Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A New Mode of Thinfilm and Nanofiber for Burst Release of the Drug for Alzheimer Disease; A Complete Scenario from Dispersible Polymer to Formulation Methodology

Author(s): Keshireddy AnjiReddy and S. Karpagam Subramanian*

Volume 22, Issue 6, 2022

Published on: 14 January, 2022

Page: [949 - 966] Pages: 18

DOI: 10.2174/1389557521666211008152446

Price: $65

conference banner
Abstract

Alzheimer's Disease (AD) is usually caused by intellectual deterioration which occurs due to the degeneration of cholinergic neurons. Donepezil is employed for cholinesterase enzyme Inhibition (ChEI) to treat AD in a wider population. Over the years, researchers finding difficulties prompted through traditional dosage forms particularly in geriatric patience. To avoid swallowing difficulties brought about with the aid of the AD population, researchers majorly focused on Oral Thin-Film technology (OTF). This technology strongly eliminates issues caused by solid oral dosage forms. It is one of the quality strategies to alternate a drug that is used in the first-pass metabolism or pre systematic metabolism. The solubility of the drug is a bigger problem and it can expand by way of lowering particle size. Nanofibers are need of the day to minimize the drug particles at the submicron stage which can increase the drug release rate drastically. It can be prepared by Electrospinning technology by incorporating polymeric material into poorly soluble drugs. Mostly natural and biodegradable polymers prefer in all pharmaceutical preparations. Polymers employed for oral delivery should be stable, possess mucoadhesive properties, and should release the drug by diffusion, degradation, and swelling mechanism. The objective of the present review explains various thin-film and nanofiber formulations used for faster drug release in the treatment of Alzheimer's disease.

Keywords: Alzheimer disease, donepezil, oral thin film, nanofiber, natural and synthetic polymers, drug delivery.

« Previous
Graphical Abstract

[1]
Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology, 2013, 80(19), 1778-1783.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[2]
Davis, B.; Sadik, K. Circadian cholinergic rhythms: Implications for cholinesterase inhibitor therapy. Dement. Geriatr. Cogn. Disord., 2006, 21(2), 120-129.
[http://dx.doi.org/10.1159/000090630] [PMID: 16391473]
[3]
Whitehouse, P.J.; Price, D.L.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol., 1981, 10(2), 122-126.
[http://dx.doi.org/10.1002/ana.410100203] [PMID: 7283399]
[4]
Kelley, B.J.; Petersen, R.C. Alzheimer’s disease and mild cognitive impairment. Neurol. Clin., 2007, 25(3), 577-609.
[http://dx.doi.org/10.1016/j.ncl.2007.03.008] [PMID: 17659182]
[5]
Jann, M.W.; Shirley, K.L.; Small, G.W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet., 2002, 41(10), 719-739.
[http://dx.doi.org/10.2165/00003088-200241100-00003] [PMID: 12162759]
[6]
Lopez, J.R.; Lyckman, A.; Oddo, S.; Laferla, F.M.; Querfurth, H.W.; Shtifman, A. Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J. Neurochem., 2008, 105(1), 262-271.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05135.x] [PMID: 18021291]
[7]
Kasai, M.; Nakamura, K.; Meguro, K. Alzheimer's disease in Japan and other countries: review of epidemiological studies in the last 10 years. Brain and nerve= Shinkei kenkyu no shinpo, 2010, 62, 667-678.
[8]
Tsao, J.W.; Heilman, K.M. Donepezil improved memory in multiple sclerosis in a randomized clinical trial, 2017.
[9]
Inglis, F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int. J. Clin. Pract. Suppl., 2002, (127), 45-63.
[PMID: 12139367]
[10]
Hansen, R.A.; Gartlehner, G.; Webb, A.P.; Morgan, L.C.; Moore, C.G.; Jonas, D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interv. Aging, 2008, 3(2), 211-225.
[PMID: 18686744]
[11]
Lombardo, I.; Coslett, S.; Liu, D.W.; Kishnani, K.S.; Zimmer, B.; Friedhoff, L. A large, randomized, double-blind, placebo-controlled study evaluating rvt-101, a neurotransmitter-targeted therapy, in subjects with mild-to-moderate Alzheimer’s disease on donepezil treatment: phase 3 mindset study design. Alzheimers Dement., 2016, 12, 1014.
[http://dx.doi.org/10.1016/j.jalz.2016.06.2090]
[12]
Rosini, M.; Simoni, E.; Caporaso, R.; Minarini, A. Multitarget strategies in Alzheimer’s disease: benefits and challenges on the road to therapeutics. Future Med. Chem., 2016, 8(6), 697-711.
[http://dx.doi.org/10.4155/fmc-2016-0003] [PMID: 27079260]
[13]
Roy, R.; Niccolini, F.; Pagano, G.; Politis, M. Cholinergic imaging in dementia spectrum disorders. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(7), 1376-1386.
[http://dx.doi.org/10.1007/s00259-016-3349-x] [PMID: 26984612]
[14]
Zhang, Z.; Chen, R.; An, W.; Wang, C.; Liao, G.; Dong, X.; Bi, A.; Yin, Z.; Luo, L. A novel acetylcholinesterase inhibitor and calcium channel blocker SCR-1693 improves Aβ25-35-impaired mouse cognitive function. Psychopharmacology (Berl.), 2016, 233(4), 599-613.
[http://dx.doi.org/10.1007/s00213-015-4133-5] [PMID: 26554390]
[15]
Coban, A.; Carr, R.L.; Chambers, H.W.; Willeford, K.O.; Chambers, J.E. Comparison of inhibition kinetics of several organophosphates, including some nerve agent surrogates, using human erythrocyte and rat and mouse brain acetylcholinesterase. Toxicol. Lett., 2016, 248, 39-45.
[http://dx.doi.org/10.1016/j.toxlet.2016.03.002] [PMID: 26965078]
[16]
Wilcock, G.; Howe, I.; Coles, H.; Lilienfeld, S.; Truyen, L.; Zhu, Y.; Bullock, R.; Kershaw, P. A long-term comparison of galantamine and donepezil in the treatment of Alzheimer’s disease. Drugs Aging, 2003, 20(10), 777-789.
[http://dx.doi.org/10.2165/00002512-200320100-00006] [PMID: 12875613]
[17]
Bird, T.D. Genetic aspects of Alzheimer disease. Genet. Med., 2008, 10(4), 231-239.
[http://dx.doi.org/10.1097/GIM.0b013e31816b64dc] [PMID: 18414205]
[18]
Sozio, P.; Cerasa, L.S.; Marinelli, L.; Di Stefano, A. Transdermal donepezil on the treatment of Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2012, 8, 361-368.
[PMID: 22942647]
[19]
Di Stefano, A.; Iannitelli, A.; Laserra, S.; Sozio, P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv., 2011, 8(5), 581-603.
[http://dx.doi.org/10.1517/17425247.2011.561311] [PMID: 21391862]
[20]
Hogan, D.B. Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can. J. Psychiatry, 2014, 59(12), 618-623.
[http://dx.doi.org/10.1177/070674371405901202] [PMID: 25702360]
[21]
Farlow, M.R.; Salloway, S.; Tariot, P.N.; Yardley, J.; Moline, M.L.; Wang, Q.; Brand-Schieber, E.; Zou, H.; Hsu, T.; Satlin, A. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10 mg/d) donepezil in moderate to severe Alzheimer’s disease: A 24-week, randomized, double-blind study. Clin. Ther., 2010, 32(7), 1234-1251.
[http://dx.doi.org/10.1016/j.clinthera.2010.06.019] [PMID: 20678673]
[22]
Bandari, S.; Mittapalli, R.K.; Gannu, R. Orodispersible tablets: An overview; Asian J. Pharm, 2014, p. 2.
[23]
Seltzer, B. Donepezil: An update. Expert Opin. Pharmacother., 2007, 8(7), 1011-1023.
[http://dx.doi.org/10.1517/14656566.8.7.1011] [PMID: 17472546]
[24]
Farlow, M.; Veloso, F.; Moline, M.; Yardley, J.; Brand-Schieber, E.; Bibbiani, F.; Zou, H.; Hsu, T.; Satlin, A. Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer’s disease. BMC Neurol., 2011, 11, 57.
[http://dx.doi.org/10.1186/1471-2377-11-57] [PMID: 21612646]
[25]
Siddiqui, M.N.; Garg, G.; Sharma, P.K. A short review on “A novel approach in oral fast dissolving drug delivery system and their patents”. Adv. Biol. Res. (Faisalabad), 2011, 5, 291-303.
[26]
Han, X.; Yan, J.; Ren, L.; Xue, M.; Yuan, Z.; Wang, T.; Yan, Z.; Yin, L.; Yang, L.; Qin, C. Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease. J. Drug Deliv. Sci. Technol., 2019, 54, 101321.
[http://dx.doi.org/10.1016/j.jddst.2019.101321]
[27]
Malke, S.; Shidhaye, S.; Kadam, V. Formulation and evaluation of oxcarbazepine fast dissolve tablets. Indian J. Pharm. Sci., 2007, 69, 211.
[http://dx.doi.org/10.4103/0250-474X.33145]
[28]
Trottet, L.; Maibach, H. Choosing Topical Drug Candidate: Historical Overview, Dermal Drug Selection, and Development; Springer, 2017, pp. 15-28.
[http://dx.doi.org/10.1007/978-3-319-59504-7_2]
[29]
Mazumder, S.; Pavurala, N.; Manda, P.; Xu, X.; Cruz, C.N.; Krishnaiah, Y.S.R. Quality by Design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films. Int. J. Pharm., 2017, 527(1-2), 151-160.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.048] [PMID: 28549972]
[30]
Liu, C.; Chang, D.; Zhang, X.; Sui, H.; Kong, Y.; Zhu, R.; Wang, W. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: Formulation development, In Vitro and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2957-2964.
[http://dx.doi.org/10.1208/s12249-017-0777-2] [PMID: 28462465]
[31]
Alayoubi, A.; Haynes, L.; Patil, H.; Daihom, B.; Helms, R.; Almoazen, H. Development of a fast dissolving film of epinephrine hydrochloride as a potential anaphylactic treatment for pediatrics. Pharm. Dev. Technol., 2017, 22(8), 1012-1016.
[http://dx.doi.org/10.3109/10837450.2015.1131715] [PMID: 26740126]
[32]
Kim, Y.S.; Shin, J.H. Fast-dissolving oral film preparation comprising aripiprazole; Google Patents, 2017.
[33]
Prabhu, S.C.; Parsekar, H.; Shetty, A.; Monteiro, S.S.; Azharuddin, M.; Shabaraya, A. A Review on Fast Dissolving Sublingual Films for Systemic Drug Delivery. Int. J. Pharm. Chem. Sci., 2014, 3, 482-496.
[34]
Kathpalia, H.; Gupte, A. An introduction to fast dissolving oral thin film drug delivery systems: A review. Curr. Drug Deliv., 2013, 10(6), 667-684.
[http://dx.doi.org/10.2174/156720181006131125150249] [PMID: 24274635]
[35]
Joshua, J.M.; Hari, R.; Jyothish, F.K.; Surendran, S.A. Fast Dissolving Oral Thin Films: An Effective Dosage Form for Quick Releases. Drugs, 2016, 11, 12.
[36]
Thakur, N.; Bansal, M.; Sharma, N.; Yadav, G.; Khare, P. Overview “A novel approach of fast dissolving films and their patients”. Adv. Biol. Res. (Faisalabad), 2013, 7, 50-58.
[37]
Ratnaparkhi, M.P.; Mohanta, G.; Upadhyay, L. Review on: Fast dissolving tablet. J. Pharm. Res., 2015, 5-12.
[38]
Nair, V.S.; Saudagar, R.; Gondkar, S. A review on fast dissolving sublingual films for systemic drug delivery. World J. Pharm. Pharm. Sci., 2015, 4, 342-361.
[39]
Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J., 2016, 24(5), 537-546.
[http://dx.doi.org/10.1016/j.jsps.2015.02.024] [PMID: 27752225]
[40]
Patel, D.; Patel, M.; Upadhyay, P.; Shah, N.; Shah, S. A review on mouth dissolving film. Safety, 2015, 6, 8.
[41]
Tomar, A.; Sharma, K.; Chauhan, N.S.; Mittal, A.; Bajaj, U. Formulation and evaluation of fast dissolving oral film of dicyclomine as potential route of buccal delivery. Int. J. Drug Develop. Res., 2012.
[42]
Bala, R.; Pawar, P.; Khanna, S.; Arora, S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig., 2013, 3(2), 67-76.
[http://dx.doi.org/10.4103/2230-973X.114897] [PMID: 24015378]
[43]
El-Setouhy, D.A.; Abd El-Malak, N.S. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech, 2010, 11(3), 1018-1025.
[http://dx.doi.org/10.1208/s12249-010-9464-2] [PMID: 20532710]
[44]
Qin, Z-Y.; Jia, X-W.; Liu, Q.; Kong, B-H.; Wang, H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int. J. Biol. Macromol., 2019, 137, 224-231.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.224] [PMID: 31260763]
[45]
Shin, S-H.; Purevdorj, O.; Castano, O.; Planell, J.A.; Kim, H-W. A short review: Recent advances in electrospinning for bone tissue regeneration. J. Tissue Eng., 2012, 3(1), 2041731412443530.
[http://dx.doi.org/10.1177/2041731412443530] [PMID: 22511995]
[46]
Nayak, R. Introduction, Polypropylene Nanofibers; Springer, 2017, pp. 1-7.
[http://dx.doi.org/10.1007/978-3-319-61458-8]
[47]
Shatil shahriar, S. M, Mondal J, Nazmul Hasan M, Revuri, V, Lee, D. Y, Lee Y-K. Electrospinning Nanofibers for Therapeutics delivery. Nanomaterials (Basel), 2019, 9(4), 532.
[48]
Koombhongse, S.; Liu, W.; Reneker, D.H. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci., B, Polym. Phys., 2001, 39, 2598-2606.
[http://dx.doi.org/10.1002/polb.10015]
[49]
Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Bending instability in electrospinning of nanofibers. J. Appl. Phys., 2001, 89, 3018-3026.
[http://dx.doi.org/10.1063/1.1333035]
[50]
Wunner, F.; Florczak, S.; Mieszczanek, P.; Bas, O.; De-Juan-Pardo, E.; Hutmacher, D. Electrospinning with polymer melts–state of the art and future perspectives, Comprehensive Biomaterials II; Elsevier, 2017, pp. 217-235.
[51]
Toniatto, T.V.; Rodrigues, B.V.M.; Marsi, T.C.O.; Ricci, R.; Marciano, F.R.; Webster, T.J.; Lobo, A.O. Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability. Mater. Sci. Eng. C, 2017, 71, 381-385.
[http://dx.doi.org/10.1016/j.msec.2016.10.026] [PMID: 27987721]
[52]
Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res., 2017, 50(8), 1976-1987.
[http://dx.doi.org/10.1021/acs.accounts.7b00218] [PMID: 28777535]
[53]
Wang, D.; Jin, Y.; Zhu, X.; Yan, D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog. Polym. Sci., 2017, 64, 114-153.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.09.005]
[54]
Wang, G.; Yu, D.; Kelkar, A.D.; Zhang, L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci., 2017.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.08.002]
[55]
Nagy, Z.K.; Nyúl, K.; Wagner, I.; Molnár, K.; Marosi, G. Electrospun water-soluble polymer mat for ultrafast release of Donepezil HCl. Express Polym. Lett., 2010, 4, 763-772.
[http://dx.doi.org/10.3144/expresspolymlett.2010.92]
[56]
Ahmed, I.; Ponery, A.S.; Nur-E-Kamal, A.; Kamal, J.; Meshel, A.S.; Sheetz, M.P.; Schindler, M.; Meiners, S. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces. Mol. Cell. Biochem., 2007, 301(1-2), 241-249.
[http://dx.doi.org/10.1007/s11010-007-9417-6] [PMID: 17294137]
[57]
Francis, M.P.; Moghaddam-White, Y.M.; Sachs, P.C.; Beckman, M.J.; Chen, S.M.; Bowlin, G.L.; Elmore, L.W.; Holt, S.E. Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells. Electrospinning, 2017, 1, 10-19.
[58]
Liu, S.; White, K.; Reneker, D.H. Controlled electrospinning to produce polymer nanofibers with specified diameters. In: Indust. Applicat. Soc. Ann. Meet., IEEE2017; 1-5.
[59]
Qin, X.; Subianto, S. Electrospun nanofibers for filtration applications, Electrospun Nanofibers; Elsevier, 2017, pp. 449-466.
[60]
Vyas, S.; Khar, R. Controlled drug delivery concepts and advances. Transdermal drug Delivery., 2008, 411-476.
[61]
Thassu, D.; Pathak, Y.; Deleers, M. Nanoparticulate drug-delivery systems: An overview. Drugs pharmaceut. Sci., 2007, 166, 1.
[http://dx.doi.org/10.1201/9781420008449.ch1]
[62]
Vogtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; Balzani, V. Coordination of Co2+ ions in the interior of poly (propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J. Am. Chem. Soc., 2000, 122, 10398-10404.
[http://dx.doi.org/10.1021/ja993745h]
[63]
Alam, M.A.; Jahan, A.; Khan, M.W. A review on dendrimers and metallodendrimers, the important compounds as catalyst in material chemistry. Adv. Mater., 2017, 6, 52.
[http://dx.doi.org/10.11648/j.am.20170605.11]
[64]
Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L. Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules, 2004, 5(2), 524-529.
[http://dx.doi.org/10.1021/bm030068h] [PMID: 15003016]
[65]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[66]
Mammen, M.; Choi, S-K.; Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl., 1998, 37(20), 2754-2794.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2754:AID-ANIE2754>3.0.CO;2-3] [PMID: 29711117]
[67]
Tziveleka, L.A.; Kontoyianni, C.; Sideratou, Z.; Tsiourvas, D.; Paleos, C.M. Novel functional hyperbranched polyether polyols as prospective drug delivery systems. Macromol. Biosci., 2006, 6(2), 161-169.
[http://dx.doi.org/10.1002/mabi.200500181] [PMID: 16456875]
[68]
Chen, S.; Zhang, X-Z.; Cheng, S-X.; Zhuo, R-X.; Gu, Z-W. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules, 2008, 9(10), 2578-2585.
[http://dx.doi.org/10.1021/bm800371n] [PMID: 18665638]
[69]
Kolhe, P.; Khandare, J.; Pillai, O.; Kannan, S.; Lieh-Lai, M.; Kannan, R. Hyperbranched polymer-drug conjugates with high drug payload for enhanced cellular delivery. Pharm. Res., 2004, 21(12), 2185-2195.
[http://dx.doi.org/10.1007/s11095-004-7670-x] [PMID: 15648249]
[70]
Jikei, M.; Kakimoto, M-a. Hyperbranched polymers: A promising new class of materials. Prog. Polym. Sci., 2001, 26, 1233-1285.
[http://dx.doi.org/10.1016/S0079-6700(01)00018-1]
[71]
Malik, N.; Duncan, R. Dendritic-platinate drug delivery system; Google Patents, 2003.
[72]
Sunder, A.; Krämer, M.; Hanselmann, R.; Mülhaupt, R.; Frey, H. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew. Chem. Int. Ed. Engl., 1999, 38(23), 3552-3555.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3552:AID-ANIE3552>3.0.CO;2-G] [PMID: 10602240]
[73]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A.K.; Thomas, T.; Mulé, J.; Baker, J.R., Jr Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res., 2002, 19(9), 1310-1316.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[74]
Bochek, A. Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russ. J. Appl. Chem., 2003, 76, 1711-1719.
[http://dx.doi.org/10.1023/B:RJAC.0000018669.88546.56]
[75]
Myasoedova, V.V. Physical chemistry of non-aqueous solutions of cellulose and its derivatives. J; Wiley, 2000.
[76]
Gross, R.A.; Scholz, C. Biopolymers from polysaccharides and agroproteins; ACS Publications, 2001.
[http://dx.doi.org/10.1021/bk-2001-0786]
[77]
Hinterstoisser, B.; Salmén, L. Application of dynamic 2D FTIR to cellulose. Vib. Spectrosc., 2000, 22, 111-118.
[http://dx.doi.org/10.1016/S0924-2031(99)00063-6]
[78]
Isogai, A. Chemical modification of cellulose in “Wood and cellulosic chemistry: revised and expanded; By Hon, D.N-S; Shiraishi, N., Ed.; Mercel Dekker, New York, 2001, pp. 559-624.
[79]
Luukkonen, P.; Schaefer, T.; Hellén, L.; Juppo, A.M.; Yliruusi, J. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int. J. Pharm., 1999, 188(2), 181-192.
[http://dx.doi.org/10.1016/S0378-5173(99)00219-7] [PMID: 10518674]
[80]
Edge, S.; Steele, D.F.; Chen, A.; Tobyn, M.J.; Staniforth, J.N. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int. J. Pharm., 2000, 200(1), 67-72.
[http://dx.doi.org/10.1016/S0378-5173(00)00343-4] [PMID: 10845687]
[81]
Ali, R.; Dashevsky, A.; Bodmeier, R. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets. Int. J. Pharm., 2017, 516(1-2), 3-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.069] [PMID: 27818241]
[82]
Guiastrennec, B.; Söderlind, E.; Richardson, S.; Peric, A.; Bergstrand, M. In Vitro and in vivo Modeling of Hydroxypropyl Methylcellulose (HPMC) matrix tablet erosion under fasting and postprandial status. Pharm. Res., 2017, 34(4), 847-859.
[http://dx.doi.org/10.1007/s11095-017-2113-7] [PMID: 28155077]
[83]
Lu, Z.; Fassihi, R. Mechanistic approach to understanding the influence of USP apparatus I and II on dissolution kinetics of tablets with different operating release mechanisms. AAPS PharmSciTech, 2017, 18(2), 462-472.
[http://dx.doi.org/10.1208/s12249-016-0535-x] [PMID: 27106916]
[84]
Kang, W-H.; Nguyen, H.V.; Park, C.; Choi, Y-W.; Lee, B-J. Modulation of microenvironmental pH for dual release and reduced in vivo gastrointestinal bleeding of aceclofenac using hydroxypropyl methylcellulose-based bilayered matrix tablet. Eur. J. Pharm. Sci., 2017, 102, 85-93.
[http://dx.doi.org/10.1016/j.ejps.2017.02.039] [PMID: 28263912]
[85]
Dinge, A.; Nagarsenker, M. Formulation and evaluation of fast dissolving films for delivery of triclosan to the oral cavity. AAPS PharmSciTech, 2008, 9(2), 349-356.
[http://dx.doi.org/10.1208/s12249-008-9047-7] [PMID: 18431674]
[86]
Reynolds, T.D.; Mitchell, S.A.; Balwinski, K.M. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethyl cellulose controlled-release matrix tablets. Drug Dev. Ind. Pharm., 2002, 28(4), 457-466.
[http://dx.doi.org/10.1081/DDC-120003007] [PMID: 12056539]
[87]
Mincea, M.; Negrulescu, A.; Ostafe, V. Preparation, modification, and applications of chitin nanowhiskers: A review. Rev. Adv. Mater. Sci., 2012, 30, 225-242.
[88]
LogithKumar. R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym., 2016, 151, 172-188.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.049] [PMID: 27474556]
[89]
Chaiyasan, W.; Praputbut, S.; Kompella, U.B.; Srinivas, S.P.; Tiyaboonchai, W. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea. Colloids Surf. B Biointerfaces, 2017, 149, 288-296.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.032] [PMID: 27771493]
[90]
Zadeh, S.; Rajabnezhad, S.; Zandkarimi, M.; Dahmardeh, S.; Mir, L. L. Mucoadhesive microspheres of chitosan and polyvinyl alcohol as a carrier for intranasal delivery of insulin: In Vitro and in vivo studies. In: MOJ Bioequiv; , 2017; 3, p. 00030.
[91]
Lizardi-Mendoza, J.; Monal, W.M.A.; Valencia, F.M.G. Chemical characteristics and functional properties of chitosan, Chitosan in the Preservation of Agricultural Commodities; Academic Press: Elsevier London, UK, 2016, pp. 3-31.
[92]
Fan, Z.; Fu, P.P.; Yu, H.; Ray, P.C. Theranostic nanomedicine for cancer detection and treatment. J. Food Drug Anal., 2014, 22(1), 3-17.
[http://dx.doi.org/10.1016/j.jfda.2014.01.001] [PMID: 24673900]
[93]
Gupta, S.; Vyas, S.P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci. Pharm., 2010, 78(4), 959-976.
[http://dx.doi.org/10.3797/scipharm.1001-06] [PMID: 21179328]
[94]
Garcia, M.T.J.; de Paula Freitas, C.; Graciano, T.B.; Coutinho, T.S.; Cressoni, C.B.; de Lima Pereira, S.A.; Shimano, M.M. Chitosan-based mucoadhesive gel for oral mucosal toluidine blue O delivery: The influence of a non-ionic surfactant. Photodiagn. Photodyn. Ther., 2017, 20, 48-54.
[http://dx.doi.org/10.1016/j.pdpdt.2017.08.009] [PMID: 28838759]
[95]
Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm., 2013, 455(1-2), 219-228.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.034] [PMID: 23886649]
[96]
Tømmeraas, K.; Köping-Höggård, M.; Vårum, K.M.; Christensen, B.E.; Artursson, P.; Smidsrød, O. Preparation and characterisation of chitosans with oligosaccharide branches. Carbohydr. Res., 2002, 337(24), 2455-2462.
[http://dx.doi.org/10.1016/S0008-6215(02)00334-8] [PMID: 12493230]
[97]
Niederhofer, A.; Müller, B.W. A method for direct preparation of chitosan with low molecular weight from fungi. Eur. J. Pharm. Biopharm., 2004, 57(1), 101-105.
[http://dx.doi.org/10.1016/S0939-6411(03)00189-9] [PMID: 14729085]
[98]
Anjireddy, K.; Karpagam, S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In: In Vitro and in vivo evaluation; , 2017; 105, pp. 131-142.
[99]
Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev., 2009, 61(6), 428-437.
[http://dx.doi.org/10.1016/j.addr.2009.03.009] [PMID: 19376175]
[100]
Kontoyianni, C.; Sideratou, Z.; Theodossiou, T.; Tziveleka, L.A.; Tsiourvas, D.; Paleos, C.M. A novel micellar PEGylated hyperbranched polyester as a prospective drug delivery system for paclitaxel. Macromol. Biosci., 2008, 8(9), 871-881.
[http://dx.doi.org/10.1002/mabi.200800015] [PMID: 18484566]
[101]
AnjiReddy. K.; Karpagam, S. Hyperbranched cellulose polyester of oral thin film and nanofiber for rapid release of donepezil; preparation and in vivo evaluation. Int. J. Biol. Macromol., 2019, 124, 871-887.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.224] [PMID: 30496855]
[102]
Wan, Q.; Schricker, S.R.; Culbertson, B.M. Methacryloyl derivatized hyperbranched polyester. 2. Photo-polymerization and properties for the dental resin system 2000.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy