Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Quinoxaline: A Chemical Moiety with Spectrum of Interesting Biological Activities

Author(s): Aastha Sharma, Aakash Deep, Minakshi Gupta Marwaha and Rakesh Kumar Marwaha*

Volume 22, Issue 6, 2022

Published on: 05 January, 2022

Page: [927 - 948] Pages: 22

DOI: 10.2174/1389557521666210927123831

Price: $65

Abstract

Quinoxaline (C8H6N2), commonly called 1,4-diazanaphthalene, 1,4-benzodiazine, or benzopyrazine, is a very potent nitrogenous heterocyclic moiety consisting of a benzene ring fused with the pyrazine ring. A number of different methods for the synthesis of quinoxaline derivatives have been reported in the literature, but the most effective method, commonly used for the synthesis of quinoxaline analogues involves the condensation of substituted o-phenylenediamines with 1, 2- dicarbonyl compounds in the presence of different catalyst(s). The presence of different types of catalysts and their concentration affects the overall yield of the product. Quinoxaline not only plays an important role as an organic reaction intermediate but also has a wide spectrum of interesting biological activities viz. antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal activity, etc. Some commercially available drug molecules containing quinoxaline moiety are echinomycin (as antibacterial, antineoplastic, and nucleic acid inhibitor), triostins (cyclic desipeptide as an antibacterial agent), dioxidine and mequindox (as antibacterial agents), carbadox (controlling swine dysentery), desoxycarbadox (as swine growth promoter) and panadipion (as hepatoprotective agent), etc. A large number of quinoxaline analogues possessing different biological activities and their synthetic procedures have been patented worldwide.

Keywords: Quinoxaline, synthesis, catalyst, antibacterial, antioxidant, anticancer, patent information.

Graphical Abstract

[1]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[2]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10, 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G]
[3]
Bhadoriya, U.; Jain, D.K. Fused heterocycles as a potent biological agent; Recent advancement. Int. J. Pharm. Sci. Res., 2016, 7(5), 1874.
[4]
Sunisha, K.; Subran, S.K.; Paira, P. Synthesis and pharmacological applications of certain quinoxaline analogues: A review. Curr. Bioact. Compd., 2017, 13, 186-212.
[5]
Carta, A.; Paglietti, G.; Rahbar Nikookar, M.E.; Sanna, P.; Sechi, L.; Zanetti, S. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem., 2002, 37(5), 355-366.
[http://dx.doi.org/10.1016/S0223-5234(02)01346-6] [PMID: 12008050]
[6]
Peraman, R.; Kuppusamy, R.; Killi, S.K.; Reddy, Y.P. New conjugates of quinoxaline as potent antitubercular and antibacterial agents. Int. J. Med. Chem., 2016, 2016, 6471352.
[http://dx.doi.org/10.1155/2016/6471352] [PMID: 27051530]
[7]
Alswah, M.; Bayoumi, A.H.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H.E.A. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo [4, 3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48.
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[8]
Sahu, R.; Tiwari, S.; Chandra, J.K.; Patel, P.K. Synthesis and anticonvulsant activity of some novel semicarbazone derivatives containing quinoxaline moiety. Int. J. Pharm. Sci. Res., 2012, 3(11), 4549-4553.
[9]
Kumar, S.; Kumar, N.; Drabu, S.; Minhaj, M.A. Synthesis of 2-(3-methyl-2-oxoquinoxalin-1 (2H)-yl) acetamide-based azetidinone derivatives as potent antibacterial and antifungal agents. J. Chem. Sci., 2013, 125(1), 129-139.
[http://dx.doi.org/10.1007/s12039-012-0354-x]
[10]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Ancizu, S.; Pérez-Silanes, S.; Aldana, I.; Monge, A. Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett., 2007, 17(23), 6439-6443.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.002] [PMID: 17942306]
[11]
Zhang, M.; Dai, Z.C.; Qian, S.S.; Liu, J.Y.; Xiao, Y.; Lu, A.M.; Zhu, H.L.; Wang, J.X.; Ye, Y.H. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives. J. Agric. Food Chem., 2014, 62(40), 9637-9643.
[http://dx.doi.org/10.1021/jf504359p] [PMID: 25229541]
[12]
Puratchikody, A.; Natarajan, R.; Jayapal, M.; Doble, M. Synthesis, in vitro antitubercular activity and 3D-QSAR of novel quinoxaline derivatives. Chem. Biol. Drug Des., 2011, 78(6), 988-998.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01246.x] [PMID: 21951363]
[13]
Cogo, J.; Cantizani, J.; Cotillo, I.; Sangi, D.P.; Corrêa, A.G.; Ueda-Nakamura, T.; Filho, B.P.D.; Martín, J.J.; Nakamura, C.V. Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents. Bioorg. Med. Chem., 2018, 26(14), 4065-4072.
[http://dx.doi.org/10.1016/j.bmc.2018.06.033] [PMID: 30100019]
[14]
Henen, M.A.; El Bialy, S.A.; Goda, F.E.; Nasr, M.N.; Eisa, H.M. [1, 2, 4] Triazolo [4,3-a] quinoxaline: synthesis, antiviral, and antimicrobial activities. Med. Chem. Res., 2012, 21(9), 2368-2378.
[http://dx.doi.org/10.1007/s00044-011-9753-7]
[15]
Kulkarni, N.V.; Revankar, V.K.; Kirasur, B.N.; Hugar, M.H. Transition metal complexes of thiosemicarbazones with quinoxaline hub: An emphasis on antidiabetic property. Med. Chem. Res., 2012, 21(5), 663-671.
[http://dx.doi.org/10.1007/s00044-011-9576-6]
[16]
Bachowska, B.; Matusiak, G. Synthesis of a new conjugated 2, 2'-(1,4-phenylenedivinylene) bis-quinoxaline and a series of styryl derivatives of quinoxaline and quinoline as promising electro-and photoluminescent materials. Chem. Heterocycl. Compd., 2009, 45(1), 95-100.
[http://dx.doi.org/10.1007/s10593-009-0229-3]
[17]
Jaung, J.Y. Synthesis and halochromism of new quinoxaline fluorescent dyes. Dyes Pigm., 2006, 71(3), 245-250.
[http://dx.doi.org/10.1016/j.dyepig.2005.07.008]
[18]
Etzkorn, M.; Timmerman, J.C.; Brooker, M.D.; Yu, X.; Gerken, M. Preparation, structures and preliminary host-guest studies of fluorinated syn-bis-quinoxaline molecular tweezers. Beilstein J. Org. Chem., 2010, 6(1), 39.
[http://dx.doi.org/10.3762/bjoc.6.39] [PMID: 20502656]
[19]
da Silva, L.C.; da Costa, E.P.; Freitas, G.R.; de Souza, M.A.; Araújo, R.M.; Machado, V.G.; Menezes, F.G. Ascorbic acid-based quinoxaline derivative as a chromogenic chemosensor for Cu2+. Inorg. Chem. Commun., 2016, 70, 71-74.
[http://dx.doi.org/10.1016/j.inoche.2016.05.019]
[20]
Keri, R.S.; Pandule, S.S.; Budagumpi, S.; Nagaraja, B.M. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials. Arch. Pharm. (Weinheim), 2018, 351(5), e1700325.
[http://dx.doi.org/10.1002/ardp.201700325] [PMID: 29611626]
[21]
Noorulla, S.; Sreenivasulu, N. Anti-inflammatory activity of novel substituted quinoxaline heterocycles. Int. J. Pharm. Sci. Res., 2011, 2(9), 2337.
[22]
Husain, A.; Madhesia, D. Recent advances in pharmacological activities of quinoxaline derivatives. J. Pharm. Res., 2011, 4(3), 924-929.
[23]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A state of the art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[24]
Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A. Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives. Bioorg. Med. Chem., 2004, 12(13), 3711-3721.
[http://dx.doi.org/10.1016/j.bmc.2004.04.013] [PMID: 15186857]
[25]
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Ramirez-Calderon, G.; Beltrán-Hortelano, I.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; López de Cerain, A.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem., 2018, 158, 68-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063] [PMID: 30199706]
[26]
Ruiz, D.M.; Autino, J.C.; Quaranta, N.; Vázquez, P.G.; Romanelli, G.P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates. Scientif. World J., 2012, 2012, 174784.
[http://dx.doi.org/10.1100/2012/174784] [PMID: 22536123]
[27]
Shi, D.Q.; Dou, G.L. Efficient synthesis of quinoxaline derivatives catalyzed by p-toluenesulfonic acid under solvent-free conditions. Synth. Commun., 2008, 38(19), 3329-3337.
[http://dx.doi.org/10.1080/00397910802136664]
[28]
Heravi, M.M.; Taheri, S.; Bakhtiari, K.; Oskooie, H.A. On water: a practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4 5H2O. Catal. Commun., 2007, 8(2), 211-214.
[http://dx.doi.org/10.1016/j.catcom.2006.06.013]
[29]
Niknam, K.; Zolfigol, M.A.; Tavakoli, Z.; Heydari, Z. Metal hydrogen sulfates M(HSO4)n: As efficient catalysts for the synthesis of quinoxalines in EtOH at room temperature. J. Chin. Chem. Soc. (Taipei), 2008, 55(6), 1373-1378.
[http://dx.doi.org/10.1002/jccs.200800206]
[30]
Darabi, H.R.; Tahoori, F.; Aghapoor, K.; Taala, F.; Mohsenzadeh, F. NH4Cl-CH3OH: an efficient, acid-and metal-free catalyst system for the synthesis of quinoxalines. J. Braz. Chem. Soc., 2008, 19(8), 1646-1652.
[http://dx.doi.org/10.1590/S0103-50532008000800028]
[31]
Heravi, M.M.; Tehrani, M.H.; Bakhtiari, K.; Oskooie, H.A. Zn [(L) proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature. Catal. Commun., 2007, 8(9), 1341-1344.
[http://dx.doi.org/10.1016/j.catcom.2006.11.026]
[32]
Angibaud, P.R.; Querolle, O.A.G.; Berthelot, D. JC.; Meyer, C.; Willot, M.P.V.; Meerpoel, L. Quinoxaline and pyridopyrazine derivatives as P13K-beta inhibitors. I.N.P.A.S.S., 201917042802, 2018.
[33]
Wim, V.; Anna, H.S.; Celine, C.F.A.; Mark, J.R.; Domenico, B.D.F. Quinoxaline derivatives useful as FGFR kinase modulators. I.N.P.A.S.S. 201627035242, 2016.
[34]
Wadher, S.J.; Ingle, R.G.; Reddy, M.V.R.; Goswami, K.; Bhoj, P. Novel quinoxaline derivative against filariasis. I.N.P.A.S.S. 201621033464, 2018.
[35]
Mohammed, H.; Ngarita, K.; Jan, B.; Robert, B. Antiviral indolo [2,3- b] quinoxaline. I.N.P.A.S.S. 9508/DELNP/2015, 2015.
[36]
Srinivas, K. Quinoxaline-5-carboxamide derivatives and their antibacterial activity. I.N.P.A.S.S. 2430/CHE/2014, 2016.
[37]
Yonghua, G.; Sun, O.Y.; Zhe, W. Quinoxaline-containing compounds as hepatitis C virus inhibitors. I.N.P.A.S.S.3644/DELNP/2010, 2010.
[38]
Gmbh, A.Z. Quinoxaline derivatives and their use for treating benign and malignant tumour disorders. I.N.P.A.S.S. 3907/KOLNP/2011, 2012.
[39]
Corp, N.C.R. Chromogenic quinoxaline compounds. U.K. Patent GB1458178, 1976.
[40]
Jacobson, E.J. Oxygenated quinoxalines. WIPO WO1992004350,, 1992.
[41]
Young, V.V.; Bright, D.R. Quinoxaline adducts useful as anthelmintics. U.S. Patent US4348389, 1982.
[42]
Aslanian, R.G.; Biju, J.P.; Boyce, W.C.; Brown, C.W.; Chen, X.; Degrado, S.J.; Dhondi, P.K.; Dong, Li.; Fevrier, S.; Gauuan, J.P.; Huang, X.; Jiang, Q.; Kelley, E.H.; Leyhane, A.J.; Mazzola, J.R.D.; Mccormick, K.D.; Methot, J.L.; Palani, A.; Qin, J.; Rao, A.U.; Siliphaivanh, P.; Vaccaro, H.M.; Wu, J.; Xiao, D.; Yu, Y.; Zhang, H. Quinoxalines and aza-quinoxalines as CRTH2 receptor modulators., Australia Patent AU2011349524, 2016.
[43]
Komatsu, M.; Sato, H.; Taira, S.; Miyake, M.; Magata, K.; Yoshida, H.; Ueyama, A.; Nishi, T. Quinoxaline derivative as antidiabetic agent., WIPO Patent WO1995009159,, 1995.
[44]
Johnston, J.L. Combinations of quinoxaline-di-N-oxides and tetracycline antibiotic. U.K. Patent., GB1201057,, 1970.
[45]
Zhu, Y.L.; Qian, X. Quinoxaline-oxy-phenyl derivatives as kinase inhibitors. European Patent Office EP2806874B1, 2017.
[46]
Tanaka, I.; Hiroshi Arato, H.; Wakabayashi, T. Quinoxaline compounds or a combination thereof with o-dichlorobenzene for use against animal coccidiosis., Europ. Pat. Office, EP0085907A1,, 1986.
[47]
Soo, B.H.; Hyup, J.Y.; Suk, J.L.; Hyun, O.M.; Seok, S.S.; Young, W.B. A novel quinoxaline compound for ultraviolet absorbers., South Korea Pat., KR101684671B1,, 2012.
[48]
Zhongzhu, C.; Zhigang, X. Quinoxaline azetidinones compound preparation and application of quinoxaline azetidinones compound in tumour resistance., Espacenet Pat. Search, CN107353287A,, 2017.
[49]
Dongmei, C.; Menghong, D.; Lingli, H.; Panpan, L.; Zhenli, L.; Yuanhu, P.; Dapeng, P.; Yanfei, T.; Xu, W.; Yulian, W.; Shuyu, X.; Zonghui, Y. Quinoxaline-N1, N4-dioxide derivatives with antimicrobial activity. Espacenet Pat. Search, CN105601575A, 2016.
[50]
Wenhu, B.; Weimin, H.; Cun, P.; Longyong, X. Synthesizing method of quinoxaline-2(1H)-ketoneC-3-aroyl compound. Espacenet Pat. Search, CN109535087A 2019.
[51]
Gerald, B.; Peter, B.; Axel, C.; Henrik, D.; Zoltan, G.; Peter, H.; Balint, H.B.; Zoltan, H.; Gyoergy, K.; Alexander, K.; Jenoe, M.; Sabine, O.; Laszlo, O.; Janos, P.; Istvan, S.; Zsolt, S.; Frigyes, W. Quinoxaline derivatives as effective compounds against infectious disease., Espacenet Pat. Search, WO02094796A2,, 2002.
[52]
Kiran, G.; Laxminarayana, E.; Thirumala Chary, M.; Ravinder, M. A green synthesis of quinoxaline derivatives & their biological actives. Int. J. Appl. Chem., 2017, 13, 421-432.
[53]
Tarpada, U.P.; Thummar, B.B.; Raval, D.K. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arab. J. Chem., 2017, 10, S2902-S2907.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.021]
[54]
Singh, D.P.; Hashim, S.R.; Singhal, R.G. Anti-inflammatory activity of some new thioether derivatives of quinoxaline. Int. J. Drug Dev. Res., 2010, 2, 810-815.
[55]
Alswah, M.; Ghiaty, A.; El-Morsy, A.; El-Gamal, K. Synthesis and biological evaluation of some [1, 2, 4] triazolo [4, 3-a] quinoxaline derivatives as novel anticonvulsant agents. ISRN Org. Chem., 2013, 2013, 587054.
[http://dx.doi.org/10.1155/2013/587054] [PMID: 24198971]
[56]
Ramalingam, P.; Ganapaty, S.; Rao, C.B. In vitro antitubercular and antimicrobial activities of 1-substituted quinoxaline-2, 3 (1H, 4H)-diones. 2010, 20(1), 406-408.
[57]
Robinson, R.S.; Taylor, R.J. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett, 2005, 06, 1003-1005.
[58]
Madhav, B.; Murthy, S.N.; Reddy, V.P.; Rao, K.R.; Nageswar, Y.V.D. Biomimetic synthesis of quinoxalines in water. Tetrahedron Lett., 2009, 50(44), 6025-6028.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.033]
[59]
Bhosale, R.S.; Sarda, S.R.; Ardhapure, S.S.; Jadhav, W.N.; Bhusare, S.R.; Pawar, R.P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst. Tetrahedron Lett., 2005, 46(42), 7183-7186.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.080]
[60]
Islami, M.R.; Hassani, Z. One-pot and efficient protocol for synthesis of quinoxaline derivatives. ARKIVOC, 2008, 15, 280-287.
[http://dx.doi.org/10.3998/ark.5550190.0009.f24]
[61]
Cho, C.S.; Ren, W.X.; Shim, S.C. Ketones as a new synthon for quinoxaline synthesis. Tetrahedron Lett., 2007, 48(27), 4665-4667.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.044]
[62]
More, S.V.; Sastry, M.N.V.; Wang, C.C.; Yao, C.F. Molecular iodine: A powerful catalyst for the easy and efficient synthesis of quinoxalines. Tetrahedron Lett., 2005, 46(37), 6345-6348.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.026]
[63]
Nakhate, A.V.; Rasal, K.B.; Deshmukh, G.P.; Gupta, S.S.R.; Mannepalli, L.K. Synthesis of quinoxaline derivatives from terminal alkynes and o-phenylenediamines by using copper alumina catalyst. J. Chem. Sci., 2017, 129(11), 1761-1769.
[http://dx.doi.org/10.1007/s12039-017-1393-0]
[64]
Kalinin, A.A.; Mamedov, V.A. Synthesis of 3-Alkylquinoxalin-2(1H)-ones via Grignard Reaction. Russ. J. Org. Chem., 2009, 45(7), 1098-1101.
[http://dx.doi.org/10.1134/S1070428009070185]
[65]
Khalafy, J.; Habashi, B.; Marjani, A.; Moghadam, P. The synthesis of 2-arylquinoxaline derivatives. Curr. Chem. Lett., 2012, 1(3), 139-146.
[http://dx.doi.org/10.5267/j.ccl.2012.5.002]
[66]
Sajjadifar, S.; Azizkhania, V.; Pal, K.; Jabbari, H.; Pouralimardan, O.; Divsar, F.; Hamidi, H. Characterization of catalyst: Comparison of brønsted and lewis acidic power in boron sulfonic acid as a heterogeneous catalyst in green synthesis of quinoxaline derivatives. Chem. Methodol., 2019, 3(2), 226-236.
[67]
Moshkina, T.N.; Nosova, E.V.; Lipunova, G.N.; Valova, M.S.; Charushin, V.N. New 2,3‐Bis(5‐arylthiophen‐2‐yl)quinoxaline derivatives: Synthesis and photophysical properties. Asian J. Org. Chem., 2018, 7(6), 1080-1084.
[http://dx.doi.org/10.1002/ajoc.201800217]
[68]
Jaiswal, D.; Tiwari, J.; Singh, S.; Sharma, A.K.; Singh, J.; Singh, J. Rose Bengal Catalyzed Coupling of 1, 2‐dicarbonyls and phenylene 1,2‐diamines: Visible‐Light Mediated Synthesis of Quinoxalines. Chem. Select., 2019, 4(29), 8713-8718.
[69]
Godino-Ojer, M.; Shamzhy, M.; Čejka, J.; Pérez-Mayoral, E. Basolites: A type of metal organic frameworks highly efficient in the one-pot synthesis of quinoxalines from α-hydroxy ketones under aerobic conditions. Catal. Today, 2019.
[http://dx.doi.org/10.1016/j.cattod.2019.08.00]
[70]
Zhang, H.; Shen, J.; Yang, Z.; Cui, X. PIDA-mediated intramolecular oxidative C–N bond formation for the direct synthesis of quinoxalines from enaminones. RSC Advances, 2019, 9(14), 7718-7722.
[http://dx.doi.org/10.1039/C9RA01200A]
[71]
Antoniotti, S.; Duñach, E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett., 2002, 43(22), 3971-3973.
[http://dx.doi.org/10.1016/S0040-4039(02)00715-3]
[72]
Meshram, G.A.; Patil, V.D. Efficient synthesis of benzimidazole and quinoxaline derivatives with ZnO H2O2 under mild conditions. Int. J. Chem. Sci., 2010, 8, 119-131.
[73]
Alizadeh, A.; Ghasemzadeh, H.; Rezaiyehraad, R.; Xiao, H.P. Triethylammonium thiolate as an efficient reagent for synthesis of quinoxaline containing indandione substitution via sequential one-pot multicomponent reaction. J. Sulfur Chem., 2019, 40(6), 614-628.
[http://dx.doi.org/10.1080/17415993.2019.1633325]
[74]
Jiang, W.; Sun, W.; Zhou, Y.; Li, Y. Integration of Pd and Cu on polymer: a powerful bimetallic heterogeneous catalyst for sequential synthesis of quinoxalines. Res. Chem. Intermed., 2019, 45(11), 5535-5547.
[http://dx.doi.org/10.1007/s11164-019-03918-w]
[75]
Rashidizadeh, A.; Ghafuri, H. g-C3N4/Ni nanocomposite: An efficient and eco-friendly recyclable catalyst for the synthesis of quinoxalines. MDPI, 2019, 9(1), 49.
[http://dx.doi.org/10.3390/ecsoc-22-05651]
[76]
Xekoukoulotakis, N.P.; Maroulis, H.C.P.; Maroulis, A.J. Synthesis of quinoxalines by cyclization of α-arylimino oximes of α-dicarbonyl compounds. Tetrahedron Lett., 2000, 41(52), 10299-10302.
[http://dx.doi.org/10.1016/S0040-4039(00)01847-5]
[77]
Puratchikody, A.; Natarajan, R.; Doble, M.; Iswarya, S.H.; Vijayabharathi, R. Synthesis, leptospirocidal activity and QSAR analysis of novel quinoxaline derivatives. Med. Chem., 2013, 9(2), 275-286.
[http://dx.doi.org/10.2174/1573406411309020010] [PMID: 22779788]
[78]
Reddy, V.R.; Tejaswara Rao, A.; Jayashree, A.; Varala, R. Synthesis and biological evaluation of functionalized quinoxaline derivatives. Pharma Chem., 2014, 6, 73-78.
[79]
Avula, S.; Komsani, J.R.; Koppireddi, S.; Yadla, R.; Kanugula, A.K.; Kotamraju, S. Synthesis and cytotoxicity of novel 6H-indolo [2,3-b] quinoxaline derivatives. Med. Chem. Res., 2013, 22(8), 3712-3718.
[http://dx.doi.org/10.1007/s00044-012-0373-7]
[80]
Gu, W.; Wang, S.; Jin, X.; Zhang, Y.; Hua, D.; Miao, T.; Tao, X.; Wang, S. Synthesis and evaluation of new quinoxaline derivatives of dehydroabietic acid as potential antitumor agents. Molecules, 2017, 22(7), 1154.
[http://dx.doi.org/10.3390/molecules22071154] [PMID: 28696365]
[81]
Shintre, S.A.; Ramjugernath, D.; Islam, M.S.; Mopuri, R.; Mocktar, C.; Koorbanally, N.A. Synthesis, in vitro antimicrobial, antioxidant, and antidiabetic activities of thiazolidine–quinoxaline derivatives with amino acid side chains. Med. Chem. Res., 2017, 26(9), 2141-2151.
[http://dx.doi.org/10.1007/s00044-017-1922-x]
[82]
Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2-a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett., 2018, 28(11), 2084-2090.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.043] [PMID: 29748048]
[83]
Pan, Y.; Li, P.; Xie, S.; Tao, Y.; Chen, D.; Dai, M.; Hao, H.; Huang, L.; Wang, Y.; Wang, L.; Liu, Z.; Yuan, Z. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 4146-4153.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.066] [PMID: 27426298]
[84]
Pradeep, K.A.; Kotra, V.I.; Priyadarshini, R.L.; Pratap, V.E. Synthesis, characterization and anti-inflammatory activity of novel quinoxaline derived chalcones. Int. J. Pharma Sci., 2015, 7(1), 243-246.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy