Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Gold Particles Recovery using Novel Reducing Agent with Regard to Continuous Approach

Author(s): Alireza Fotovat, Alireza Feizbakhsh* and Ali Bagheri Garmaroudi

Volume 18, Issue 5, 2022

Published on: 14 March, 2022

Page: [611 - 622] Pages: 12

DOI: 10.2174/1573413717666210322114205

Price: $65

Abstract

Background: Over 300 tonnes of gold are utilised in electronic devices every year all over the world. End-of-life of these electronic equipments offers a crucial recycling potential as a secondary gold supply. Electronic boards are among common and exploitable gold sources that are widely used in various industries. The aim of this paper is to use the gold element of electronic boards by adjusting its surface functionality and also its particle size to make this metal an adequate material to be used in various applications.

Methods: To achieve this purpose, by using acidic solutions and via up to bottom chemical synthesis method among physical, chemical, and biological methods and in addition, by transferring gold particle size from micrometer to nanometer (to gain good nano-dimension properties), the surfacearea- to-volume ratio will experience an increase such that new structural properties emerge, change, or improve.

Results: Analysis of the results using Fourier-Transform Infrared spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy have confirmed high-quality production and proper extraction of gold particles on a nanometer scale from electronic plates and confirmed the crystalline structure of extracted gold in the particle size range of 70-110 nm.

Conclusion: The main objective of this research is to derive and fabricate gold nanoparticles using oxidative chemical route using HCl and Aqua regia to produce gold nanoparticles on Nano dimension scale. Results have shown that gold nanoparticles are synthesized successfully via a chemical process. Moreover, acid concentration and reaction time have an enormous effect on the gold nanoparticle production procedure.

Keywords: Gold recovery, waste electronics, nano dimension, gold crystals, experimental design, reaction parameters.

[1]
Menon, S.; Rajeshkumar, S.; Kumar, V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. J Resource-Efficient Technologies, 2017, 3(4), 516-527.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[2]
Tatariants, M. Recovery of gold, other metallic and non-metallic components of full-size waste random access memory. J. Clean. Prod., 2018, 172, 2811-2823.
[http://dx.doi.org/10.1016/j.jclepro.2017.11.132]
[3]
Zhang, J. Gold nanoparticles for catalytic and potential biological applications. J Resource-Efficient Technologies, 2013, 10, 125-137.
[4]
Rocchetti, L.; Amato, A.; Beolchini, F. Printed circuit board recycling: A patent review. J. Clean. Prod., 2018, 178, 814-832.
[http://dx.doi.org/10.1016/j.jclepro.2018.01.076]
[5]
Saadatjoo, N. Recovery of gold from computer circuit board scraps: the study of the effect of different reductants. J Applied Chemisty, 2013, 8, 55-60.
[6]
Kanchi, S. Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: a green approach. Arab. J. Chem., 2018, 11, 247-255.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.006]
[7]
Li, F.M.; Shu, J.; Shirvani, M.; Li, Y.; Sun, Z.; Chen, S. Copper and gold recovery from CPU sockets by one-step slurry electrolysis. J. Clean. Prod., 2019, 213, 673-679.
[http://dx.doi.org/10.1016/j.jclepro.2018.12.161]
[8]
Lahtinen, E.; Kivijärvi, L.; Tatikonda, R.; Väisänen, A.; Rissanen, K.; Haukka, M. Selective recovery of gold from electronic waste using 3D-printed scavenger. J. ACS Omega, 2017, 2(10), 7299-7304.
[http://dx.doi.org/10.1021/acsomega.7b01215] [PMID: 31457304]
[9]
Joye, I.J.; McClements, D.J. Production of nanoparticles by anti-solvent precipitation for use in food systems. J Trends in Food Science & Technology, 2013, 34, 109-123.
[http://dx.doi.org/10.1016/j.tifs.2013.10.002]
[10]
Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M.V.; Cadavid, D.; Cabot, A. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev., 2017, 46(12), 3510-3528.
[http://dx.doi.org/10.1039/C6CS00567E] [PMID: 28470243]
[11]
Sau, T.K.; Rogach, A.L. Complex-shaped metal nanoparticles; Wiley & Sons: New York, 2012.
[http://dx.doi.org/10.1002/9783527652570]
[12]
Kitching, M.; Ramani, M.; Marsili, E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb. Biotechnol., 2015, 8(6), 904-917.
[http://dx.doi.org/10.1111/1751-7915.12151] [PMID: 25154648]
[13]
Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Ribeiro, M.R.; Pontes, M.J.; Nogueira, B.V.; Guimaraes, M.C. A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab. J. Chem., 2011, 13, 216-226.
[http://dx.doi.org/10.1016/j.arabjc.2017.04.003]
[14]
Rajeshkumar, S.; Malarkodi, C.; Vanaja, M.; Gnanajobitha, G.; Paulkumar, K.; Kannan, C.; Annadurai, G. Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. J Der Pharma Chemica, 2013, 5, 224-229.
[15]
Rajeshkumar, S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol., 2016, 14(1), 195-202.
[http://dx.doi.org/10.1016/j.jgeb.2016.05.007] [PMID: 30647615]
[16]
Soltani Nejad, M.; Shahidi Bonjar, G.H.; Khaleghi, N. Biosynthesis of gold nanoparticles using streptomyces fulvissimus isolate. J Nanomedicine, 2015, 2, 153-159.
[17]
Biradar, D.; Lingappa, K. Isolation and screening of gold nanoparticles by microbes. World J Sci Technol, 2012, 2, 20-22.
[18]
Ankamwar, B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. J. Chem., 2010, 7, 1334-1339.
[19]
Montes, M.; Mayoral, A.; Deepak, F.L.; Parsons, J.G.; Jose-Yacamán, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts. J. Nanopart. Res., 2011, 13(8), 3113-3121.
[http://dx.doi.org/10.1007/s11051-011-0230-5]
[20]
Gomes, C.P.; Almeida, M.F.; Loureiro, J.M. Gold recovery with ion exchange used resins. Separ. Purif. Tech., 2001, 24(1-2), 35-57.
[http://dx.doi.org/10.1016/S1383-5866(00)00211-2]
[21]
Syed, S. Recovery of gold from secondary sources—A review. Hydrometallurgy, 2012, 115, 30-51.
[http://dx.doi.org/10.1016/j.hydromet.2011.12.012]
[22]
Ogata, T.; Nakano, Y. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Res., 2005, 39(18), 4281-4286.
[http://dx.doi.org/10.1016/j.watres.2005.06.036] [PMID: 16221485]
[23]
Tasdelen, C.; Aktas, S.; Acma, E.; Guvenilir, Y. Gold recovery from dilute gold solutions using DEAE-cellulose. J Hydrometallurgy, 2009, 96(3), 253-257.
[http://dx.doi.org/10.1016/j.hydromet.2008.10.006]
[24]
Kunter, R.S.; Turney, J.R. Washington, Gold nanoparticles U.S. Patent 4,578,163,1986, 2002 28May;
[25]
Forrest, K.; Yan, D.; Dunne, R. Optimisation of gold recovery by selective gold flotation for copper-gold-pyrite ores. Miner. Eng., 2001, 14(2), 227-241.
[http://dx.doi.org/10.1016/S0892-6875(00)00178-3]
[26]
Maurer, J.H.; González-García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. J. Nanosci. Lett., 2016, 16(5), 2921-2925.
[http://dx.doi.org/10.1021/acs.nanolett.5b04319] [PMID: 26985790]
[27]
Pati, P.; McGinnis, S.; Vikesland, P.J. Waste not want not: life cycle implications of gold recovery and recycling from nanowaste. Environ. Sci. Nano, 2016, 3(5), 1133-1143.
[http://dx.doi.org/10.1039/C6EN00181E]
[28]
Wojnicki, M.; Rudnik, E. Luty-Błocho, M.; Socha, R.P.; Pędzich, Z.; Fitzner, K.; Mech, K. Kinetic studies of gold recovery from diluted chloride aqueous solutions using activated carbon organosorb 10 CO. Aust. J. Chem., 2016, 69(3), 254-261.
[http://dx.doi.org/10.1071/CH15275]
[29]
Pham, V.A.; Ting, Y.P. Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. J In. Adv. Mat. Res., 2009, 71, 661-664.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.71-73.661]
[30]
Whitehead, J.A.; Zhang, J.; McCluskey, A.; Lawrance, G.A. Comparative leaching of a sulfidic gold ore in ionic liquid and aqueous acid with thiourea and halides using Fe (III) or HSO5- oxidant. Hydrometallurgy, 2009, 3(98), 276-280.
[http://dx.doi.org/10.1016/j.hydromet.2009.05.012]
[31]
Whitehead, J.A.; Lawrance, G.A.; McCluskey, A. Green leaching: recyclable and selective leaching of gold-bearing ore in an ionic liquid. Green Chem., 2004, 6(7), 313-315.
[http://dx.doi.org/10.1039/B406148A]
[32]
Atalay, T.S. Kılıçarslan, A.; Sarıdede, M.N. Recovery of Metals from Waste Printed Circuit Boards by Leaching with 1-Ethyl-3-Methyl-Imidazolium Hydrogen Sulfate Ionic Liquid. Energy Technol. (Weinheim), 2015, 7, 201-207.
[33]
Kilicarslan, A.; Saridede, M.N.; Stopic, S.; Friedrich, B. Use of ionic liquid in leaching process of brass wastes for copper and zinc recovery. Int. J. Miner. Metall. Mater., 2014, 21(2), 138-143.
[http://dx.doi.org/10.1007/s12613-014-0876-y]
[34]
Li, L.; Dunn, J.B.; Zhang, X.X.; Gaines, L.; Chen, R.J.; Wu, F.; Amine, K. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Power Sources, 2013, 233, 180-189.
[http://dx.doi.org/10.1016/j.jpowsour.2012.12.089]
[35]
Bas, A.D.; Yazici, E.Y.; Deveci, H. Recovery of silver from X-ray film processing effluents by hydrogen peroxide treatment. Hydrometallurgy, 2012, 121, 22-27.
[http://dx.doi.org/10.1016/j.hydromet.2012.04.011]
[36]
Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3), 788-800.
[http://dx.doi.org/10.1021/la9502711]
[37]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[38]
Karthick, V.; Ganesh Kumar, V.; Maiyalagan, T.; Deepa, R.; Govindaraju, K.; Rajeswari, A.; Stalin Dhas, T. Green synthesis of well dispersed nanoparticles using leaf extract of medicinally useful adhatoda vasica nees. Micro Nanosyst., 2012, 4(3), 192-198.
[http://dx.doi.org/10.2174/1876402911204030192]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy