Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Recombinant Unique Cartilage Matrix-associated Protein Potentiates Osteogenic Differentiation and Mineralization of MC3T3-E1 Cells

Author(s): Yeon-Ju Lee, Hyeon Yeong Ju, Seung-Yoon Park, Hye Jung Ihn, Eui Kyun Park and Jung-Eun Kim*

Volume 22, Issue 8, 2022

Published on: 14 January, 2022

Page: [747 - 754] Pages: 8

DOI: 10.2174/1566524021666211117144314

Price: $65

Abstract

Objective: The relative balance of osteoblasts in bone formation and osteoclasts in bone resorption is crucial for maintaining bone health. With age, this balance between osteoblasts and osteoclasts is broken, resulting in bone loss. Anabolic drugs are continuously being developed to counteract this low bone mass. Recombinant proteins are used as biotherapeutics due to being relatively easy to produce on a large scale and are cost-effective through various expression systems. This study aimed to develop a recombinant protein that would positively impact osteoblast differentiation and mineralized nodule formation using unique cartilage matrix-associated protein (UCMA).

Methods: A recombinant glutathione-S-transferase (GST)-UCMA fusion protein was generated in an E.coli system, and purified by affinity chromatography. MC3T3-E1 osteoblast cells and Osterix (Osx)-knockdown stable cells were cultured for 14 days to investigate osteoblast differentiation and nodule formation in the presence of the recombinant GST-UCMA protein. The differentiated cells were assessed by alizarin red S staining and quantitative PCR of the osteoblast differentiation marker osteocalcin. In addition, cell viability in the presence of the recombinant GST-UCMA protein was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell adhesion assay.

Results: The isolation of both purified recombinant GST-only and GST-UCMA proteins were confirmed at 26 kDa and 34 kDa, respectively, by Coomassie staining and western blot analysis. Neither dose-dependent nor time-dependent presence of recombinant GST-UCMA affected MC3T3-E1 cell viability. However, MC3T3-E1 cell adhesion to the recombinant GST-UCMA protein increased dose-dependently. Osteoblast differentiation and nodule formation were promoted in both MC3T3-E1 osteoblast cells and Osxknockdown stable cells when cultured in the presence of recombinant GST-UCMA protein.

Conclusion: A recombinant GST-UCMA protein induces osteogenic differentiation and mineralization, suggesting its potential use as an anabolic drug to increase low bone mass in osteoporotic patients.

Keywords: UCMA protein, GST-fusion, recombinant, osteoblast, differentiation, mineralization.

« Previous
[1]
Khan S, Ullah MW, Siddique R, et al. Role of recombinant DNA technology to improve life. Int J Genomics 2016; 2016: 2405954.
[http://dx.doi.org/10.1155/2016/2405954] [PMID: 28053975]
[2]
Reichert JM, Paquette C. Clinical development of therapeutic recombinant proteins. Biotechniques 2003; 35(1): 176-8.
[http://dx.doi.org/10.2144/03351dd01] [PMID: 12866419]
[3]
Wingfield PT. Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 2015; 80: 6.1.1-6.1.35.
[http://dx.doi.org/10.1002/0471140864.ps0601s80]
[4]
Chen LR, Ko NY, Chen KH. Medical treatment for osteoporosis: From molecular to clinical opinions. Int J Mol Sci 2019; 20(9): 2213.
[http://dx.doi.org/10.3390/ijms20092213] [PMID: 31064048]
[5]
Ukon Y, Makino T, Kodama J, et al. Molecular-based treatment strategies for osteoporosis: A literature review. Int J Mol Sci 2019; 20(10): 2557.
[http://dx.doi.org/10.3390/ijms20102557] [PMID: 31137666]
[6]
Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, Sessa G. Pharmacological therapy of osteoporosis: A systematic current review of literature. Front Pharmacol 2017; 8: 803.
[http://dx.doi.org/10.3389/fphar.2017.00803] [PMID: 29163183]
[7]
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2019; 15(4): 225-36.
[http://dx.doi.org/10.1038/s41584-019-0172-3] [PMID: 30755735]
[8]
Liu Y, Levack AE, Marty E, et al. Anabolic agents: what is beyond osteoporosis? Osteoporos Int 2018; 29(5): 1009-22.
[http://dx.doi.org/10.1007/s00198-018-4507-8] [PMID: 29627891]
[9]
Russow G, Jahn D, Appelt J, Märdian S, Tsitsilonis S, Keller J. Anabolic therapies in osteoporosis and bone regeneration. Int J Mol Sci 2018; 20(1): 83.
[http://dx.doi.org/10.3390/ijms20010083] [PMID: 30587780]
[10]
Tagariello A, Luther J, Streiter M, et al. Ucma--A novel secreted factor represents a highly specific marker for distal chondrocytes. Matrix Biol 2008; 27(1): 3-11.
[http://dx.doi.org/10.1016/j.matbio.2007.07.004] [PMID: 17707622]
[11]
Surmann-Schmitt C, Dietz U, Kireva T, et al. Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J Biol Chem 2008; 283(11): 7082-93.
[http://dx.doi.org/10.1074/jbc.M702792200] [PMID: 18156182]
[12]
Lee YJ, Park SY, Lee SJ, Boo YC, Choi JY, Kim JE. Ucma, a direct transcriptional target of Runx2 and Osterix, promotes osteoblast differentiation and nodule formation. Osteoarthritis Cartilage 2015; 23(8): 1421-31.
[http://dx.doi.org/10.1016/j.joca.2015.03.035] [PMID: 25865393]
[13]
Lee SJ, Lee EH, Park SY, Kim JE. Induction of fibrillin-2 and periostin expression in Osterix-knockdown MC3T3-E1 cells. Gene 2017; 596: 123-9.
[http://dx.doi.org/10.1016/j.gene.2016.10.018] [PMID: 27751812]
[14]
Kim SY, Lee EH, Park SY, et al. Ablation of stabilin-1 enhances bone-resorbing activity in osteoclasts in vitro. Calcif Tissue Int 2019; 105(2): 205-14.
[http://dx.doi.org/10.1007/s00223-019-00552-x] [PMID: 31025051]
[15]
Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2016; 8(6): 225-35.
[http://dx.doi.org/10.1177/1759720X16670154] [PMID: 28255336]
[16]
Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol 2011; 6: 121-45.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130203] [PMID: 20936937]
[17]
Montagnani A. Bone anabolics in osteoporosis: Actuality and perspectives. World J Orthop 2014; 5(3): 247-54.
[http://dx.doi.org/10.5312/wjo.v5.i3.247] [PMID: 25035827]
[18]
Marie PJ. Transcription factors controlling osteoblasto-genesis. Arch Biochem Biophys 2008; 473(2): 98-105.
[http://dx.doi.org/10.1016/j.abb.2008.02.030] [PMID: 18331818]
[19]
Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25: 629-48.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113308] [PMID: 19575648]
[20]
Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem 1999; 45(8 Pt 2): 1353-8.
[PMID: 10430818]
[21]
Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene 2012; 492(1): 1-18.
[http://dx.doi.org/10.1016/j.gene.2011.10.044] [PMID: 22079544]
[22]
Bodine PV, Komm BS. Wnt signaling and osteoblasto-genesis. Rev Endocr Metab Disord 2006; 7(1-2): 33-9.
[http://dx.doi.org/10.1007/s11154-006-9002-4] [PMID: 16960757]
[23]
Yang X, Yang Y, Zhou S, et al. Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways. Curr Mol Med 2018; 17(7): 488-96.
[http://dx.doi.org/10.2174/1566524018666171219101142] [PMID: 29256352]
[24]
Kim WJ, Islam R, Kim BS, et al. Direct delivery of recombinant Pin1 protein rescued osteoblast differentiation of Pin1-deficient cells. J Cell Physiol 2017; 232(10): 2798-805.
[http://dx.doi.org/10.1002/jcp.25673] [PMID: 27800612]
[25]
Haas AV, LeBoff MS. Osteoanabolic agents for osteoporosis. J Endocr Soc 2018; 2(8): 922-32.
[http://dx.doi.org/10.1210/js.2018-00118] [PMID: 30087947]
[26]
Osagie-Clouard L, Sanghani A, Coathup M, Briggs T, Bostrom M, Blunn G. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017; 6(1): 14-21.
[http://dx.doi.org/10.1302/2046-3758.61.BJR-2016-0085.R1] [PMID: 28062525]
[27]
Yamashita J, McCauley LK. Effects of intermittent administration of parathyroid hormone and parathyroid hormone-related protein on fracture healing: A narrative review of animal and human studies. JBMR Plus 2019; 3(12): e10250.
[http://dx.doi.org/10.1002/jbm4.10250] [PMID: 31844831]
[28]
Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344(19): 1434-41.
[http://dx.doi.org/10.1056/NEJM200105103441904] [PMID: 11346808]
[29]
Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: A randomized clinical trial. JAMA 2016; 316(7): 722-33.
[http://dx.doi.org/10.1001/jama.2016.11136] [PMID: 27533157]
[30]
Leader B, Baca QJ, Golan DE. Protein therapeutics: A summary and pharmacological classification. Nat Rev Drug Discov 2008; 7(1): 21-39.
[http://dx.doi.org/10.1038/nrd2399] [PMID: 18097458]
[31]
Dimitrov DS. Therapeutic proteins. Methods Mol Biol 2012; 899: 1-26.
[http://dx.doi.org/10.1007/978-1-61779-921-1_1] [PMID: 22735943]
[32]
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol 2014; 5: 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[33]
Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 2016; 6(8): 160196.
[http://dx.doi.org/10.1098/rsob.160196] [PMID: 27581654]
[34]
Baeshen MN, Al-Hejin AM, Bora RS, et al. Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. J Microbiol Biotechnol 2015; 25(7): 953-62.
[http://dx.doi.org/10.4014/jmb.1412.12079] [PMID: 25737124]
[35]
Landgraf W, Sandow J. Recombinant human insulins - Clinical efficacy and safety in Diabetes therapy. Eur Endocrinol 2016; 12(1): 12-7.
[http://dx.doi.org/10.17925/EE.2016.12.01.12] [PMID: 29632581]
[36]
Binkley N, Bone H, Gilligan JP, Krause DS. Efficacy and safety of oral recombinant calcitonin tablets in postmeno-pausal women with low bone mass and increased fracture risk: A randomized, placebo-controlled trial. Osteoporos Int 2014; 25(11): 2649-56.
[http://dx.doi.org/10.1007/s00198-014-2796-0] [PMID: 25027109]
[37]
Deng J, Feng Z, Li Y, Pan T, Li Q, Zhao C. Efficacy and safety of recombinant human parathyroid hormone (1-34) are similar to those of alendronate in the treatment of postmenopausal osteoporosis. Medicine (Baltimore) 2018; 97(47): e13341.
[http://dx.doi.org/10.1097/MD.0000000000013341] [PMID: 30461654]
[38]
Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 481(7381): 314-20.
[http://dx.doi.org/10.1038/nature10763] [PMID: 22258610]
[39]
Patti A, Gennari L, Merlotti D, Dotta F, Nuti R. Endocrine actions of osteocalcin. Int J Endocrinol 2013; 2013: 846480.
[http://dx.doi.org/10.1155/2013/846480] [PMID: 23737779]
[40]
Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone 2016; 82: 42-9.
[http://dx.doi.org/10.1016/j.bone.2015.05.046] [PMID: 26055108]
[41]
Lin X, Parker L, Mclennan E, et al. Recombinant uncarboxylated osteocalcin per se enhances mouse skeletal muscle glucose uptake in both extensor digitorum longus and soleus muscles. Front Endocrinol (Lausanne) 2017; 8: 330.
[http://dx.doi.org/10.3389/fendo.2017.00330] [PMID: 29204135]
[42]
Käkönen SM, Hellman J, Pettersson K, Lövgren T, Karp M. Purification and characterization of recombinant osteocalcin fusion protein expressed in Escherichia coli. Protein Expr Purif 1996; 8(2): 137-44.
[http://dx.doi.org/10.1006/prep.1996.0085] [PMID: 8812845]
[43]
Kim JH, Park S, Kim HW, Jang JH. Recombinant expression of mouse osteocalcin protein in Escherichia coli. Biotechnol Lett 2007; 29(11): 1631-5.
[http://dx.doi.org/10.1007/s10529-007-9437-z] [PMID: 17598072]
[44]
Le Jeune M, Tomavo N, Tian TV, et al. Identification of four alternatively spliced transcripts of the Ucma/GRP gene, encoding a new Gla-containing protein. Exp Cell Res 2010; 316(2): 203-15.
[http://dx.doi.org/10.1016/j.yexcr.2009.10.002] [PMID: 19819238]
[45]
Tesfamariam B. Involvement of vitamin K-dependent proteins in vascular calcification. J Cardiovasc Pharmacol Ther 2019; 24(4): 323-33.
[http://dx.doi.org/10.1177/1074248419838501] [PMID: 30905168]
[46]
Wen L, Chen J, Duan L, Li S. Vitamin K dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 2018; 18(1): 3-15.
[http://dx.doi.org/10.3892/mmr.2018.8940] [PMID: 29749440]
[47]
Willems BA, Furmanik M, Caron MMJ, et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci Rep 2018; 8(1): 4961.
[http://dx.doi.org/10.1038/s41598-018-23353-y] [PMID: 29563538]
[48]
Stock M, Menges S, Eitzinger N, et al. A dual role of upper zone of growth plate and cartilage matrix-associated protein in human and mouse osteoarthritic cartilage: Inhibition of aggrecanases and promotion of bone turnover. Arthritis Rheumatol 2017; 69(6): 1233-45.
[http://dx.doi.org/10.1002/art.40042] [PMID: 28086000]
[49]
Lee SH, Lee YJ, Park SI, Kim JE. Unique cartilage matrix-associated protein inhibits the migratory and invasive potential of triple-negative breast cancer. Biochem Biophys Res Commun 2020; 530(4): 680-5.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.114] [PMID: 32768190]
[50]
Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108(1): 17-29.
[http://dx.doi.org/10.1016/S0092-8674(01)00622-5] [PMID: 11792318]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy