[2]
García-Miranda FA, Foste RCW. B rownson DAC, Whitehead KA, Banks CE. Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO2 nanowires. Sci Reports Nature 2019; 9(12814): 1-9.
[3]
Chen Y, Li Y, Zhao Y, Zhou H, Zhu H. Highly efficient hot electron harvesting from graphene before electron-hole thermalization. Sci Adv 2019; 5(11): eaax9958.
[4]
Navarro JJ, Pisarra M, Nieto-Ortega B, et al. Graphene catalyzes the reversible formation of a C–C bond between two molecules. Sci Adv 2018; 4(12): eaau9366.
[7]
Rickhaus P, M.-Hao Liu, Kurpas M, et al. The electronic thickness of graphene. Sci Adv 2020; 6(11): eaay8409.
[11]
Li W, Li D, Fu Q, Pan C. Conductive enhancement of copper/graphene composites based on a high-quality graphene. RSC Advances 2015; 5(98): 80428-33.
[13]
Gandil M. Propriétés magnéto-optiques de nanotubes de
carbone individuels suspendus. Thesis HAL CCSD Université
de Bordeaux 2017.
[14]
Berdyugin AI, Tsim B, Kumaravadivel P, et al. Minibands in twisted bilayer graphene probed by magnetic focusing. Sci Adv 2020; 6: 1-5.
[15]
Ojeda MM, Perez-Martinez AN, Renteria TVM, et al. Density functional theory calculations of the radial breathing mode in graphene quantum dots. J Nanophotonics 2019; 13(4): 0406011.
[16]
C.-Hu Chen, Hu S, J.-Fu Shih, et al. Effective synthesis of highly oxidized graphene oxide that enables wafer-scale nanopatterning: Preformed acidic oxidizing medium approach. Sci Rep 2017; 7(3908): 1-10.
[18]
Pradeep T. NANO: The essentials: Understanding nanoscience and nanotechnology. Mc Graw Hill 2007.
[19]
Rao CNR, Müller A, Cheetham AK. The chemistry of
nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA
2004.
[21]
Lin L, Li J, Yuan Q, et al. Nitrogen cluster doping for high
mobility/conductivity graphene films with milimeter sized
domains. Sci Adv 2019; 5: 1-9. eaaw8337
[24]
Gandil M, Matsuda K, Lounis B, Tamarat P. Spectroscopic signatures of spin-orbit coupling and free excitons in individual suspended carbon nanotubes. Phys Rev B 2019; 100(8): 081411.
[25]
Wei You J, Lan Z, Panoiu NC. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci Adv 2020; 6(13): 3910.
[27]
Azami D, Abdulkareem SS, Hassanzadeh A. Resonant enhancement of evanescent waves with graphene and double negative materials in the visible regime. J Nanophotonics 2020; 14(3): 036003.
[28]
Depine RA. Depine, IOP. Concise physics, graphene optics:
Electromagnetic solution of canonical problemas,
chapter 1: Electromagnetics of graphene. Morgan & Claypool
Publisher 2020; pp. 1-16.
[29]
Savastano M, Arranz-Mascarós P, Paz CM, et al. A new eterogeneous catalyst obtained via supramolecular decoration of graphene with a Pd2+ azamacrocyclic complex. Molecules 2019; 24(2714): 1-19.
[33]
Steinberg-Yfrach G, Liddell PA, Hung SC, Moore AL,
Gust D, Moore TA. Conversion of light energy to proton
potencial in liposomes by artificial photosynthetic reaction
centres. Nature letters 1997; 385: 239-41.
[35]
Fang Y, Tollin G. Light induced electron transfer reactions between chlorophyll and quinone in liposomes: Radical formation and de-cay in negatively charged vesicles. Photochem Photobiol 1983; 38(4): 429-39.
[40]
Pizzarello S, Cooper GW, Flynn GJ. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorites Early Solar Syst II 2003; 1: 625-51.
[41]
Bracamonte AG, Burkhardt KK, Veglia AV, Boudreau D.
Design of new photonic nanomaterials applied to the transference
and storage of high energy in the near and far field.
Bitácora digital journal. 8th Ed. Faculty of Chem. Sc, UNC
2017; pp. 1-18. Energy, 4.
[42]
Bracamonte AG, Boudreau D, Landis WW, Sahai N. From
origin of life to synthetic biology developments and biotechnological
applications. Bitácora Digital J 1: 9.
[43]
Kafafi ZH, Martín-Palma RJ, Nogueira AF, et al. Review: The role of photonics in energy. J Photonics Energy 2015; 5(050997): 1-45.
[44]
Sutty S, Williams G, Aziz H. Fullerene-based Schottky-junction organic solar cells: A brief review. J Photonics Energy 2014; 4: 040999.
[45]
Kavitha MK, Jaiswal M. Graphene: A review of optical properties and photonic applications. Asian J Phys 2016; 25(7): 809-31.
[48]
Begley MR, Gianola DS, Ray TR. Bridging functional nanocomposites to robust macroscale devices. Science 2019; 364(6447): 4299.
[49]
Deeney C, McKiernan EP, Belhout SA, Rodriguez BJ, Redmond G, Quin SJ. Template-assisted synthesis of luminescent carbon nanofibers from beverage-related precursors by microwave heating. Molecules 2019; 24(8): 1455.
[50]
Qiu C, Wang B, Zhang N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020; 577(7790): 350-4.
[51]
Yan X, Zhou Q, Vincent M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2017; 2: 1155.
[53]
Zhong Y, Devi MS, Hamilton T, Wasserman D. Review of mid-infrared plasmonic materials. J Nanophotonics 2015; 9(1): 093791.
[55]
Borah CK, Tyagi PK, Kumar S. The prospective application of Graphene/MoS2 heterostructure in Si-HIT solar cells for higher effi-ciency. Nanoscale Adv 2020; 2(8): 3231-43.
[56]
Sathe C, Zou X, Pierre Leburton J, Schulten K. Computational investigation of DNA detection using graphene nanopores. ACS Nano 2011; 5(11): 8842-51.
[57]
Polat EO, Mercier G, Nikitskiy I, et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci Adv 2019; 5(9): eaaw7846.