Systematic Review Article

对类维生素 A 耐药口腔潜在恶性疾病和口腔癌中针对 PRAME 的潜在免疫疗法的系统评价

卷 22, 期 8, 2022

发表于: 11 January, 2022

页: [735 - 746] 页: 12

弟呕挨: 10.2174/1566524021666211027091719

价格: $65

摘要

背景和目的:口腔潜在恶性疾病(OPMDs)和口腔癌(OC)的早期化学预防已被广泛研究,以减轻病变的恶性转化和进展。已经尝试了许多代理,但它们的成本低效和结果不足是它们成功采用的主要障碍。基于类视黄醇的疗法 (RBT) 虽然是一种廉价且有效的治疗选择,但由于临床结果的反应性不同,因此无法实现大量临床应用。这种临床反应变异性可能归因于黑色素瘤优先表达抗原 (PRAME) 蛋白分子对类视黄醇受体的抑制。因此,为了使 RBT 成功,通过各种免疫疗法靶向 PRAME 是一个令人兴奋的研究领域。本综述深入了解了针对 PRAME 的各种免疫治疗策略及其在类视黄醇耐药的 OPMD 和 OC 中的有用性。 数据收集方法:在 PUBMED 和 Google SCHOLAR 数据库中使用术语“抗 PRAME”或“PRAME 免疫疗法”或PRAME 疫苗”和“癌症”和“维甲酸抗性”。仅考虑发表在影响因子 ≥ 1 的期刊上且至少有 1 次引用的英语文章,与上下文和全文的可用性相关。 结果:初步检索后,根据纳入标准产生342篇文章,通过阅读摘要和全文可获得性,共选择124篇文章。进一步阅读全文,并从所选文章的参考文献中考虑文章,最终共有65篇文章被纳入审查。 结论:我们对文献的分析表明,应该在 RBT 之前对 OC 和 OPMD 进行 PRAME 筛查。在 PRAME 阳性病例中,采用癌症疫苗治疗形式的基于 PRAME 的免疫疗法 [无细胞 PRAME 疫苗,PRAME 脉冲树突状细胞 (DC)];过继性 T 细胞疗法/T 细胞受体-T 细胞疗法、抗体疗法/嵌合抗原受体-T 细胞疗法以及使用组蛋白去乙酰化酶抑制剂和去甲基化剂的呈递抗原调节疗法似乎是合理的。未来,使用 PRAME 疫苗或抗体或过继性 T 细胞疗法和 ATRA 的联合疗法可用于类维生素 A 抗性 OC 和 OPMD。

关键词: PRAME,视黄酸,靶向 PRAME,口腔癌,口腔潜在恶性疾病,免疫疗法。

[1]
Contreras Vidaurre EG, Bagán Sebastián JV, Gavalda C, Torres Cifuentes EF. Retinoids: Application in premalignant lesions and oral cancer. Med Oral 2001; 6(2): 114-23.
[PMID: 11500628]
[2]
Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122(6): 835-47.
[http://dx.doi.org/10.1016/j.cell.2005.07.003] [PMID: 16179254]
[3]
Dwivedi R, Pandey R, Mehrotra D, Chandra S, Parmar D. PRAME pathways in oral carcinogenesis: A systematic review- Dental. JOMR 2019; 5: 1-7.
[http://dx.doi.org/10.15761/DOCR.1000297]
[4]
Alten L, Maurer D, Bunk S, Wagner C, Ferber M. 2020.
[5]
Schenk T, Stengel S, Goellner S, Steinbach D, Saluz HP. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Genes Chromosomes Cancer 2007; 46(9): 796-804.
[http://dx.doi.org/10.1002/gcc.20465] [PMID: 17534929]
[6]
Epping MT, Hart AA, Glas AM, Krijgsman O, Bernards R. PRAME expression and clinical outcome of breast cancer. Br J Cancer 2008; 99(3): 398-403.
[http://dx.doi.org/10.1038/sj.bjc.6604494] [PMID: 18648365]
[7]
Tan P, Zou C, Yong B, et al. Expression and prognostic relevance of PRAME in primary osteosarcoma. Biochem Biophys Res Commun 2012; 419(4): 801-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.110] [PMID: 22390931]
[8]
Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M. The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 2004; 10(13): 4307-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0813] [PMID: 15240516]
[9]
Proto-Siqueira R, Falcão RP, de Souza CA, Ismael SJ, Zago MA. The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res 2003; 27(5): 393-6.
[http://dx.doi.org/10.1016/S0145-2126(02)00217-5] [PMID: 12620290]
[10]
Paydas S, Tanriverdi K, Yavuz S, Seydaoglu G. PRAME mRNA levels in cases with chronic leukemia: Clinical importance and review of the literature. Leuk Res 2007; 31(3): 365-9.
[http://dx.doi.org/10.1016/j.leukres.2006.06.022] [PMID: 16914202]
[11]
Hong WK, Endicott J, Itri LM, et al. 13-Cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med 1986; 315(24): 1501-5.
[http://dx.doi.org/10.1056/NEJM198612113152401] [PMID: 3537787]
[12]
Stich HF, Hornby AP, Mathew B, Sankaranarayanan R, Nair MK. Response of oral leukoplakias to the administration of vitamin A. Cancer Lett 1988; 40(1): 93-101.
[http://dx.doi.org/10.1016/0304-3835(88)90266-2] [PMID: 3370632]
[13]
Smith MA, Parkinson DR, Cheson BD, Friedman MA. Retinoids in cancer therapy. J Clin Oncol 1992; 10(5): 839-64.
[http://dx.doi.org/10.1200/JCO.1992.10.5.839] [PMID: 1569455]
[14]
Rhee JC, Khuri FR, Shin DM. Advances in chemoprevention of head and neck cancer. Oncologist 2004; 9(3): 302-11.
[http://dx.doi.org/10.1634/theoncologist.9-3-302] [PMID: 15169985]
[15]
Szczepanski MJ, DeLeo AB. PRAME expression in head and neck cancer correlates with markers of poor prognosis and might help in selecting candidates for retinoid chemoprevention in pre-malignant lesions. Oral Oncol 2013; 49(2): 144-51.
[http://dx.doi.org/10.1016/j.oraloncology.2012.08.005] [PMID: 22944049]
[16]
Cuffel C, Rivals JP, Zaugg Y, et al. Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma. Int J Cancer 2011; 128(11): 2625-34.
[http://dx.doi.org/10.1002/ijc.25607] [PMID: 20715104]
[17]
Andrade VC, Vettore AL, Felix RS, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun 2008; 8: 2.
[PMID: 18237105]
[18]
Doolan P, Clynes M, Kennedy S, Mehta JP, Crown J, O’Driscoll L. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat 2008; 109(2): 359-65.
[http://dx.doi.org/10.1007/s10549-007-9643-3] [PMID: 17624586]
[19]
Santamaría C, Chillón MC, García-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica 2008; 93(12): 1797-805.
[http://dx.doi.org/10.3324/haematol.13214] [PMID: 18815192]
[20]
Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer 2001; 1(3): 181-93.
[http://dx.doi.org/10.1038/35106036] [PMID: 11902573]
[21]
Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387(6634): 733-6.
[http://dx.doi.org/10.1038/42750] [PMID: 9192902]
[22]
Torchia J, Rose DW, Inostroza J, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997; 387(6634): 677-84.
[http://dx.doi.org/10.1038/42652] [PMID: 9192892]
[23]
Figueiredo DL, Mamede RC, Proto-Siqueira R, Neder L, Silva WA Jr, Zago MA. Expression of cancer testis antigens in head and neck squamous cell carcinomas. Head Neck 2006; 28(7): 614-9.
[http://dx.doi.org/10.1002/hed.20380] [PMID: 16475205]
[24]
Le Q, Dawson MI, Soprano DR, Soprano KJ. Modulation of retinoic acid receptor function alters the growth inhibitory response of oral SCC cells to retinoids. Oncogene 2000; 19(11): 1457-65.
[http://dx.doi.org/10.1038/sj.onc.1203436] [PMID: 10723137]
[25]
Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 2002; 86: 41-65.
[http://dx.doi.org/10.1016/S0065-230X(02)86002-X] [PMID: 12374280]
[26]
Gezgin G, Luk SJ, Cao J, et al. PRAME as a potential target for immunotherapy in metastatic uveal melanoma. JAMA Ophthalmol 2017; 135(6): 541-9.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.0729] [PMID: 28448663]
[27]
Field MG, Decatur CL, Kurtenbach S, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res 2016; 22(5): 1234-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2071] [PMID: 26933176]
[28]
Iura K, Kohashi K, Hotokebuchi Y, et al. Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma. J Pathol Clin Res 2015; 1(3): 144-59.
[http://dx.doi.org/10.1002/cjp2.16] [PMID: 27499900]
[29]
Iura K, Maekawa A, Kohashi K, et al. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 2017; 61: 130-9.
[http://dx.doi.org/10.1016/j.humpath.2016.12.006] [PMID: 27993576]
[30]
Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res 2007; 31(11): 1521-8.
[http://dx.doi.org/10.1016/j.leukres.2007.02.016] [PMID: 17382387]
[31]
Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol 2011; 86(1): 31-7.
[http://dx.doi.org/10.1002/ajh.21915] [PMID: 21132730]
[32]
Al-Khadairi G, Naik A, Thomas R, Al-Sulaiti B, Rizly S, Decock J. PRAME promotes epithelial-to-mesenchymal transition in triple negative breast cancer. J Transl Med 2019; 17(1): 9.
[http://dx.doi.org/10.1186/s12967-018-1757-3] [PMID: 30602372]
[33]
Masetti R, Vendemini F, Zama D, Biagi C, Gasperini P, Pession A. All-trans retinoic acid in the treatment of pediatric acute promyelocytic leukemia. Expert Rev Anticancer Ther 2012; 12(9): 1191-204.
[http://dx.doi.org/10.1586/era.12.101] [PMID: 23098119]
[34]
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105(16): 1172-87.
[http://dx.doi.org/10.1093/jnci/djt184] [PMID: 23852952]
[35]
Ikeda H, Lethé B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6(2): 199-208.
[http://dx.doi.org/10.1016/S1074-7613(00)80426-4] [PMID: 9047241]
[36]
Fratta E, Coral S, Covre A, et al. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol Oncol 2011; 5(2): 164-82.
[http://dx.doi.org/10.1016/j.molonc.2011.02.001] [PMID: 21376678]
[37]
Whitehurst AW. Cause and consequence of cancer/testis antigen activation in cancer. Annu Rev Pharmacol Toxicol 2014; 54: 251-72.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140326] [PMID: 24160706]
[38]
Wadelin F, Fulton J, McEwan PA, Spriggs KA, Emsley J, Heery DM. Leucine-rich repeat protein PRAME: Expression, potential functions and clinical implications for leukaemia. Mol Cancer 2010; 9: 226.
[http://dx.doi.org/10.1186/1476-4598-9-226] [PMID: 20799951]
[39]
Rezvani K, Yong ASM, Tawab A, et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009; 113(10): 2245-55.
[http://dx.doi.org/10.1182/blood-2008-03-144071] [PMID: 18988867]
[40]
Wadelin FR, Fulton J, Collins HM, et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS One 2013; 8(2): e58052.
[http://dx.doi.org/10.1371/journal.pone.0058052] [PMID: 23460923]
[41]
Williams JM, Chen GC, Zhu L, Rest RF. Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: Intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol Microbiol 1998; 27(1): 171-86.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00670.x] [PMID: 9466265]
[42]
Matko S, Manderla J, Bonsack M, et al. PRAME peptide-specific CD8+ T cells represent the predominant response against leukemia-associated antigens in healthy individuals. Eur J Immunol 2018; 48(8): 1400-11.
[http://dx.doi.org/10.1002/eji.201747399] [PMID: 29738081]
[44]
Lee YK, Park UH, Kim EJ, Hwang JT, Jeong JC, Um SJ. Tumor antigen PRAME is up-regulated by MZF1 in cooperation with DNA hypomethylation in melanoma cells. Cancer Lett 2017; 403: 144-51.
[http://dx.doi.org/10.1016/j.canlet.2017.06.015] [PMID: 28634046]
[45]
Sakurai E, Maesawa C, Shibazaki M, et al. Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells. Int J Oncol 2011; 39(3): 665-72.
[PMID: 21687938]
[46]
Ortmann CA, Eisele L, Nückel H, et al. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol 2008; 87(10): 809-18.
[http://dx.doi.org/10.1007/s00277-008-0514-8] [PMID: 18587578]
[47]
Xu Y, Zou R, Wang J, Wang ZW, Zhu X. The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer. Cell Prolif 2020; 53(3): e12770.
[http://dx.doi.org/10.1111/cpr.12770] [PMID: 32022332]
[48]
Sigalotti L, Coral S, Fratta E, et al. Epigenetic modulation of solid tumors as a novel approach for cancer immunotherapy. Semin Oncol 2005; 32(5): 473-8.
[http://dx.doi.org/10.1053/j.seminoncol.2005.07.005] [PMID: 16210088]
[49]
Orlando D, Miele E, De Angelis B, et al. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma. Cancer Res 2018; 78(12): 3337-49.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3140] [PMID: 29615432]
[50]
Kessler JH, Beekman NJ, Bres-Vloemans SA, et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 2001; 193(1): 73-88.
[http://dx.doi.org/10.1084/jem.193.1.73] [PMID: 11136822]
[51]
Greiner J, Schmitt M, Li L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 2006; 108(13): 4109-17.
[http://dx.doi.org/10.1182/blood-2006-01-023127] [PMID: 16931630]
[52]
Griffioen M, Kessler JH, Borghi M, et al. Detection and functional analysis of CD8+ T cells specific for PRAME: A target for T-cell therapy. Clin Cancer Res 2006; 12(10): 3130-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2578] [PMID: 16707612]
[53]
Quintarelli C, Dotti G, Hasan ST, et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 2011; 117(12): 3353-62.
[http://dx.doi.org/10.1182/blood-2010-08-300376] [PMID: 21278353]
[54]
Kewitz S, Staege MS. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLoS One 2013; 8(2): e55897.
[http://dx.doi.org/10.1371/journal.pone.0055897] [PMID: 23409080]
[55]
Tajeddine N, Gala JL, Louis M, Van Schoor M, Tombal B, Gailly P. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 2005; 65(16): 7348-55.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4011] [PMID: 16103086]
[56]
Dao T, Yan S, Veomett N, et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5(176): 176ra33.
[http://dx.doi.org/10.1126/scitranslmed.3005661] [PMID: 23486779]
[57]
Chang AY, Dao T, Gejman RS, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest 2017; 127(7): 2705-18.
[http://dx.doi.org/10.1172/JCI92335] [PMID: 28628042]
[58]
Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia--implications for immunotherapy. Clin Cancer Res 2013; 19(18): 5079-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0955] [PMID: 23838315]
[59]
Tanaka N, Wang YH, Shiseki M, Takanashi M, Motoji T. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells. Leuk Res 2011; 35(9): 1219-25.
[http://dx.doi.org/10.1016/j.leukres.2011.04.005] [PMID: 21550659]
[60]
Bioley G, Guillaume P, Luescher I, et al. Vaccination with a recombinant protein encoding the tumor-specific antigen NY-ESO-1 elicits an A2/157-165-specific CTL repertoire structurally distinct and of reduced tumor reactivity than that elicited by spontaneous immune responses to NY-ESO-1-expressing Tumors. J Immunother 2009; 32(2): 161-8.
[http://dx.doi.org/10.1097/CJI.0b013e31819302f6] [PMID: 19238015]
[61]
Visus C, Wang Y, Lozano-Leon A, et al. Targeting ALDH (bright) human carcinoma-initiating cells with ALDH1A1-specific CD8⁺ T cells. Clin Cancer Res 2011; 17(19): 6174-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1111] [PMID: 21856769]
[62]
Gutzmer R, Rivoltini L, Levchenko E, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: Results of a phase I dose escalation study. ESMO Open 2016; 1(4): e000068.
[http://dx.doi.org/10.1136/esmoopen-2016-000068] [PMID: 27843625]
[63]
Weber JS, Vogelzang NJ, Ernstoff MS, et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 2011; 34(7): 556-67.
[http://dx.doi.org/10.1097/CJI.0b013e3182280db1] [PMID: 21760528]
[64]
Sakamoto S, Noguchi M, Yamada A, Itoh K, Sasada T. Prospect and progress of personalized peptide vaccinations for advanced cancers. Expert Opin Biol Ther 2016; 16(5): 689-98.
[http://dx.doi.org/10.1517/14712598.2016.1161752] [PMID: 26938083]
[65]
Pujol JL, De Pas T, Rittmeyer A, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in patients with resected non-small cell lung cancer: A phase I dose escalation study. J Thorac Oncol 2016; 11(12): 2208-17.
[http://dx.doi.org/10.1016/j.jtho.2016.08.120] [PMID: 27544054]
[66]
Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5(8): 615-25.
[http://dx.doi.org/10.1038/nrc1669] [PMID: 16034368]
[67]
Caballero OL, Chen YT. Cancer/Testis (CT) antigens: Potential targets for immunotherapy. Cancer Sci 2009; 100(11): 2014-21.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01303.x] [PMID: 19719775]
[68]
Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: Review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 2014; 11(1): 24-37.
[http://dx.doi.org/10.1038/nrclinonc.2013.208] [PMID: 24247168]
[69]
Gérard C, Baudson N, Ory T, Segal L, Louahed J. A comprehensive preclinical model evaluating the recombinant PRAME antigen combined with the AS15 immunostimulant to fight against PRAME-expressing tumors. J Immunother 2015; 38(8): 311-20.
[http://dx.doi.org/10.1097/CJI.0000000000000095] [PMID: 26325375]
[70]
Pankov D, Sjöström L, Kalidindi T, et al. In vivo immuno-targeting of an extracellular epitope of membrane bound preferentially expressed antigen in melanoma (PRAME). Oncotarget 2017; 8(39): 65917-31.
[http://dx.doi.org/10.18632/oncotarget.19579] [PMID: 29029482]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy