Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Integration of Nanotechnology in Plant Tissue Culture

Author(s): Rachana Singh* and Shadab Ahamad

Volume 18, Issue 5, 2022

Published on: 14 January, 2022

Page: [604 - 610] Pages: 7

DOI: 10.2174/1573413717666211015115351

Price: $65

Abstract

In the field of plant biotechnology, tissue culture is having colossal applications, for example, the production of disease-free plants and their mass multiplication, germplasm preservation, genetic manipulation to get improved variety as well as the production of biologically active compounds. The integration of nanotechnology and application of Nanoparticles (NPs) has shown a positive response in the elimination of microbial contaminants and induction of callus, somatic embryogenesis, organogenesis, production of secondary metabolites, and genetic transformation. This paper aims to highlight some of the recent advancements that came possible through the implementation of nanotechnology in the field of plant tissue culture and also discusses both positives and negatives aspects associated with NPs in plant tissue culture. The prospects through the involvement of recent innovations of nanotechnology such as dendrimers, quantum dots, and carbon nanotubes are also proposed.

Keywords: Nanotechnology, nanoparticles, plant tissue culture, organogenesis, silver nanoparticles, somaclonal variation.

[1]
Hamberlandt, G. Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber. Mat.-Nat.KI. Kais. Akad. Wiss. Wien, 2012, 111(1), 69-92.
[2]
Thorpe, T.A. History of plant tissue culture. Mol. Biotechnol., 2007, 37(2), 169-180.
[http://dx.doi.org/10.1007/s12033-007-0031-3] [PMID: 17914178]
[3]
Sivanesan, I.; Park, S.W. Optimizing factors affecting adventitious shoot regeneration, in vitro flowering and fruiting of Withania somnifera (L.). Dunal. Ind. Crops Prod., 2015, 76, 323-328.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.014]
[4]
Trivedi, M.; Singh, R.; Johari, P.; Tiwari, R.K. Nanobiotechnology: An ocean of opportunity. Nanobiotechnology: Concepts and Applications in health care, Agriculture and environment, Tomar, R.S., Ed.; CRC Press. 2019.
[5]
Wang, P.; Lombi, E.; Zhao, F.J.; Kopittke, P.M. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 2016, 21(8), 699-712.
[http://dx.doi.org/10.1016/j.tplants.2016.04.005] [PMID: 27130471]
[6]
Ruttkay-Nedecky, B.; Krystofova, O.; Nejdl, L.; Adam, V. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology, 2017, 15(1), 33.
[http://dx.doi.org/10.1186/s12951-017-0268-3] [PMID: 28446250]
[7]
Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci., 2014, 21(1), 13-17.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.005] [PMID: 24596495]
[8]
Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ., 2013, 461-462, 462-468.
[http://dx.doi.org/10.1016/j.scitotenv.2013.05.018] [PMID: 23747561]
[9]
Singh, R.; Verma, V. Silver nanoparticles: Sources of production and synthesis methods. Int. J. Curr. Res., 2017, 9(7), 53781-53784.
[10]
Singh, R.; Verma, V. Intracellular and Extracellular Biosynthesis of Silver Nanoparticles by Extremophilic Bacteria. World J. Pharm. Res., 2016, 5(12), 447-457.
[11]
Syu, Y.Y.; Hung, J.H.; Chen, J.C.; Chuang, H.W. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem., 2014, 83, 57-64.
[http://dx.doi.org/10.1016/j.plaphy.2014.07.010] [PMID: 25090087]
[12]
Hwan, K.D.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Advances, 2017, 7, 36492-36505.
[http://dx.doi.org/10.1039/C7RA07025J]
[13]
Ma, C.; Chhikara, S.; Xing, B.; Musante, C.; White, J.C.; Dhankher, O.P. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain. Chem.& Eng., 2013, 1, 768-778.
[http://dx.doi.org/10.1021/sc400098h]
[14]
Anwaar, S.; Maqbool, Q.; Jabeen, N.; Nazar, M.; Abbas, F.; Nawaz, B.; Hussain, T.; Hussain, S.Z. The effect of green synthesized Cuo nanoparticles on callogenesis and regeneration of Oryza sativa L. Front. Plant Sci., 2016, 7, 1330.
[http://dx.doi.org/10.3389/fpls.2016.01330] [PMID: 27630655]
[15]
Fazal, H.; Abbasi, B.H.; Ahmad, N.; Ali, M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl. Biochem. Biotechnol., 2016, 180(6), 1076-1092.
[http://dx.doi.org/10.1007/s12010-016-2153-1] [PMID: 27287999]
[16]
Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 2012, 6(3), 2128-2135.
[http://dx.doi.org/10.1021/nn204643g] [PMID: 22360840]
[17]
Ewais, E.A.; Desouky, S.A.; Elshazly, E.H. Evaluation of callus responses of solanum nigrum l. exposed to biologically synthesized silver nanoparticles. Nanosci Nanotechnol, 2015, 5, 45-56.
[18]
Ghorbanpour, M.; Hadian, J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon, 2015, 94, 749-759.
[http://dx.doi.org/10.1016/j.carbon.2015.07.056]
[19]
Sarmast, M.K.; Niazi, A.; Salehi, H.; Abolimoghadam, A. Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tissue Organ Cult., 2015, 121, 227-236.
[http://dx.doi.org/10.1007/s11240-014-0697-8]
[20]
Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol., 2012, 167(8), 2225-2233.
[http://dx.doi.org/10.1007/s12010-012-9759-8] [PMID: 22692847]
[21]
Zafar, H.; Ali, A.; Ali, J.S.; Haq, I.U.; Zia, M. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front. Plant Sci., 2016, 7, 535.
[http://dx.doi.org/10.3389/fpls.2016.00535] [PMID: 27148347]
[22]
Leifert, C.; Morris, C.E.; Waites, W.M. Ecology of microbial saprophytes and pathogens in tissue cultured and field grown plants. Crit. Rev. Plant Sci., 1994, 13, 139-183.
[http://dx.doi.org/10.1080/07352689409701912]
[23]
Torres, K.C., Ed.; Tissue culture techniques for horticultural crop. Van no strand; Reinhold: New York, 1989, p. 285.
[24]
Abdi, G.; Salehi, H.; Khosh-Khui, M. Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol. Plant., 2008, 30, 709-714.
[http://dx.doi.org/10.1007/s11738-008-0169-z]
[25]
Safavi, K. Evaluation of using nanomaterial in tissue culture media and biological activity. In: 2nd international conference on ecological, environmental and biological sciences (EEBS’2012), Bali, Indonesia, 2012.
[26]
Kumar, P.P.; Loh, C.S. Plant tissue culture for biotechnology. In: Plant biotechnology and agriculture; Altman, A. Elsevier Science & Technology: Jerusalen, Israel, 2012; p. 131-138.
[27]
Leifert, C.; Cassells, A.C. Microbial hazards in plant tissue and cell cultures. In Vitro Cell. Dev. Biol. Plant, 2001, 37, 133-138.
[http://dx.doi.org/10.1007/s11627-001-0025-y]
[28]
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: nano-antimicrobial materials; Evid Base Compl Alternative Med, 2015, p. 246012.
[29]
Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis., 2009, 93(10), 1037-1043.
[http://dx.doi.org/10.1094/PDIS-93-10-1037] [PMID: 30754381]
[30]
Ismail, M.; Prasad, R.; Ibrahim, A.I.M.; Ahmed, I.S.A. Modern prospects of nanotechnology in plant pathology. In: Nanotechnology; Prasad, R.; Kumar, M.; Kumar, V., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 305-317.
[http://dx.doi.org/10.1007/978-981-10-4573-8_15]
[31]
Sarmast, M.K.; Salehi, H. Silver nanoparticles: an influential element in plant nanobiotechnology. Mol. Biotechnol., 2016, 58(7), 441-449.
[http://dx.doi.org/10.1007/s12033-016-9943-0] [PMID: 27146282]
[32]
Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym., 2008, 72, 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.025]
[33]
Min, J.S.; Kim, K.S.; Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, S.B.; Jung, M.; Lee, Y.S. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol. J., 2009, 25, 376-380.
[http://dx.doi.org/10.5423/PPJ.2009.25.4.376]
[34]
Solgi, M.; Kafi, M.; Taghavi, T.S.; Naderi, R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers, postharvest. Biotechnology (N. Y.), 2009, 53, 155-158.
[35]
Safavi, K.; Mortazaeinezahad, F.; Esfahanizadeh, M.; Asgari, M.J. In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad. Sci. Eng. Technol., 2011, 55, 372-373.
[36]
Mandeh, M.; Omidi, M.; Rahaie, M. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol. Trace Elem. Res., 2012, 150(1-3), 376-380.
[http://dx.doi.org/10.1007/s12011-012-9480-z] [PMID: 22855306]
[37]
Safavi, K. Effect of titanium dioxide nanoparticles in plant tissue culture media for enhance resistance to bacterial activity. Bull Environ Pharmacol Life Sci, 2014, 3, 163-166.
[38]
Mahmoodzadeh, H.; Nabavi, M.; Kashefi, H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola Brassica napus. J Ornam Hortic Plants, 2000, 3, 25-32.
[39]
Fakhrfeshani, M.; Bagheri, A.; Sharifi, A. Disinfecting effects of nano silver fluids in gerbera (Gerbera jamesonii) capitulum tissue culture. J. Biol. Environ. Sci., 2012, 6(17), 121-127.
[40]
Mahna, N.; Vahed, S.Z.; Khan, S. Plant in vitro culture goes nano: Nanosilver-mediated decontamination of ex vitro explants. J. Nanomed. Nanotechnol., 2013, 4(2), 1000161.
[http://dx.doi.org/10.4172/2157-7439.1000161]
[41]
Alharby, M.R.; Metwali, H.F.E.; Fuller, M.P.; Aldhebiani, A.Y. Regeneration, element content and antioxidant enzyme activity in tomato (Solanum Lycopersicum Mill.) under salt stress. Arch. Biol. Sci., 2016, 68(4), 723-735.
[http://dx.doi.org/10.2298/ABS151105017A]
[42]
Helaly, M.N.; El-Metwally, M.A.; El-Hoseiny, H.; Omar, S.A.; El-Sheery, N.I. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust. J. Crop Sci., 2014, 8, 612-624.
[43]
Singhal, U.; Khanuja, M.; Prasad, R.; Varma, A. Impact of synergistic association of ZnOnanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front. Microbiol., 2017, 8, 1909.
[http://dx.doi.org/10.3389/fmicb.2017.01909] [PMID: 29089926]
[44]
Abd-elsalam, K.A. Fungal genomics and biology nanoplatforms for plant pathogenic fungi management. Fungal Genom. Biol., 2013, 2, e107.
[45]
Jeong, B.R.; Sivanesan, I. Direct adventitious shoot regeneration, in vitro flowering, fruiting, secondary metabolite content and antioxidant activity of Scrophularia takesimensis Nakai. Plant Cell Tissue Organ Cult., 2015, 123(3), 607-618.
[http://dx.doi.org/10.1007/s11240-015-0864-6]
[46]
Poborilova, Z.; Opatrilova, R.; Babula, P. Toxicity of aluminum oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot., 2013, 91, 1-11.
[http://dx.doi.org/10.1016/j.envexpbot.2013.03.002]
[47]
Mohammed Aloubaidi, H.K.; Mohammed-Ameen, A.S. The effect of (AgNO3) NPs on increasing of secondary metabolites of Calendula officinalis L. in vitro. Int. J. Pharmacol. Ther, 2014, 5, 267-272.
[48]
Javed, R.; Usman, M.; Yücesan, B.; Zia, M.; Gürel, E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem., 2017, 110, 94-99.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.032] [PMID: 27246994]
[49]
Desai, C.V.; Desai, H.B.; Suthar, K.P.; Singh, D.; Patel, R.M.; Taslim, A. Phytotoxicity of zinc nanoparticles and its influence on stevioside production in Stevia rebadiana Bertoni. Appl. Biol. Res., 2015, 17, 1-7.
[http://dx.doi.org/10.5958/0974-4517.2015.00001.4]
[50]
Bairu, M.W.; Aremu, A.O.; Van Staden, J. Somaclonal variation in plants: causes and detection methods. Plant Growth Regul., 2011, 63, 147-173.
[http://dx.doi.org/10.1007/s10725-010-9554-x]
[51]
Sivanesan, I.; Jeong, B.R. Identification of somaclonal variants in proliferating shoot cultures of Senecio cruentus cv. Tokyo Daruma. Plant Cell Tissue Organ Cult., 2012, 111, 247-253.
[http://dx.doi.org/10.1007/s11240-012-0186-x]
[52]
Atha, D.H.; Wang, H.; Petersen, E.J.; Cleveland, D.; Holbrook, R.D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol., 2012, 46(3), 1819-1827.
[http://dx.doi.org/10.1021/es202660k] [PMID: 22201446]
[53]
Tripathi, D.K.; Shweta, S.; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem., 2017, 110, 2-12.
[http://dx.doi.org/10.1016/j.plaphy.2016.07.030] [PMID: 27601425]
[54]
Kokina, I.; S¨ıedevskis, E.; Gerbreders, V.; Grauda, D.; Jerma ¨ıonoka, M.; Valaine, K.; Gavar^ane, I. Pigi‘oka, I.; Filipovi’es, M.; and Rashal, I. Proc. La. Acad. Sci., 2012, 66, 200-209.
[55]
Ewais, E.A.; Said, A.; Desouky, E.; Elshazly, H. Evaluation of Callus Responses of Solanum nigrum L. Exposed to Biologically Synthesized Silver Nanoparticles. Nanosci and Nanotech, 2015, 5(3), 45-56.
[http://dx.doi.org/10.5923/j.nn.20150503.01]
[56]
Bansod, S.; Bawskar, M.; Rai, M. In vitro effect of biogenic silver nanoparticles on sterilisation of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnol., 2015, 9(4), 239-245.
[http://dx.doi.org/10.1049/iet-nbt.2014.0031] [PMID: 26224354]
[57]
Vijayakumar, P.S.; Abhilash, O.U.; Khan, B.M.; Prasad, B.L.V. Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv. Funct. Mater., 2010, 20, 2416-2423.
[http://dx.doi.org/10.1002/adfm.200901883]
[58]
Pasupathy, K.; Lin, S.; Hu, Q.; Luo, H.; Ke, P.C. Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnol. J., 2008, 3(8), 1078-1082.
[http://dx.doi.org/10.1002/biot.200800021] [PMID: 18543240]
[59]
Naqvi, S.; Maitra, A.N.; Abdin, M.Z.; Akmal, M.; Arora, I.; Samim, M. Calcium phosphate nanoparticle mediated genetic transformation in plants. J. Mater. Chem., 2012, 22, 3500-3507.
[http://dx.doi.org/10.1039/c2jm11739h]
[60]
Zaytseva, O.; Neumann, G. Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric., 2016, 3, 17.
[http://dx.doi.org/10.1186/s40538-016-0070-8]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy