[http://dx.doi.org/10.3390/molecules16043146]
[163]
Fu, X.Q.; Chou, J.Y.; Li, T.; Zhu, P.L.; Li, J.K.; Yin, C.L.; Su, T.; Guo, H.; Lee, K.W.; Hossen, M.J.; Chou, G.X.; Yu, Z.L. The JAK2/STAT3 pathway is involved in the anti-melanoma effects of atractylenolide I. Exp. Dermatol., 2018, 27(2), 201-204.
[http://dx.doi.org/10.1111/exd.13454]
[164]
Wang, J.; Nasser, M.I.; Adlat, S.; Ming, Jiang M.; Jiang, N.; Gao, L. Atractylenolide II induces apoptosis of prostate cancer cells through regulation of AR and JAK2/STAT3 signaling pathways. Molecules, 2018, 23(12), 3298.
[http://dx.doi.org/10.3390/molecules23123298]
[165]
Long, F.; Lin, H.; Zhang, X.; Zhang, J.; Xiao, H.; Wang, T. Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting toll-like receptor 4-mediated nuclear factor-kappaB signaling pathway. Front. Pharmacol., 2020, 11, 598939.
[http://dx.doi.org/10.3389/fphar.2020.598939]
[166]
Tang, D.; Xu, X.; Ying, J.; Xie, T.; Cao, G. Transfer of metastatic traits via miR-200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I. Clin. Transl. Med., 2020, 10(4), e139.
[http://dx.doi.org/10.1002/ctm2.139]
[167]
Liu, H.; Zhang, G.; Huang, J.; Ma, S.; Mi, K.; Cheng, J.; Zhu, Y.; Zha, X.; Huang, W. Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling In Vitro. J. Transl. Med., 2016, 14, 104.
[http://dx.doi.org/10.1186/s12967-016-0845-5]
[168]
Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Sosman, J.A.; Zhang, B.; Wu, J.D.; Miller, S.D.; Meeks, J.J.; Lukas, R.V.; Wyatt, E.; Doglio, L.; Schiltz, G.E.; McCusker, R.H.; Wainwright, D.A. Immunosuppressive IDO in cancer: Mechanisms of action, animal models, and targeting strategies. Front. Immunol., 2020, 11, 1185.
[http://dx.doi.org/10.3389/fimmu.2020.01185]
[169]
Xiao, Q.; Zheng, F.; Tang, Q.; Wu, J.J.; Xie, J.; Huang, H.D.; Yang, X.B.; Hann, S.S. Repression of PDK1- and LncRNA HOTAIR-mediated EZH2 gene expression contributes to the enhancement of atractylenolide 1 and erlotinib in the inhibition of human lung cancer cells. Cell. Physiol. Biochem., 2018, 49(4), 1615-1632.
[http://dx.doi.org/10.1159/000493497]
[170]
Zhang, R.; Wang, Z.; Yu, Q.; Shen, J.; He, W.; Zhou, D.; Yu, Q.; Fan, J.; Gao, S.; Duan, L. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. J. Cell. Mol. Med., 2019, 23(5), 3151-3165.
[http://dx.doi.org/10.1111/jcmm.14148]
[171]
Wang, W.; Min, L.; Qiu, X.; Wu, X.; Liu, C.; Ma, J.; Zhang, D.; Zhu, L. Biological function of long Non-coding RNA (LncRNA). Xist. Front. Cell Dev. Biol., 2021, 9, 645647.
[http://dx.doi.org/10.3389/fcell.2021.645647]
[172]
Wang, N.; He, J.X.; Jia, G.Z.; Wang, K.; Zhou, S.; Wu, T.; He, X.L. The lncRNA XIST promotes colorectal cancer cell growth through regulating the miR-497-5p/FOXK1 axis. Cancer Cell Int., 2020, 20(1), 553.
[http://dx.doi.org/10.1186/s12935-020-01647-4]
[173]
Liu, A.; Liu, L.; Lu, H. LncRNA XIST facilitates proliferation and epithelial-mesenchymal transition of colorectal cancer cells through targeting miR-486-5p and promoting neuropilin-2. J. Cell. Physiol., 2019, 234(8), 13747-13761.
[http://dx.doi.org/10.1002/jcp.28054]
[174]
Zhang, X.T.; Pan, S.X.; Wang, A.H.; Kong, Q.Y.; Jiang, K.T.; Yu, Z.B. Long non-coding RNA (lncRNA) X-Inactive specific Transcript (XIST) plays a critical role in predicting clinical prognosis and progression of colorectal cancer. Med. Sci. Monit., 2019, 25, 6429-6435.
[http://dx.doi.org/10.12659/MSM.915329]
[175]
Mehmood, T.; Maryam, A.; Ghramh, H.A.; Khan, M.; Ma, T. Deoxyelephantopin and isodeoxyelephantopin as potential anticancer agents with effects on multiple signaling pathways. Molecules, 2017, 22(6), 1013.
[http://dx.doi.org/10.3390/molecules22061013]
[176]
Hong, L.; Chen, J.; Wu, F.; Wu, F.; Shen, X.; Zheng, P.; Shao, R.; Lu, K.; Liu, Z.; Chen, D.; Liang, G.; Cai, Y.; Zou, P.; Xia, Y. Isodeoxyelephantopin inactivates thioredoxin reductase 1 and activates ROS-mediated JNK signaling pathway to exacerbate cisplatin effectiveness in human colon cancer cells. Front. Cell Dev. Biol., 2020, 8, 580517.
[http://dx.doi.org/10.3389/fcell.2020.580517]
[177]
Ichikawa, H.; Nair, M.S.; Takada, Y.; Sheeja, D.B.; Kumar, M.A.; Oommen, O.V.; Aggarwal, B.B. Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of Nuclear Factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Clin. Cancer Res., 2006, 12(19), 5910-5918.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0916]
[178]
Han, Y.; Li, X.; Zhang, X.; Gao, Y.; Qi, R.; Cai, R.; Qi, Y. Isodeoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber Linn., inhibits pro-inflammatory mediators’ production through both NF-kappaB and AP-1 pathways in LPS-activated macrophages. Int. Immunopharmacol., 2020, 84, 106528.
[http://dx.doi.org/10.1016/j.intimp.2020.106528]
[179]
Verma, S.S.; Rai, V.; Awasthee, N.; Dhasmana, A.; Rajalaksmi, D.S.; Nair, M.S.; Gupta, S.C. Isodeoxyelephantopin, a sesquiterpene lactone induces ROS generation, suppresses NF-κB activation, modulates LncRNA expression and exhibit activities against breast cancer. Sci. Rep., 2019, 9(1), 17980.
[http://dx.doi.org/10.1038/s41598-019-52971-3]
[180]
Yang, X.; Xie, Z.; Lei, X.; Gan, R. Long non-coding RNA GAS5 in human cancer. Oncol. Lett., 2020, 20(3), 2587-2594.
[http://dx.doi.org/10.3892/ol.2020.11809]
[181]
Dong, L.; Li, G.; Li, Y.; Zhu, Z. Upregulation of long noncoding RNA GAS5 inhibits lung cancer cell proliferation and metastasis via miR-205/PTEN axis. Med. Sci. Monit., 2019, 25, 2311-2319.
[http://dx.doi.org/10.12659/MSM.912581]
[182]
Song, J.; Shu, H.; Zhang, L.; Xiong, J. Long noncoding RNA GAS5 inhibits angiogenesis and metastasis of colorectal cancer through the Wnt/β-catenin signaling pathway. J. Cell. Biochem., 2019, 120, 6937-6951.
[http://dx.doi.org/10.1002/jcb.27743]
[183]
Webb, M.R.; Ebeler, S.E. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: Structural determinates of activity. Biochem. J., 2004, 384, 527.
[http://dx.doi.org/10.1042/BJ20040474]
[184]
Sani, F.D.; Shakibapour, N.; Beigoli, S.; Sadeghian, H.; Hosainzadeh, M.; Chamani, J. Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. J. Lumin., 2018, 203, 599.
[http://dx.doi.org/10.1016/j.jlumin.2018.06.083]
[185]
Kuzuhara, T.; Sei, Y.; Yamaguchi, K.; Suganuma, M.; Fujiki, H. DNA and RNA as new binding targets of green tea catechins. J. Biol. Chem., 2006, 281, 17446.
[http://dx.doi.org/10.1074/jbc.M601196200]
[186]
Nafisi, S.; Shadaloi, A.; Feizbakhsh, A.; Tajmir-Riahi, H.A. RNA binding to antioxidant flavonoids. J. Photochem. Photobiol. B, 2009, 94, 1.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.08.001]
[187]
Aguirre-Ramírez, M.; Silva-Jiménez, H.; Banat, I.M.; Díaz De Rienzo, M.A. Surfactants: physicochemical interactions with biological macromolecules. Biotechnol. Lett., 2021, 43, 523.
[http://dx.doi.org/10.1007/s10529-020-03054-1]
[188]
Chamani, J. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J. Mol. Struct., 2010, 979, 227.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.035]
[189]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9]
[190]
Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol., 2019, 95(7), 912-919.
[http://dx.doi.org/10.1080/09553002.2019.1589653]
[191]
Zhang, Z.; Deng, X.; Liu, Y.; Liu, Y.; Sun, L.; Chen, F. PKM2, function and expression and regulation. Cell Biosci., 2019, 9, 52.
[http://dx.doi.org/10.1186/s13578-019-0317-8]
[192]
Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.M.; Bollen, M.; Esteller, M.; Di Croce, L.; de Launoit, Y.; Fuks, F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439(7078), 871-874.
[http://dx.doi.org/10.1038/nature04431]
[193]
Ferrari, K.J.; Scelfo, A.; Jammula, S.; Cuomo, A.; Barozzi, I.; Stützer, A.; Fischle, W.; Bonaldi, T.; Pasini, D. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell, 2014, 53(1), 49-62.
[http://dx.doi.org/10.1016/j.molcel.2013.10.030]
[194]
Lapucci, A.; Donnini, M.; Papucci, L.; Witort, E.; Tempestini, A.; Bevilacqua, A.; Nicolin, A.; Brewer, G.; Schiavone, N.; Capaccioli, S. AUF1 is a bcl-2 A + U-rich element-binding protein involved in bcl-2 mRNA destabilization during apoptosis. J. Biol. Chem., 2002, 277(18), 16139-16146.
[http://dx.doi.org/10.1074/jbc.M201377200]
[195]
Álvarez-Garcia, V.; Tawil, Y.; Wise, H.M.; Leslie, N.R. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol., 2019, 59, 66-79.
[http://dx.doi.org/10.1016/j.semcancer.2019.02.001]
[196]
Yu, Y.; Liang, S.; Zhou, Y.; Li, S.; Li, Y.; Liao, W. HNF1A/CASC2 regulates pancreatic cancer cell proliferation through PTEN/Akt signaling. J. Cell. Biochem., 2019, 120(3), 2816-2827.
[http://dx.doi.org/10.1002/jcb.26395]
[197]
Zhang, H.; Feng, X.; Zhang, M.; Liu, A.; Tian, L.; Bo, W.; Wang, H.; Hu, Y. Long non-coding RNA CASC2 upregulates PTEN to suppress pancreatic carcinoma cell metastasis by downregulating miR-21. Cancer Cell Int., 2019, 19, 18.
[http://dx.doi.org/10.1186/s12935-019-0728-y]
[198]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64.
[http://dx.doi.org/10.3389/fonc.2014.00064]
[199]
Zhang, K.; Sun, X.; Zhou, X.; Han, L.; Chen, L.; Shi, Z.; Zhang, A.; Ye, M.; Wang, Q.; Liu, C.; Wei, J.; Ren, Y.; Yang, J.; Zhang, J.; Pu, P.; Li, M.; Kang, C. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget, 2015, 6(1), 537-546.
[http://dx.doi.org/10.18632/oncotarget.2681]
[200]
Wu, Y.; Zhang, L.; Zhang, L.; Wang, Y.; Li, H.; Ren, X.; Wei, F.; Yu, W.; Liu, T.; Wang, X.; Zhou, X.; Yu, J.; Hao, X. Long noncoding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing e-cadherin in oral squamous cell carcinoma. Int. J. Oncol., 2015, 46(6), 2586-2594.
[http://dx.doi.org/10.3892/ijo.2015.2976]
[201]
Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129, 1311-1323.
[http://dx.doi.org/10.1016/j.cell.2007.05.022]
[202]
Luo, L.H.; Rao, L.; Luo, L.F.; Chen, K.; Ran, R.Z.; Liu, X.L. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-kappaB/IL-6 signaling pathway. Microvasc. Res., 2020, 129, 103968.
[http://dx.doi.org/10.1016/j.mvr.2019.103968]
[203]
Lu, Z.; Chen, Z.; Li, Y.; Wang, J.; Zhang, Z.; Che, Y.; Huang, J.; Sun, S.; Mao, S.; Lei, Y.; Gao, Y.; He, J. TGF-beta-induced NKILA inhibits ESCC cell migration and invasion through NF-kappaB/MMP14 signaling. J. Mol. Med. (Berl.), 2018, 96(3-4), 301-313.
[http://dx.doi.org/10.1007/s00109-018-1621-1]
[204]
Liu, B.; Sun, L.; Liu, Q.; Gong, C.; Yao, Y.; Lv, X.; Lin, L.; Yao, H.; Su, F.; Li, D.; Zeng, M.; Song, E. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 2015, 27(3), 370-381.
[http://dx.doi.org/10.1016/j.ccell.2015.02.004]
[205]
Zhang, J.P.; Zhang, H.; Wang, H.B.; Li, Y.X.; Liu, G.H.; Xing, S.; Li, M.Z.; Zeng, M.S. Down-regulation of Sp1 suppresses cell proliferation, clonogenicity and the expressions of stem cell markers in nasopharyngeal carcinoma. J. Transl. Med., 2014, 12, 222.
[http://dx.doi.org/10.1186/s12967-014-0222-1]
[206]
Xiang, J.F.; Yin, Q.F.; Chen, T.; Zhang, Y.; Zhang, X.O.; Wu, Z.; Zhang, S.; Wang, H.B.; Ge, J.; Lu, X.; Yang, L.; Chen, L.L. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res., 2014, 24(5), 513-531.
[http://dx.doi.org/10.1038/cr.2014.35]
[207]
Alqahtani, F.Y.; Aleanizy, F.S.; El Tahir, E.; Alkahtani, H.M.; AlQuadeib, B.T. Paclitaxel. Profiles Drug Subst. Excip. Relat. Methodol., 2019, 44, 205-238.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.001]
[208]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916]
[209]
Zhou, Y.; Zhong, Y.; Wang, Y.; Zhang, X.; Batista, D.L.; Gejman, R.; Ansell, P.J.; Zhao, J.; Weng, C.; Klibanski, A. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem., 2007, 282(34), 24731-24742.
[http://dx.doi.org/10.1074/jbc.M702029200]
[210]
Kastenhuber, E.R.; Lowe, S.W. Putting p53 in context. Cell, 2017, 170, 1062-1078.
[http://dx.doi.org/10.1016/j.cell.2017.08.028]
[211]
Pan, Y.; Ju, R.; Cao, X.; Pei, H.; Zheng, T.; Wang, W. Optimization extraction and purification of biological activity curcumin from Curcuma longa L by high-performance counter-current chromatography. J. Sep. Sci., 2020, 43(8), 1586-1592.
[http://dx.doi.org/10.1002/jssc.201901174]
[212]
Nazhand, A.; Durazzo, A.; Lucarini, M.; Mobilia, M.A.; Omri, B.; Santini, A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat. Prod. Res., 2020, 34(1), 110-121.
[http://dx.doi.org/10.1080/14786419.2019.1630122]
[213]
Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules, 2016, 21(8), 1013.
[http://dx.doi.org/10.3390/molecules21081013]
[214]
Qin, Y.; Zhao, D.; Zhou, H.G.; Wang, X.H.; Zhong, W.L.; Chen, S.; Gu, W.G.; Wang, W.; Zhang, C.H.; Liu, Y.R.; Liu, H.J.; Zhang, Q.; Guo, Y.Q.; Sun, T.; Yang, C. Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma. Oncotarget, 2016, 7(27), 41421-41431.
[http://dx.doi.org/10.18632/oncotarget.9404]
[215]
Zhao, L.; Shou, H.; Chen, L.; Gao, W.; Fang, C.; Zhang, P. Effects of ginsenoside Rg3 on epigenetic modification in ovarian cancer cells. Oncol. Rep., 2019, 41, 3209-3218.
[http://dx.doi.org/10.3892/or.2019.7115]
[216]
Gao, H.; Liang, D.; Li, C.; Xu, G.; Jiang, M.; Li, H.; Song, Y. 2-Deoxy-Rh2: A novel ginsenoside derivative, as dual-targeting anti-cancer agent via regulating apoptosis and glycolysis. Biomed. Pharmacother., 2020, 124, 109891.
[http://dx.doi.org/10.1016/j.biopha.2020.109891]
[217]
Wang, S-H.; Chen, C-H.; Lo, C-Y.; Feng, J-Z.; Lin, H-J.; Chang, P-Y.; Yang, L-L.; Chen, L-G.; Liu, Y-W.; Kuo, C-D.; Wu, J-Y. Synthesis and biological evaluation of novel 7-O-lipophilic substituted baicalein derivatives aspotential anticancer agents. MedChemComm, 2015, 6, 1864-1873.
[http://dx.doi.org/10.1039/C5MD00163C]
[218]
Zhou, J.; Zhao, T.; Ma, L.; Liang, M.; Guo, Y.J.; Zhao, L.M. Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget, 2017, 8(61), 103167-103181.
[http://dx.doi.org/10.18632/oncotarget.21704]
[219]
Sahu, R.P.; Batra, S.; Srivastava, S.K. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br. J. Cancer, 2009, 100(9), 1425-1433.
[http://dx.doi.org/10.1038/sj.bjc.6605039]
[220]
Kabeer, F.A.; Sreedevi, G.B.; Nair, M.S.; Rajalekshmi, D.S.; Gopalakrishnan, L.P.; Prathapan, R. Isodeoxyelephantopin from Elephantopus scaber (Didancao) induces cell cycle arrest and caspase-3-mediated apoptosis in breast carcinoma T47D cells and lung carcinoma A549 cells. Chin. Med., 2014, 9, 14.
[http://dx.doi.org/10.1186/1749-8546-9-14]
[221]
Zhao, S.; Chang, H.; Ma, P.; Gao, G.; Jin, C.; Zhao, X.; Zhou, W.; Jin, B. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12577-12582.
[222]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980]
[223]
Dutta, D.; Chakraborty, A.; Mukherjee, B.; Gupta, S. Aptamer-conjugated apigenin nanoparticles to target colorectal carcinoma: A promising safe alternative of colorectal cancer chemotherapy. ACS Appl. Bio Mater., 2018, 1(5), 1538-1556.
[http://dx.doi.org/10.1021/acsabm.8b00441]
[224]
Yue, G.; Wang, C.; Liu, B.; Wu, M.; Huang, Y.; Guo, Y.; Ma, Q. Liposomes co-delivery system of doxorubicin and astragaloside IV co-modified by folate ligand and octa-arginine polypeptide for anti-breast cancer. RSC Advances, 2020, 10, 11573-11581.
[http://dx.doi.org/10.1039/C9RA09040A]
[225]
Liang, J.; Wu, W.; Liu, Q. Chen. S. Long-Circulation Nanoliposomes (LCNs) sustained delivery of baicalein (BAI) with desired oral bioavailability in vivo. Drug Deliv., 2013, 20(8), 319-323.
[http://dx.doi.org/10.3109/10717544.2013.834420]
[226]
Gupta, L.; Sharma, A.K.; Gothwal, A.; Khan, M.S.; Khinchi, M.P.; Qayum, A.; Singh, S.K.; Gupta, U. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int. J. Pharm., 2017, 528(1-2), 88-99.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.073]
[227]
Lv, Q.; Shen, C.; Li, X.; Shen, B.; Yu, C.; Xu, P.; Xu, H.; Han, J.; Yuan, H. Mucoadhesive buccal fims containing phospholipid-bile slats-mixed micelles as an effective carrier for Cucurbitacin B delivery. Drug Deliv., 2015, 22(3), 351-358.
[http://dx.doi.org/10.3109/10717544.2013.876459]
[228]
Alkhader, E.; Roberts, C.J.; Rosli, R.; Yuen, K.H.; Seow, E.K.; Lee, Y.Z.; Billa, N. Pharmacokinetic and anti-colon câncer properties of curcumin-containing chitosan-pectinate composite nanoparticles. J. Biomater. Sci. Polym. Ed., 2018, 29(18), 2281-2298.
[http://dx.doi.org/10.1080/09205063.2018.1541500]
[229]
Wang, F.; Cao, J.; Hao, J.; Liu, K. Pharmacokinetics, tissue distribution and relative bioavailability of geniposide-solid lipid nanoparticles following oral administration. J. Microencapsul., 2014, 31(4), 382-389.
[http://dx.doi.org/10.3109/02652048.2013.863396]
[230]
Yu, H.; Teng, L.; Meng, Q.; Li, Y.; Sun, X.; Lu, J.; Lee, R.J.; Teng, L. Development of liposomal ginsenoside Rg3: Formulation optimization and evaluation of its anticancer effects. Int. J. Pharm., 2013, 450(1-2), 250-258.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.065]
[231]
Zare-Zardini, H.; Alem, A.; Taheri-Kafrani, A.; Hosseini, S.A.; Soltaninejad, H.; Hamidieh, A.A.; Karamallah, M.H.; Farrokhifar, M.; Farrokhifar, M. Assessment of a new ginsenoside Rh2 nanoniosomal formulation for enhanced antitumor efficacy on prostate cancer: An in vitro study. Drug Des. Ther, 2020, 14, 3315-3324.
[http://dx.doi.org/10.2147/DDDT.S261027]
[232]
Qiao, F.; Zhao, Y.; Mai, Y.; Guo, J.; Dong, L.; Zhang, W.; Yang, J. Isoliquiritigenin nanosuspension enhances cytostatic effects in A549 lung cancer cells. Planta Med., 2020, 86(8), 538-547.
[http://dx.doi.org/10.1055/a-1134-3378]
[233]
Wu, C.; Xu, Q.; Chen, X.; Liu, J. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int. J. Nanomedicine, 2019, 14, 7515-7531.
[http://dx.doi.org/10.2147/IJN.S214585]
[234]
Patra, A.; Satpathy, S.; Hussain, M.D. Nanodelivery and anticancer effect of limonoid, nimbolide, in breast and pancreatic cancer cells. Int. J. Nanomedicine, 2019, 14, 8095-8104.
[http://dx.doi.org/10.2147/IJN.S208540]
[235]
Zhu, L.; Li, M.; Liu, X.; Jin, Y. Drug-loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. ACS Omega, 2017, 2(5), 2273-2279.
[http://dx.doi.org/10.1021/acsomega.7b00456]
[236]
Bhatt, P.; Lalani, R.; Vhora, I.; Patil, S.; Amrutiya, J.; Misra, A.; Mashru, R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int. J. Pharm., 2018, 536(1), 95-107.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.048]
[237]
Chen, L.C.; Chen, Y.C.; Su, C.Y.; Hong, C.S.; Ho, H.; Sheu, M.T. Development and characterization of self-assembling lecithinbased mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int. J. Nanomedicine, 2016, 11, 1557-1566.
[238]
Shao, M.; Yang, W.; Han, G. Protective effects on myocardial infarction model: Delivery of schisandrin B using matrix metalloproteinase-sensitive peptide-modified, PEGylated lipid nanoparticles. Int. J. Nanomedicine, 2017, 12, 7121-7130.
[http://dx.doi.org/10.2147/IJN.S141549]
[239]
Zhai, B.; Wu, Q.; Wang, W.; Zhang, M.; Han, X.; Li, Q.; Chen, P.; Chen, X.; Huang, X.; Li, G.; Zhang, Q.; Zhang, R.; Xiang, Y.; Liu, S.; Duan, T.; Lou, J.; Xie, T.; Sui, X. Preparation, characterization, pharmacokinetics and anticancer effects of PEGylated β-elemene liposomes. Cancer Biol. Med., 2020, 17(1), 60-75.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0156]
[240]
Zheng, X.; Yu, L.; Yang, J.; Yao, X.; Yan, W.; Bo, S.; Liu, Y.; Wei, Y.; Wu, Z.; Wang, G. Synthesis and anti-cancer activities of apigenin derivatives. Med. Chem., 2014, 10(7), 747-752.
[http://dx.doi.org/10.2174/1573406410666140307152557]
[241]
Jin, X.; Yan, L.; Li, H.J.; Wang, R.L.; Hu, Z.L.; Jiang, Y.Y.; Cao, Y.B.; Yan, T.H.; Sun, Q.Y. Novel Triazolyl berberine derivatives prepared via CuAAC click chemistry: Synthesis, anticancer activity and structure-activity relationships. Anticancer. Agents Med. Chem., 2015, 15, 89-98.
[http://dx.doi.org/10.2174/1871520614666141203142012]
[242]
Ge, W.; Chen, X.; Han, F.; Liu, Z.; Wang, T.; Wang, M.; Chen, Y.; Ding, Y.; Zhang, Q. Synthesis of cucurbitacin B derivatives as potential anti-hepatocellular carcinoma agents. Molecules, 2018, 23(12), 3345.
[http://dx.doi.org/10.3390/molecules23123345]
[243]
Reid, J.M.; Buhrow, S.A.; Gilbert, J.A.; Jia, L.; Shoji, M.; Snyder, J.P.; Ames, M.M. Mouse pharmacokinetics and metabolism of the curcumin analog, 4-piperidinone,3,5-bis[(2-fluorophenyl)methylene]-acetate(3E,5E) (EF-24; NSC 716993). Cancer Chemother. Pharmacol., 2014, 73(6), 1137-1146.
[http://dx.doi.org/10.1007/s00280-014-2447-3]
[244]
Fan, H.Y. Regioselective synthesis and structures of anti-cancer 20(R)-ginsenoside Rg3 derivatives. Nat. Prod. Res., 2020, 34(14), 1962-1970.
[http://dx.doi.org/10.1080/14786419.2019.1569007]
[245]
Peng, F.; Meng, C-W.; Zhou, Q-M.; Chen, J-P.; Xiong, L. Cytotoxic evaluation against breast cancer cells of isoliquiritigenin analogues from Spatholobus suberectus and their synthetic derivatives. J. Nat. Prod., 2015, 79(1), 248-251.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00774]
[246]
Yamauchi, K.; Fujieda, A.; Mitsunaga, T. Selective synthesis of 7-O-substituted luteolin derivatives and their melanonenesis and proliferation inhibitory activity in B16 melanoma cells. Bioorg. Med. Chem. Lett., 2018, 28(14), 2518-2522.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.051]
[247]
Sastry, B.S.; Babu, K.S.; Babu, T.H.; Chandrasekhar, S.; Srinivas, P.V.; Saxena, A.K.; Madhusudana Rao, J. Synthesis and biological activity of amide derivatives of nimbolide. Bioorg. Med. Chem. Lett., 2006, 16(16), 4391-4394.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.105]
[248]
Xu, S.; Yao, H.; Hu, M.; Li, D.; Zhu, Z.; Xie, W.; Yao, H.; Wu, L.; Chen, Z.S.; Xu, J. 6,7-Seco-ent-kauranoids derived from oridonin as potential anticancer agents. J. Nat. Prod., 2017, 80(9), 2391-2398.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00057]
[249]
Jones, S.E.; Erban, J.; Overmoyer, B.; Budd, G.T.; Hutchins, L.; Lower, E.; Laufman, L.; Sundaram, S.; Urba, W.J.; Pritchard, K.I.; Mennel, R.; Richards, D.; Olsen, S.; Meyers, M.L.; Ravdin, P.M. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J. Clin. Oncol., 2005, 23(24), 5542-5551.
[http://dx.doi.org/10.1200/JCO.2005.02.027]
[250]
Mrkus, L.; Batinić, J.; Bjeliš, N.; Jakas, A. Synthesis and biological evaluation of quercetin and resveratrol peptidyl derivatives as potential anticancer and antioxidant agents. Amino Acids, 2019, 51(2), 319-329.
[http://dx.doi.org/10.1007/s00726-018-2668-6]
[251]
Chen, J.; Wang, T.; Xu, S.; Lin, A.; Yao, H.; Xie, W.; Zhu, Z.; Xu, J. Novel hybrids of natural β-elemene bearing isopropanolamine moieties: Synthesis, enhanced anticancer profile, and improved aqueous solubility. Fitoterapia, 2017, 2017, 117-125.
[http://dx.doi.org/10.1016/j.fitote.2017.05.002]
[252]
Crespo-Ortiz, M.P.; Wei, M.Q. Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol., 2012, 2012, 247597.
[http://dx.doi.org/10.1155/2012/247597]
[253]
Chen, C. Development of antimalarial drugs and their application in China: A historical review. Infect. Dis. Poverty, 2014, 3(1), 9.
[http://dx.doi.org/10.1186/2049-9957-3-9]
[254]
Zhang, L.; Qian, H.; Sha, M.; Luan, Z.; Lin, M.; Yuan, D.; Li, X.; Huang, J.; Ye, L. Downregulation of HOTAIR expression mediated anti-metastatic effect of artesunate on cervical cancer by inhibiting COX-2 expression. PLoS One, 2016, 11(10), e0164838.
[http://dx.doi.org/10.1371/journal.pone.0164838]
[255]
Zhou, Y.; Wang, X.; Zhang, J.; He, A.; Wang, Y.L.; Han, K.; Su, Y.; Yin, J.; Lv, X.; Hu, H. Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 2017, 8(11), 18260-18270.
[http://dx.doi.org/10.18632/oncotarget.15353]
[256]
Jing, W.; Dong, H.; Min, M.; Runpeng, Z.; Xuewei, X.; Ru, C.; Yingru, X.; Shengfa, N.; Baoxian, T.; Jinbo, Y.; Weidong, H.; Rongbo, Z. Dependence of artesunate on long noncoding RNA-RP11 to inhibit epithelial-mesenchymal transition of hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(4), 6026-6034.
[http://dx.doi.org/10.1002/jcb.27889]
[257]
Wen, Q.; Wang, D.; Yang, Y.; Chen, X.; Pan, X.; Han, Q.; Deng, Y.; Li, X.; Chen, X.; Yan, J.; Zhou, J. Competing endogenous RNA screening based on long noncoding RNA-messenger RNA co-expression profile in Hepatitis B virus-associated hepatocarcinogenesis. J. Tradit. Chin. Med., 2017, 37(4), 510-521.
[http://dx.doi.org/10.1016/S0254-6272(17)30158-9]
[258]
Li, X.; Gao, Y.; Zhang, Q.; Hu, N.; Han, D.; Ning, S.; Ao, Z. Dihydroartemisinin-regulated mRNAs and lncRNAs in chronic myeloid leukemia. Oncotarget, 2017, 9(2), 2543-2552.
[http://dx.doi.org/10.18632/oncotarget.23274]
[259]
Deng, S.; Wong, K.C.; Lai, H.; Wong, A.T. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget, 2017, 8, 25897-25914.
[http://dx.doi.org/10.18632/oncotarget.13071]
[260]
Ford, H.; Gounaris, I. Docetaxel and its potential in the treatment of refractory esophagogastric adenocarcinoma. Therap. Adv. Gastroenterol., 2015, 8(4), 189-205.
[http://dx.doi.org/10.1177/1756283X15585468]
[261]
Liu, E.; Liu, Z.; Zhou, Y. Carboplatin-docetaxel-induced activity against ovarian cancer is dependent on up-regulated lncRNA PVT1. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3803-3810.
[262]
Aumeeruddy, M.Z.; Mahomoodally, M.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer, 2019, 125(10), 1600-1611.
[http://dx.doi.org/10.1002/cncr.32022]
[263]
Beaver, L.M.; Kuintzle, R.; Buchanan, A.; Wiley, M.W.; Glasser, S.T.; Wong, C.P.; Johnson, G.S.; Chang, J.H.; Löhr, C.V.; Williams, D.E.; Dashwood, R.H.; Hendrix, D.A.; Ho, E. Long non-coding RNAs and sulforaphane: A target for chemoprevention and suppression of prostate cancer. J. Nutr. Biochem., 2017, 42, 72-83.
[http://dx.doi.org/10.1016/j.jnutbio.2017.01.001]
[264]
Johnson, G.S.; Li, J.; Beaver, L.M.; Dashwood, W.M.; Sun, D.; Rajendran, P.; Williams, D.E.; Ho, E.; Dashwood, R.H. A functional pseudogene, NMRAL2P, is regulated by Nrf2 and serves as a coactivator ofNQO1in sulforaphane-treated colon cancer cells. Mol. Nutr. Food Res., 2017, 61(4)
[http://dx.doi.org/10.1002/mnfr.201600769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy