Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

BAPST. A Combo of Common Use Drugs as Metabolic Therapy for Cancer: A Theoretical Proposal

Author(s): Adriana Romo-Perez, Guadalupe Dominguez-Gomez, Alma Chavez-Blanco, Lucia Taja-Chayeb, Aurora Gonzalez-Fierro, Elisa Garcia-Martinez, Jose Correa-Basurto and Alfonso Duenas-Gonzalez*

Volume 15, Issue 6, 2022

Published on: 17 January, 2022

Article ID: e061021197040 Pages: 17

DOI: 10.2174/1874467214666211006123728

Price: $65

Abstract

Cancer therapy advances have yet to impact global cancer mortality. One of the factors limiting mortality burden reduction is the high cost of cancer drugs. Cancer drug repurposing has already failed to meet expectations in terms of drug affordability. The three FDA-approved cancer drugs developed under repurposing: all-trans-retinoic acid, arsenic trioxide, and thalidomide do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are:

• Parkinson's disease (benserazide and apomorphine).

• Peptic ulcer disease (pantoprazole).

• Hypercholesterolemia (simvastatin).

• Ischemic heart disease (trimetazidine).

When used for their primary indication, the literature review on each of these drugs shows that they have a good safety profile and lack predicted pharmacokinetic interaction among them. Based on that, we propose that the BAPST regimen merits preclinical testing.

Keywords: Cancer drug repurposing, glycolysis, glutaminolysis, de novo fatty-acid synthesis, mevalonate pathway, fatty-acid oxidation.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends- an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[3]
Tibau, A.; Molto, C.; Ocana, A.; Templeton, A.J.; Del Carpio, L.P.; Del Paggio, J.C.; Barnadas, A.; Booth, C.M.; Amir, E. Magnitude of clinical benefit of cancer drugs approved by the US food and drug administration. J. Natl. Cancer Inst., 2018, 110(5), 486-492.
[http://dx.doi.org/10.1093/jnci/djx232] [PMID: 29244173]
[4]
Prager, G.W.; Braga, S.; Bystricky, B.; Qvortrup, C.; Criscitiello, C.; Esin, E.; Sonke, G.S.; Martínez, G.A.; Frenel, J.S.; Karamouzis, M.; Strijbos, M.; Yazici, O.; Bossi, P.; Banerjee, S.; Troiani, T.; Eniu, A.; Ciardiello, F.; Tabernero, J.; Zielinski, C.C.; Casali, P.G.; Cardoso, F.; Douillard, J.Y.; Jezdic, S.; McGregor, K.; Bricalli, G.; Vyas, M.; Ilbawi, A. Global cancer control: responding to the growing burden, rising costs and inequalities in access. ESMO Open, 2018, 3(2), e000285.
[http://dx.doi.org/10.1136/esmoopen-2017-000285] [PMID: 29464109]
[5]
Lopes, Gde.L., Jr; de Souza, J.A.; Barrios, C. Access to cancer medications in low- and middle-income countries. Nat. Rev. Clin. Oncol., 2013, 10(6), 314-322.
[http://dx.doi.org/10.1038/nrclinonc.2013.55] [PMID: 23568416]
[6]
Zafar, S.Y. Financial toxicity of cancer care: It’s time to intervene. J. Natl. Cancer Inst., 2015, 108(5), djv370.
[http://dx.doi.org/10.1093/jnci/djv370] [PMID: 26657334]
[7]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[8]
Mucke, H.A.M. A new journal for the drug repurposing community. Drug repurposing, rescue. Repositioning, 2015, 1(1), 3-4.
[9]
Tallman, M.; Lo-Coco, F.; Barnes, G.; Kruse, M.; Wildner, R.; Martin, M.; Mueller, U.; Tang, B. Cost-effectiveness analysis of treating acute promyelocytic leukemia patients with arsenic trioxide and retinoic acid in the United States. Clin. Lymphoma Myeloma Leuk., 2015, 15(12), 771-777.
[http://dx.doi.org/10.1016/j.clml.2015.07.634] [PMID: 26361645]
[10]
Kruse, M.; Wildner, R.; Barnes, G.; Martin, M.; Mueller, U.; Lo- Coco, F.; Pathak, A. Budgetary impact of treating acute promyelocytic leukemia patients with first-line arsenic trioxide and retinoic acid from an Italian payer perspective. PLoS One, 2015, 10(8), e0134587.
[http://dx.doi.org/10.1371/journal.pone.0134587] [PMID: 26267454]
[11]
Paumgartten, F.J.R. The tale of lenalidomide clinical superiority over thalidomide and regulatory and cost-effectiveness issues. Cien. Saude Colet., 2019, 24(10), 3783-3792.
[http://dx.doi.org/10.1590/1413-812320182410.28522017] [PMID: 31577009]
[12]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[13]
Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The Warburg effect 97 years after Its discovery. Cancers (Basel), 2020, 12(10), 2819.
[http://dx.doi.org/10.3390/cancers12102819] [PMID: 33008042]
[14]
Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; Chinopoulos, C. On the origin of ATP synthesis in cancer. iScience, 2020, 23(11), 101761.
[http://dx.doi.org/10.1016/j.isci.2020.101761] [PMID: 33251492]
[15]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[16]
Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; Schwartz, L.H.; Ali, H.S.; Ahmed, A.; Forde, P.F.; Devesa, J.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The pentose phosphate pathway dynamics in cancer and IIts dependency on intracellular pH. Metabolites, 2020, 10(7), 285.
[http://dx.doi.org/10.3390/metabo10070285] [PMID: 32664469]
[17]
Kodama, M.; Nakayama, K.I. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer. BioEssays, 2020, 42(12), e2000169.
[http://dx.doi.org/10.1002/bies.202000169] [PMID: 33165972]
[18]
Matés, J.M.; Campos-Sandoval, J.A.; de Los Santos-Jiménez, J.; Márquez, J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch. Toxicol., 2020, 94(8), 2603-2623.
[http://dx.doi.org/10.1007/s00204-020-02838-8] [PMID: 32681190]
[19]
Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516.
[http://dx.doi.org/10.1038/s12276-020-00504-8] [PMID: 32943735]
[20]
Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab., 2021, 9(1), 2.
[http://dx.doi.org/10.1186/s40170-020-00237-2] [PMID: 33413672]
[21]
Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Varney, B.; Liu-Fu, F.; Lee, L.S.; Nagarajan, S.R.; Shearer, R.F.; Hardie, R.A.; Raftopulos, N.L.; Kakani, M.S.; Saunders, D.N.; Holst, J.; Horvath, L.G.; Butler, L.M.; Hoy, A.J. Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol. Cancer Res., 2019, 17(4), 949-962.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0347] [PMID: 30647103]
[22]
Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188351.
[http://dx.doi.org/10.1016/j.bbcan.2020.188351] [PMID: 32007596]
[23]
De Oliveira, M.P.; Liesa, M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells, 2020, 9(12), 2600.
[http://dx.doi.org/10.3390/cells9122600] [PMID: 33291682]
[24]
Newsholme, E.A.; Crabtree, B.; Ardawi, M.S.M. Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance. Q. J. Exp. Physiol., 1985, 70(4), 473-489.
[http://dx.doi.org/10.1113/expphysiol.1985.sp002935] [PMID: 3909197]
[25]
Hume, D.A.; Weidemann, M.J. Role and regulation of glucose metabolism in proliferating cells. J. Natl. Cancer Inst., 1979, 62(1), 3-8.
[PMID: 364152]
[26]
Dienel, G.A.; Cruz, N.F. Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J. Neurochem., 2016, 138(1), 14-52.
[http://dx.doi.org/10.1111/jnc.13630] [PMID: 27166428]
[27]
Prichard, J.; Rothman, D.; Novotny, E.; Petroff, O.; Kuwabara, T.; Avison, M.; Howseman, A.; Hanstock, C.; Shulman, R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5829-5831.
[http://dx.doi.org/10.1073/pnas.88.13.5829] [PMID: 2062861]
[28]
Wang, T.; Marquardt, C.; Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature, 1976, 261(5562), 702-705.
[http://dx.doi.org/10.1038/261702a0] [PMID: 934318]
[29]
Mohammad, M.A.; Haymond, M.W. Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation. Am. J. Physiol. Endocrinol. Metab., 2013, 305(6), E700-E716.
[http://dx.doi.org/10.1152/ajpendo.00052.2013] [PMID: 23880316]
[30]
Teuwen, L.A.; Geldhof, V.; Carmeliet, P. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev. Biol., 2019, 447(1), 90-102.
[http://dx.doi.org/10.1016/j.ydbio.2017.12.001] [PMID: 29224892]
[31]
Griffiths, M.; Keast, D.; Patrick, G.; Crawford, M.; Palmer, T.N. The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int. J. Biochem., 1993, 25(12), 1749-1755.
[http://dx.doi.org/10.1016/0020-711X(88)90303-5] [PMID: 8138012]
[32]
Meijer, T.W.H.; Peeters, W.J.M.; Dubois, L.J.; van Gisbergen, M.W.; Biemans, R.; Venhuizen, J-H.; Span, P.N.; Bussink, J. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer, 2018, 126, 32-40.
[http://dx.doi.org/10.1016/j.lungcan.2018.10.016] [PMID: 30527190]
[33]
Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A.Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jackson, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget, 2017, 8(38), 63551-63561.
[http://dx.doi.org/10.18632/oncotarget.18854] [PMID: 28969010]
[34]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[35]
Schlaepfer, I.R.; Glodé, L.M.; Hitz, C.A.; Pac, C.T.; Boyle, K.E.; Maroni, P.; Deep, G.; Agarwal, R.; Lucia, S.M.; Cramer, S.D.; Serkova, N.J.; Eckel, R.H. Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[18F]Fluoro-d-glucose uptake in prostate cancer mouse xenografts. Mol. Imaging Biol., 2015, 17(4), 529-538.
[http://dx.doi.org/10.1007/s11307-014-0814-4] [PMID: 25561013]
[36]
Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.024] [PMID: 25041845]
[37]
Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; Socorro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell. Oncol., 2021, 1-19.
[38]
Sankaranarayanapillai, M.; Zhang, N.; Baggerly, K.A.; Gelovani, J.G. Metabolic shifts induced by fatty acid synthase inhibitor orlistat in non-small cell lung carcinoma cells provide novel pharmacodynamic biomarkers for positron emission tomography and magnetic resonance spectroscopy. Mol. Imaging Biol., 2013, 15(2), 136-147.
[http://dx.doi.org/10.1007/s11307-012-0587-6] [PMID: 22886728]
[39]
Cervantes-Madrid, D.; Dueñas-González, A. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids. Oncol. Rep., 2015, 34(3), 1533-1542.
[http://dx.doi.org/10.3892/or.2015.4077] [PMID: 26134042]
[40]
Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.5615] [PMID: 28454342]
[41]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[42]
Cervantes-Madrid, D.; Romero, Y.; Dueñas-González, A. Reviving lonidamine and 6-diazo-5-Oxo-L-norleucine to be used in combination for metabolic cancer therapy. BioMed Res. Int., 2015, 2015, 690492.
[http://dx.doi.org/10.1155/2015/690492] [PMID: 26425550]
[43]
Schcolnik-Cabrera, A.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Juarez, M.; Lai, D.; Hua, S.; Tovar, A.R.; Diaz-Chavez, J.; Duenas-Gonzalez, A. The combination of orlistat, lonidamine and 6-diazo-5-oxo-L-norleucine induces a quiescent energetic phenotype and limits substrate flexibility in colon cancer cells. Oncol. Lett., 2020, 20(3), 3053-3060.
[http://dx.doi.org/10.3892/ol.2020.11838] [PMID: 32782623]
[44]
Schcolnik-Cabrera, A.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Juarez, M.; Vargas-Castillo, A.; Ponce-Toledo, R.I.; Lai, D.; Hua, S.; Tovar, A.R.; Torres, N.; Perez-Montiel, D.; Diaz-Chavez, J.; Duenas-Gonzalez, A. Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Sci. Rep., 2021, 11(1), 5222.
[http://dx.doi.org/10.1038/s41598-021-84538-6] [PMID: 33664364]
[45]
Häggström, L. Energetics of glutaminolysis – a theoretical evaluation; Prod. Biol. from Anim. Cells Cult; , 1991, pp. 79-81.
[46]
Pinder, R.M.; Brogden, R.N.; Sawyer, P.R.; Speight, T.M.; Avery, G.S. Levodopa and decarboxylase inhibitors: A review of their clinical pharmacology and use in the treatment of parkinsonism. Drugs, 1976, 11(5), 329-377.
[http://dx.doi.org/10.2165/00003495-197611050-00001] [PMID: 782834]
[47]
Schwartz, D.E.; Jordan, J.C.; Ziegler, W.H. Pharmacokinetics of the decarboxylase inhibitor benserazide in man; its tissue distribution in the rat. Eur. J. Clin. Pharmacol., 1974, 7(1), 39-45.
[http://dx.doi.org/10.1007/BF00614388] [PMID: 4853605]
[48]
Druzhyna, N.; Szczesny, B.; Olah, G.; Módis, K.; Asimakopoulou, A.; Pavlidou, A.; Szoleczky, P.; Gerö, D.; Yanagi, K.; Törö, G.; López-García, I.; Myrianthopoulos, V.; Mikros, E.; Zatarain, J.R.; Chao, C.; Papapetropoulos, A.; Hellmich, M.R.; Szabo, C. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol. Res., 2016, 113(Pt A), 18-37.
[http://dx.doi.org/10.1016/j.phrs.2016.08.016] [PMID: 27521834]
[49]
Sebastian, J.; Rathinasamy, K. Benserazide perturbs Kif15‐kinesin binding protein interaction with prolonged metaphase and defects in chromosomal congression: A study based on in silico modeling and cell culture. Mol. Inform., 2020, 39(3), e1900035.
[http://dx.doi.org/10.1002/minf.201900035] [PMID: 31347789]
[50]
Untereiner, A.A.; Pavlidou, A.; Druzhyna, N.; Papapetropoulos, A.; Hellmich, M.R.; Szabo, C. Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells. Biochem. Pharmacol.2018, 149, 174–185. based on in silico modeling and cell culture. Mol. Inform., 2020, 39(3), 1900035.
[51]
Alli, E.; Solow-Cordero, D.; Casey, S.C.; Ford, J.M. Therapeutic targeting of BRCA1-mutated breast cancers with agents that activate DNA repair. Cancer Res., 2014, 74(21), 6205-6215.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1716] [PMID: 25217519]
[52]
Kelts, J.L.; Cali, J.J.; Duellman, S.J.; Shultz, J. Altered cytotoxicity of ROS-inducing compounds by sodium pyruvate in cell culture medium depends on the location of ROS generation. Springerplus, 2015, 4(1), 269.
[http://dx.doi.org/10.1186/s40064-015-1063-y] [PMID: 26090316]
[53]
Zhou, Y.; Huang, Z.; Su, J.; Li, J.; Zhao, S.; Wu, L.; Zhang, J.; He, Y.; Zhang, G.; Tao, J.; Zhou, J.; Chen, X.; Peng, C. Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment. Int. J. Cancer, 2020, 147(1), 139-151.
[http://dx.doi.org/10.1002/ijc.32756] [PMID: 31652354]
[54]
Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J. Exp. Clin. Cancer Res., 2017, 36(1), 58.
[http://dx.doi.org/10.1186/s13046-017-0530-4] [PMID: 28427443]
[55]
Kwon, O.H.; Kang, T.W.; Kim, J.H.; Kim, M.; Noh, S.M.; Song, K.S.; Yoo, H.S.; Kim, W.H.; Xie, Z.; Pocalyko, D.; Kim, S.Y.; Kim, Y.S. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochem. Biophys. Res. Commun., 2012, 423(1), 38-44.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.063] [PMID: 22627140]
[56]
Lim, J.Y.; Yoon, S.O.; Seol, S.Y.; Hong, S.W.; Kim, J.W.; Choi, S.H.; Cho, J.Y. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World J. Gastroenterol., 2012, 18(30), 4037-4043.
[http://dx.doi.org/10.3748/wjg.v18.i30.4037] [PMID: 22912555]
[57]
Qiu, M.Z.; Han, B.; Luo, H.Y.; Zhou, Z.W.; Wang, Z.Q.; Wang, F.H.; Li, Y.H.; Xu, R.H. Expressions of hypoxia-inducible factor-1α and hexokinase-II in gastric adenocarcinoma: The impact on prognosis and correlation to clinicopathologic features. Tumour Biol., 2011, 32(1), 159-166.
[http://dx.doi.org/10.1007/s13277-010-0109-6] [PMID: 20845004]
[58]
Auffret, M.; Drapier, S.; Vérin, M. The Many Faces of Apomorphine: Lessons from the past and challenges for the future. Drugs R D., 2018, 18(2), 91-107.
[http://dx.doi.org/10.1007/s40268-018-0230-3] [PMID: 29546602]
[59]
Auffret, M.; Drapier, S.; Vérin, M. New tricks for an old dog: A repurposing approach of apomorphine. Eur. J. Pharmacol., 2019, 843, 66-79.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.052] [PMID: 30395851]
[60]
Lal, S. Apomorphine in the evaluation of dopaminergic function in man. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1988, 12(2-3), 117-164.
[http://dx.doi.org/10.1016/0278-5846(88)90033-4] [PMID: 3290992]
[61]
Morales-Rosado, J.A.; Cousin, M.A.; Ebbert, J.O.; Klee, E.W. A Critical Review of repurposing apomorphine for smoking cessation. Assay Drug Dev. Technol., 2015, 13(10), 612-622.
[http://dx.doi.org/10.1089/adt.2015.680] [PMID: 26690764]
[62]
Altwein, J.E.; Keuler, F.U. Oral treatment of erectile dysfunction with apomorphine SL. Urol. Int., 2001, 67(4), 257-263.
[http://dx.doi.org/10.1159/000051001] [PMID: 11741126]
[63]
Banús-Mulet, A.; Etxabe, A.; Cornet-Masana, J.M.; Torrente, M.Á.; Lara-Castillo, M.C.; Palomo, L.; Nomdedeu, M.; Díaz-Beyá, M.; Solé, F.; Nomdedeu, B.; Esteve, J.; Risueño, R.M. Serotonin receptor type 1B constitutes a therapeutic target for MDS and CMML. Sci. Rep., 2018, 8(1), 13883.
[http://dx.doi.org/10.1038/s41598-018-32306-4] [PMID: 30224768]
[64]
Chiarenza, A .; Scarselli, M .; Novi, F .; Lempereur, L .; Bernardini, R .; Corsini, G. U .; Maggio. Apomorphine, dopamine and phenylethylamine reduces the proportion of phosphorylated insulin receptor substrate 1. Eur. J. Pharmacol., 2001, 433(1), 47-54.
[http://dx.doi.org/10.1016/S0014-2999(01)01491-1]
[65]
Maggio, R.; Armogida, M.; Scarselli, M.; Salvadori, F.; Longoni, B.; Pardini, C.; Chiarenza, A.; Chiacchio, S.; Vaglini, F.; Bernardini, R.; Colzi, A.; Corsini, G.U. Dopamine agonists and analogues have an antiproliferative effect on CHO-K1 cells. Neurotox. Res., 2000, 1(4), 285-297.
[http://dx.doi.org/10.1007/BF03033258] [PMID: 12835096]
[66]
Kondo, Y.; Imai, Y.; Hojo, H.; Endo, T.; Nozoe, S. Suppression of tumor cell growth and mitogen response by aporphine alkaloids, dicentrine, glaucine, corydine, and apomorphine. J. Pharmacobiodyn., 1990, 13(7), 426-431.
[http://dx.doi.org/10.1248/bpb1978.13.426] [PMID: 2290126]
[67]
Prasad, K.N.; Gilmer, K.N. Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in “differentiated” cells. Proc. Natl. Acad. Sci. USA, 1974, 71(6), 2525-2529.
[http://dx.doi.org/10.1073/pnas.71.6.2525] [PMID: 4366772]
[68]
Scarselli, M.; Barbier, P.; Salvadori, F.; Armogida, M.; Collecchi, P.; Pardini, C.; Vaglini, F.; Maggio, R.; Corsini, G.U. Apomorphine has a potent antiproliferative effect on Chinese hamster ovary cells. J. Neural Transm. Suppl., 1999, 55, 47-55.
[http://dx.doi.org/10.1007/978-3-7091-6369-6_5] [PMID: 10335492]
[69]
Lee, J-Y.; Ham, J.; Lim, W.; Song, G. Apomorphine facilitates loss of respiratory chain activity in human epithelial ovarian cancer and inhibits angiogenesis in vivo. Free Radic. Biol. Med., 2020, 154, 95-104.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.05.001] [PMID: 32437927]
[70]
Lee, J.Y.; Ham, J.; Lim, W.; Song, G. Apomorphine induces mitochondrial-dysfunction-dependent apoptosis in choriocarcinoma. Reproduction, 2020, 160(3), 367-377.
[http://dx.doi.org/10.1530/REP-20-0230] [PMID: 32520723]
[71]
Singh, M.; Venugopal, C.; Tokar, T.; McFarlane, N.; Subapanditha, M.K.; Qazi, M.; Bakhshinyan, D.; Vora, P.; Murty, N.K.; Jurisica, I.; Singh, S.K. Therapeutic targeting of the premetastatic stage in human lung-to-brain metastasis. Cancer Res., 2018, 78(17), 5124-5134.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1022] [PMID: 29986997]
[72]
Meredith, E.J.; Holder, M.J.; Rosén, A.; Lee, A.D.; Dyer, M.J.S.; Barnes, N.M.; Gordon, J. Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin’s lymphoma. Proc. Natl. Acad. Sci. USA, 2006, 103(36), 13485-13490.
[http://dx.doi.org/10.1073/pnas.0605993103] [PMID: 16938864]
[73]
Etxabe, A.; Lara-Castillo, M.C.; Cornet-Masana, J.M.; Banús- Mulet, A.; Nomdedeu, M.; Torrente, M.A.; Pratcorona, M.; Díaz-Beyá, M.; Esteve, J.; Risueño, R.M. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: A promising novel therapeutic target. Leukemia, 2017, 31(11), 2288-2302.
[http://dx.doi.org/10.1038/leu.2017.52] [PMID: 28193998]
[74]
Rodrigues-Junior, D.M.; de Almeida Pontes, N.M.; de Albuquerque, G.E.; Carlin, V.; Perecim, G.P.; Raminelli, C.; Vettore, A.L. Assessment of the cytotoxic effects of aporphine prototypes on head and neck cancer cells. Invest. New Drugs, 2020, 38(1), 70-78.
[http://dx.doi.org/10.1007/s10637-019-00784-6] [PMID: 31102120]
[75]
Jung, Y.S.; Lee, S.O. Apomorphine suppresses TNF-α-induced MMP-9 expression and cell invasion through inhibition of ERK/AP-1 signaling pathway in MCF-7 cells. Biochem. Biophys. Res. Commun., 2017, 487(4), 903-909.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.151] [PMID: 28465234]
[76]
Berry-Kravis, E.; Freedman, S.B.; Dawson, G. Specific receptor- mediated inhibition of cyclic AMP synthesis by dopamine in a neuroblastoma X brain hybrid cell line NCB-20. J. Neurochem., 1984, 43(2), 413-420.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb00917.x] [PMID: 6330299]
[77]
Thomas, A.G.; Rojas, C.; Tanega, C.; Shen, M.; Simeonov, A.; Boxer, M.B.; Auld, D.S.; Ferraris, D.V.; Tsukamoto, T.; Slusher, B.S. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem. Biophys. Res. Commun., 2013, 438(2), 243-248.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.110] [PMID: 23850693]
[78]
Kitayama, K.; Yashiro, M.; Morisaki, T.; Miki, Y.; Okuno, T.; Kinoshita, H.; Fukuoka, T.; Kasashima, H.; Masuda, G.; Hasegawa, T.; Sakurai, K.; Kubo, N.; Hirakawa, K.; Ohira, M. Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Sci., 2017, 108(12), 2462-2469.
[http://dx.doi.org/10.1111/cas.13421] [PMID: 29032577]
[79]
Yang, L.; Venneti, S.; Nagrath, D. Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng., 2017, 19(1), 163-194.
[http://dx.doi.org/10.1146/annurev-bioeng-071516-044546] [PMID: 28301735]
[80]
Guo, D.; Wang, C.; Wang, Q.; Qiao, Z.; Tang, H. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response. Oncotarget, 2017, 8(24), 39640-39648.
[http://dx.doi.org/10.18632/oncotarget.17387] [PMID: 28489606]
[81]
Lu, Z.N.; Shi, Z.Y.; Dang, Y.F.; Cheng, Y.N.; Guan, Y.H.; Hao, Z.J.; Tian, B.; He, H.W.; Guo, X.L. Pantoprazole pretreatment elevates sensitivity to vincristine in drug-resistant oral epidermoid carcinoma in vitro and in vivo. Biomed. Pharmacother., 2019, 120, 109478.
[http://dx.doi.org/10.1016/j.biopha.2019.109478] [PMID: 31568987]
[82]
Ergül, M.; Ergül, M. Protein pump inhibitors esomeprazole and pantoprazole increase the chemosensitivity of Cml Cells against Imatinib. Cumhur. Med. J, 2018, 40(4), 351-355.
[http://dx.doi.org/10.7197/223.vi.499367]
[83]
Chen, M.; Zou, X.; Luo, H.; Cao, J.; Zhang, X.; Zhang, B.; Liu, W. Effects and mechanisms of proton pump inhibitors as a novel chemosensitizer on human gastric adenocarcinoma (SGC7901) cells. Cell Biol. Int., 2009, 33(9), 1008-1019.
[http://dx.doi.org/10.1016/j.cellbi.2009.05.004] [PMID: 19501661]
[84]
Huang, S.; Chen, M.; Ding, X.; Zhang, X.; Zou, X. Proton pump inhibitor selectively suppresses proliferation and restores the chemosensitivity of gastric cancer cells by inhibiting STAT3 signaling pathway. Int. Immunopharmacol., 2013, 17(3), 585-592.
[http://dx.doi.org/10.1016/j.intimp.2013.07.021] [PMID: 23973653]
[85]
Hansen, A.R.; Tannock, I.F.; Templeton, A.; Chen, E.; Evans, A.; Knox, J.; Prawira, A.; Sridhar, S.S.; Tan, S.; Vera-Badillo, F.; Wang, L.; Wouters, B.G.; Joshua, A.M. Pantoprazole affecting docetaxel resistance pathways via autophagy (PANDORA): Phase II trial of high dose pantoprazole (Autophagy Inhibitor) with docetaxel in metastatic castration-resistant prostate cancer (MCRPC). Oncologist, 2019, 24(9), 1188-1194.
[http://dx.doi.org/10.1634/theoncologist.2018-0621] [PMID: 30952818]
[86]
Kuang, Y.; Wang, S.; Tang, L.; Hai, J.; Yan, G.; Liao, L. Cluster of differentiation 147 mediates chemoresistance in breast cancer by affecting vacuolar H+-ATPase expression and activity. Oncol. Lett., 2018, 15(5), 7279-7290.
[http://dx.doi.org/10.3892/ol.2018.8199] [PMID: 29731886]
[87]
Tan, Q.; Joshua, A.M.; Saggar, J.K.; Yu, M.; Wang, M.; Kanga, N.; Zhang, J.Y.; Chen, X.; Wouters, B.G.; Tannock, I.F. Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy. Br. J. Cancer, 2015, 112(5), 832-840.
[http://dx.doi.org/10.1038/bjc.2015.17] [PMID: 25647012]
[88]
Patel, K.J.; Lee, C.; Tan, Q.; Tannock, I.F. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors. Clin. Cancer Res., 2013, 19(24), 6766-6776.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0128] [PMID: 24141627]
[89]
Zhang, B.; Yang, Y.; Shi, X.; Liao, W.; Chen, M.; Cheng, A.S.L.; Yan, H.; Fang, C.; Zhang, S.; Xu, G.; Shen, S.; Huang, S.; Chen, G.; Lv, Y.; Ling, T.; Zhang, X.; Wang, L.; Zhuge, Y.; Zou, X. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-β/β- catenin signaling and epithelial-mesenchymal transition. Cancer Lett., 2015, 356(2 Pt B), 704-712.
[http://dx.doi.org/10.1016/j.canlet.2014.10.016] [PMID: 25449432]
[90]
Chen, M.; Huang, S-L.; Zhang, X-Q.; Zhang, B.; Zhu, H.; Yang, V.W.; Zou, X-P. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1α/P-gp and MRP1 signaling pathway in vitro and in vivo. J. Cell. Biochem., 2012, 113(7), 2474-2487.
[http://dx.doi.org/10.1002/jcb.24122] [PMID: 22396185]
[91]
Wang, X.; Liu, C.; Wang, J.; Fan, Y.; Wang, Z.; Wang, Y. Proton pump inhibitors increase the chemosensitivity of patients with advanced colorectal cancer. Oncotarget, 2017, 8(35), 58801-58808.
[http://dx.doi.org/10.18632/oncotarget.18522] [PMID: 28938598]
[92]
Ihraiz, W.G.; Ahram, M.; Bardaweel, S.K. Proton pump inhibitors enhance chemosensitivity, promote apoptosis, and suppress migration of breast cancer cells. Acta Pharm., 2020, 70(2), 179-190.
[http://dx.doi.org/10.2478/acph-2020-0020] [PMID: 31955147]
[93]
Sarankumar, M.S.; Suresh, A. Lactate transport and acidosis as target for tumor regression by drug repositioning in lung carcinogenesis model. World J. Pharm. Pharm. Sci., 2018, 7(8), 752-773.
[94]
Xiao, J.; Wang, F.; Lu, H.; Xu, S.; Zou, L.; Tian, Q.; Fu, Y.; Lin, X.; Liu, L.; Yuan, P.; Ni, X.; Ma, T.; Zeng, F.; Xue, P.; Xiu, R.; Zhang, J.; Ji, X.; Hu, H.; Lu, S.; Dai, H.; Li, Y.; Chu, Q.; Zhao, X.; Duan, Q.; Zhu, F. Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells. Cell Death Dis., 2019, 10(10), 777.
[http://dx.doi.org/10.1038/s41419-019-2020-4] [PMID: 31611604]
[95]
Geeviman, K.; Babu, D.; Prakash Babu, P. Pantoprazole induces mitochondrial apoptosis and attenuates NF-KB signaling in glioma cells. Cell. Mol. Neurobiol., 2018, 38(8), 1491-1504.
[http://dx.doi.org/10.1007/s10571-018-0623-4] [PMID: 30302629]
[96]
Zeng, X.; Liu, L.; Zheng, M.; Sun, H.; Xiao, J.; Lu, T.; Huang, G.; Chen, P.; Zhang, J.; Zhu, F.; Li, H.; Duan, Q. Pantoprazole, an FDA-approved proton-pump inhibitor, suppresses colorectal cancer growth by targeting T-cell-originated protein kinase. Oncotarget, 2016, 7(16), 22460-22473.
[http://dx.doi.org/10.18632/oncotarget.7984] [PMID: 26967058]
[97]
Shen, Y.; Chen, M.; Huang, S.; Zou, X. Pantoprazole inhibits human gastric adenocarcinoma SGC-7901 cells by downregulating the expression of pyruvate kinase M2. Oncol. Lett., 2016, 11(1), 717-722.
[http://dx.doi.org/10.3892/ol.2015.3912] [PMID: 26870273]
[98]
Shen, W.; Zou, X.; Chen, M.; Shen, Y.; Huang, S.; Guo, H.; Zhang, L.; Liu, P. Effect of pantoprazole on human gastric adenocarcinoma SGC7901 cells through regulation of phospho-LRP6 expression in Wnt/β-catenin signaling. Oncol. Rep., 2013, 30(2), 851-855.
[http://dx.doi.org/10.3892/or.2013.2524] [PMID: 23754096]
[99]
Zhang, B.; Ling, T.; Zhaxi, P.; Cao, Y.; Qian, L.; Zhao, D.; Kang, W.; Zhang, W.; Wang, L.; Xu, G.; Zou, X. Proton pump inhibitor pantoprazole inhibits gastric cancer metastasis via suppression of telomerase reverse transcriptase gene expression. Cancer Lett., 2019, 452, 23-30.
[http://dx.doi.org/10.1016/j.canlet.2019.03.029] [PMID: 30910586]
[100]
Chen, M.; Lu, J.; Wei, W.; Lv, Y.; Zhang, X.; Yao, Y.; Wang, L.; Ling, T.; Zou, X. Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo. OncoTargets Ther., 2018, 11, 6705-6722.
[http://dx.doi.org/10.2147/OTT.S161198] [PMID: 30349304]
[101]
Shen, Y.; Wu, Y.; Chen, M.; Shen, W.; Huang, S.; Zhang, L.; Zou, X. Effects of pantoprazole as a HIF-1α inhibitor on human gastric adenocarcinoma sgc-7901 cells. Neoplasma, 2012, 59(2), 142-149.
[http://dx.doi.org/10.4149/neo_2012_019] [PMID: 22248271]
[102]
Yeo, M.; Kim, D.K.; Kim, Y.B.; Oh, T.Y.; Lee, J.E.; Cho, S.W.; Kim, H.C.; Hahm, K.B. Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells. Clin. Cancer Res., 2004, 10(24), 8687-8696.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1065] [PMID: 15623654]
[103]
Koh, J.S .; Joo, M.K .; Park, J.J .; Yoo, H.S .; Choi, B. Il .; Lee, B.J .; Chun, H.J .; Lee, S.W. Inhibition of STAT3 in gastric cancer: Role of pantoprazole as SHP-1 inducer. Cell Biosci., 2018, 8:50.
[http://dx.doi.org/10.1186/s13578-018-0248-9]
[104]
Cao, Y.; Chen, M.; Tang, D.; Yan, H.; Ding, X.; Zhou, F.; Zhang, M.; Xu, G.; Zhang, W.; Zhang, S.; Zhuge, Y.; Wang, L.; Zou, X. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses. Cell Death Dis., 2018, 9(6), 604.
[http://dx.doi.org/10.1038/s41419-018-0642-6] [PMID: 29789637]
[105]
Tozzi, M.; Sørensen, C.E.; Magni, L.; Christensen, N.M.; Bouazzi, R.; Buch, C.M.; Stefanini, M.; Duranti, C.; Arcangeli, A.; Novak, I. Proton pump inhibitors reduce pancreatic adenocarcinoma progression by selectively targeting H+, K+-ATPases in pancreatic cancer and stellate cells. Cancers (Basel), 2020, 12(3), 640.
[http://dx.doi.org/10.3390/cancers12030640] [PMID: 32164284]
[106]
Vishvakarma, N.K.; Singh, S.M. Mechanisms of tumor growth retardation by modulation of pH regulation in the tumor-microenvironment of a murine T cell lymphoma. Biomed. Pharmacother., 2011, 65(1), 27-39.
[http://dx.doi.org/10.1016/j.biopha.2010.06.012] [PMID: 20685069]
[107]
Tan, Q.; Wang, M.; Yu, M.; Zhang, J.; Bristow, R.G.; Hill, R.P.; Tannock, I.F. Role of autophagy as a survival mechanism for hypoxic cells in tumors. Neoplasia, 2016, 18(6), 347-355.
[http://dx.doi.org/10.1016/j.neo.2016.04.003] [PMID: 27292024]
[108]
Tan, Q.; Joshua, A.M.; Wang, M.; Bristow, R.G.; Wouters, B.G.; Allen, C.J.; Tannock, I.F. Up-regulation of autophagy is a mechanism of resistance to chemotherapy and can be inhibited by pantoprazole to increase drug sensitivity. Cancer Chemother. Pharmacol., 2017, 79(5), 959-969.
[http://dx.doi.org/10.1007/s00280-017-3298-5] [PMID: 28378028]
[109]
Fako, V.E.; Wu, X.; Pflug, B.; Liu, J.Y.; Zhang, J.T. Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J. Med. Chem., 2015, 58(2), 778-784.
[http://dx.doi.org/10.1021/jm501543u] [PMID: 25513712]
[110]
Guarini, G.; Huqi, A.; Morrone, D.; Capozza, P.F.G.; Marzilli, M. Trimetazidine and other metabolic modifiers. Eur. Cardiol., 2018, 13(2), 104-111.
[http://dx.doi.org/10.15420/ecr.2018.15.2] [PMID: 30697354]
[111]
Stanley, W.C.; Marzilli, M. Metabolic therapy in the treatment of ischaemic heart disease: The pharmacology of trimetazidine. Fundam. Clin. Pharmacol., 2003, 17(2), 133-145.
[http://dx.doi.org/10.1046/j.1472-8206.2003.00154.x] [PMID: 12667223]
[112]
Liu, Z.; Wang, D.; Liu, D.; Liu, J.; Zhou, G. Trimetazidine protects against LPS-induced acute lung injury through MTOR/SGK1 Pathway. Int. J. Clin. Exp. Med., 2016, 9(7), 13950-13957.
[113]
Tikhaze, A.K.; Lankin, V.Z.; Zharova, E.A.; Kolycheva, S.V. Trimetazidine as indirect antioxidant. Bull. Exp. Biol. Med., 2000, 130(10), 951-953.
[http://dx.doi.org/10.1023/A:1002801504611] [PMID: 11177290]
[114]
Singh, D.; Chander, V.; Chopra, K. Carvedilol and trimetazidine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats. Toxicology, 2003, 191(2-3), 143-151.
[http://dx.doi.org/10.1016/S0300-483X(03)00259-2] [PMID: 12965117]
[115]
Lestuzzi, C.; Crivellari, D.; Rigo, F.; Viel, E.; Meneguzzo, N. Capecitabine cardiac toxicity presenting as effort angina: A case report. J. Cardiovasc. Med. (Hagerstown), 2010, 11(9), 700-703.
[http://dx.doi.org/10.2459/JCM.0b013e328332e873] [PMID: 20093950]
[116]
Tallarico, D.; Rizzo, V.; Di Maio, F.; Petretto, F.; Bianco, G.; Placanica, G.; Marziali, M.; Paravati, V.; Gueli, N.; Meloni, F.; Campbell, S.V. Myocardial cytoprotection by trimetazidine against anthracycline-induced cardiotoxicity in anticancer chemotherapy. Angiology, 2003, 54(2), 219-227.
[http://dx.doi.org/10.1177/000331970305400212] [PMID: 12678198]
[117]
Zhang, J.; He, X.; Bai, X.; Sun, Y.; Jiang, P.; Wang, X.; Li, W.; Zhang, Y. Protective effect of trimetazidine in radiation-induced cardiac fibrosis in mice. J. Radiat. Res. (Tokyo), 2020, 61(5), 657-665.
[http://dx.doi.org/10.1093/jrr/rraa043] [PMID: 32642776]
[118]
Ferraro, E.; Pin, F.; Gorini, S.; Pontecorvo, L.; Ferri, A.; Mollace, V.; Costelli, P.; Rosano, G. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine. J. Cachexia Sarcopenia Muscle, 2016, 7(4), 449-457.
[http://dx.doi.org/10.1002/jcsm.12097] [PMID: 27239426]
[119]
Gatta, L.; Vitiello, L.; Gorini, S.; Chiandotto, S.; Costelli, P.; Giammarioli, A.M.; Malorni, W.; Rosano, G.; Ferraro, E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget, 2017, 8(69), 113938-113956.
[http://dx.doi.org/10.18632/oncotarget.23044] [PMID: 29371959]
[120]
Molinari, F.; Pin, F.; Gorini, S.; Chiandotto, S.; Pontecorvo, L.; Penna, F.; Rizzuto, E.; Pisu, S.; Musarò, A.; Costelli, P.; Rosano, G.; Ferraro, E. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26-bearing mice. J. Cachexia Sarcopenia Muscle, 2017, 8(6), 954-973.
[http://dx.doi.org/10.1002/jcsm.12226] [PMID: 29130633]
[121]
Zhang, Y.; Li, C.; Li, X.; Wu, C.; Zhou, H.; Lu, S.; Liu, X. Trimetazidine improves hepatic lipogenesis and steatosis in non‑alcoholic fatty liver disease via AMPK‑ChREBP pathway. Mol. Med. Rep., 2020, 22(3), 2174-2182.
[http://dx.doi.org/10.3892/mmr.2020.11309] [PMID: 32705195]
[122]
Pandey, C.K.; Nath, S.S.; Pandey, V.K.; Karna, S.T.; Tandon, M. Perioperative ischaemia-induced liver injury and protection strategies: An expanding horizon for anaesthesiologists. Indian J. Anaesth., 2013, 57(3), 223-229.
[http://dx.doi.org/10.4103/0019-5049.115576] [PMID: 23983278]
[123]
Settaf, A.; Zaim, N.; Bellouch, M.; Tillement, J.P.; Morin, D. Trimetazidine prevents ischemia-reperfusion injury in hepatic surgery under vascular clamping. Therapie, 2001, 56(5), 569-574.
[PMID: 11806295]
[124]
Andela, V.B.; Altuwaijri, S.; Wood, J.; Rosier, R.N. Inhibition of β-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARgamma agonists. FEBS Lett., 2005, 579(7), 1765-1769.
[http://dx.doi.org/10.1016/j.febslet.2005.01.082] [PMID: 15757673]
[125]
Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; Uddin, S.; Kastenmüller, G.; Elemento, O.; Gross, S.S.; Suhre, K. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett., 2018, 430, 133-147.
[http://dx.doi.org/10.1016/j.canlet.2018.05.017] [PMID: 29777783]
[126]
Amoedo, N.D.; Sarlak, S.; Obre, E.; Esteves, P.; Bégueret, H.; Kieffer, Y.; Rousseau, B.; Dupis, A.; Izotte, J.; Bellance, N.; Dard, L.; Redonnet-Vernhet, I.; Punzi, G.; Rodrigues, M.F.; Dumon, E.; Mafhouf, W.; Guyonnet-Dupérat, V.; Gales, L.; Palama, T.; Bellvert, F.; Dugot-Senan, N.; Claverol, S.; Baste, J-M.; Lacombe, D.; Rezvani, H.R.; Pierri, C.L.; Mechta-Grigoriou, F.; Thumerel, M.; Rossignol, R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J. Clin. Invest., 2021, 131(1), e133081.
[http://dx.doi.org/10.1172/JCI133081] [PMID: 33393495]
[127]
Mauro, V.F.; MacDonald, J.L. Simvastatin: A review of its pharmacology and clinical use. DICP, 1991, 25(3), 257-264.
[http://dx.doi.org/10.1177/106002809102500309] [PMID: 2028634]
[128]
Åberg, M.; Wickström, M.; Siegbahn, A. Simvastatin induces apoptosis in human breast cancer cells in a NFkappaB-dependent manner and abolishes the anti-apoptotic signaling of TF/FVIIa and TF/FVIIa/FXa. Thromb. Res., 2008, 122(2), 191-202.
[http://dx.doi.org/10.1016/j.thromres.2007.09.017] [PMID: 18031796]
[129]
Koyuturk, M.; Ersoz, M.; Altiok, N. Simvastatin induces apoptosis in human breast cancer cells: P53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett., 2007, 250(2), 220-228.
[http://dx.doi.org/10.1016/j.canlet.2006.10.009] [PMID: 17125918]
[130]
Alizadeh, J.; Zeki, A.A.; Mirzaei, N.; Tewary, S.; Rezaei Moghadam, A.; Glogowska, A.; Nagakannan, P.; Eftekharpour, E.; Wiechec, E.; Gordon, J.W.; Xu, F.Y.; Field, J.T.; Yoneda, K.Y.; Kenyon, N.J.; Hashemi, M.; Hatch, G.M.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci. Rep., 2017, 7(1), 44841.
[http://dx.doi.org/10.1038/srep44841] [PMID: 28344327]
[131]
Campbell, M.J.; Esserman, L.J.; Zhou, Y.; Shoemaker, M.; Lobo, M.; Borman, E.; Baehner, F.; Kumar, A.S.; Adduci, K.; Marx, C.; Petricoin, E.F.; Liotta, L.A.; Winters, M.; Benz, S.; Benz, C.C. Breast cancer growth prevention by statins. Cancer Res., 2006, 66(17), 8707-8714.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4061] [PMID: 16951186]
[132]
Oliveira, K.A.P.; Zecchin, K.G.; Alberici, L.C.; Castilho, R.F.; Vercesi, A.E. Simvastatin inducing PC3 prostate cancer cell necrosis mediated by calcineurin and mitochondrial dysfunction. J. Bioenerg. Biomembr., 2008, 40(4), 307-314.
[http://dx.doi.org/10.1007/s10863-008-9155-9] [PMID: 18679777]
[133]
Chang, H.L.; Chen, C.Y.; Hsu, Y.F.; Kuo, W.S.; Ou, G.; Chiu, P.T.; Huang, Y.H.; Hsu, M.J. Simvastatin induced HCT116 colorectal cancer cell apoptosis through p38MAPK-p53-survivin signaling cascade. Biochim. Biophys. Acta, 2013, 1830(8), 4053-4064.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.011] [PMID: 23583370]
[134]
Shang, L.; Jia, S.S.; Jiang, H.M.; Wang, H.; Xu, W.H.; Lv, C.J. Simvastatin downregulates expression of TGF-βRII and inhibits proliferation of A549 cells via ERK. Tumour Biol., 2015, 36(6), 4819-4824.
[http://dx.doi.org/10.1007/s13277-015-3134-7] [PMID: 25631750]
[135]
Kim, Y.S.; Seol, C.H.; Jung, J.W.; Oh, S.J.; Hwang, K.E.; Kim, H.J.; Jeong, E.T.; Kim, H.R. Synergistic effect of sulindac and simvastatin on apoptosis in lung cancer A549 cells through AKT-dependent downregulation of survivin. Cancer Res. Treat., 2015, 47(1), 90-100.
[http://dx.doi.org/10.4143/crt.2013.194] [PMID: 25520153]
[136]
Yu, X.; Pan, Y.; Ma, H.; Li, W. Simvastatin inhibits proliferation and induces apoptosis in human lung cancer cells. Oncol. Res., 2013, 20(8), 351-357.
[http://dx.doi.org/10.3727/096504013X13657689382897] [PMID: 23924855]
[137]
Hwang, K.E.; Kim, Y.S.; Hwang, Y.R.; Kwon, S.J.; Park, D.S.; Cha, B.K.; Kim, B.R.; Yoon, K.H.; Jeong, E.T.; Kim, H.R. Enhanced apoptosis by pemetrexed and simvastatin in malignant mesothelioma and lung cancer cells by reactive oxygen species-dependent mitochondrial dysfunction and Bim induction. Int. J. Oncol., 2014, 45(4), 1769-1777.
[http://dx.doi.org/10.3892/ijo.2014.2584] [PMID: 25096993]
[138]
Ortiz, N.; Díaz, C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol. Lett., 2020, 20(6), 320.
[http://dx.doi.org/10.3892/ol.2020.12183] [PMID: 33093924]
[139]
Liu, Q.; Xia, H.; Zhou, S.; Tang, Q.; Zhou, J.; Ren, M.; Bi, F. Simvastatin inhibits the malignant behaviors of gastric cancer cells by simultaneously suppressing YAP and β-Catenin Signaling. OncoTargets Ther., 2020, 13, 2057-2066.
[http://dx.doi.org/10.2147/OTT.S237693] [PMID: 32210573]
[140]
Beesley, A.H.; Stirnweiss, A.; Ferrari, E.; Endersby, R.; Howlett, M.; Failes, T.W.; Arndt, G.M.; Charles, A.K.; Cole, C.H.; Kees, U.R. Comparative drug screening in NUT midline carcinoma. Br. J. Cancer, 2014, 110(5), 1189-1198.
[http://dx.doi.org/10.1038/bjc.2014.54] [PMID: 24518598]
[141]
Spampanato, C.; De Maria, S.; Sarnataro, M.; Giordano, E.; Zanfardino, M.; Baiano, S.; Cartenì, M.; Morelli, F. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int. J. Oncol., 2012, 40(4), 935-941.
[http://dx.doi.org/10.3892/ijo.2011.1273] [PMID: 22134829]
[142]
Shojaei, S.; Koleini, N.; Samiei, E.; Aghaei, M.; Cole, L.K.; Alizadeh, J.; Islam, M.I.; Vosoughi, A.R.; Albokashy, M.; Butterfield, Y.; Marzban, H.; Xu, F.; Thliveris, J.; Kardami, E.; Hatch, G.M.; Eftekharpour, E.; Akbari, M.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J., 2020, 287(5), 1005-1034.
[http://dx.doi.org/10.1111/febs.15069] [PMID: 31545550]
[143]
Cheng-Qian, Y.; Xin-Jing, W.; Xinbing, W.; Zhuang-Lei, G.; Hong-Peng, Z.; Songde, X.; Pei-Lin, W. Simvastatin inhibited the growth of gastric cancer cells. UHOD - Uluslararasi Hematol. Derg., 2014, 24(2), 106-111.
[144]
Manu, K.A.; Shanmugam, M.K.; Li, F.; Chen, L.; Siveen, K.S.; Ahn, K.S.; Kumar, A.P.; Sethi, G. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J. Mol. Med. (Berl.), 2014, 92(3), 267-276.
[http://dx.doi.org/10.1007/s00109-013-1095-0] [PMID: 24233024]
[145]
Hong, J.Y.; Kim, H.J.; Kim, K.; Hong, J.; Kim, J.E.; Byeon, S.J.; Lee, I.K.; Kim, K.M.; Shim, M.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Kim, S.T.; Lee, J.; Kang, W.K. TPK1 as a predictive marker for the anti-tumour effects of simvastatin in gastric cancer. Pathol. Res. Pract., 2020, 216(3), 152820.
[http://dx.doi.org/10.1016/j.prp.2020.152820] [PMID: 31964553]
[146]
Yun, U.J.; Lee, J.H.; Shim, J.; Yoon, K.; Goh, S.H.; Yi, E.H.; Ye, S.K.; Lee, J.S.; Lee, H.; Park, J.; Lee, I.H.; Kim, Y.N. Anti-cancer effect of doxorubicin is mediated by downregulation of HMG-Co A reductase via inhibition of EGFR/Src pathway. Lab. Invest., 2019, 99(8), 1157-1172.
[http://dx.doi.org/10.1038/s41374-019-0193-1] [PMID: 30700846]
[147]
Chushi, L.; Wei, W.; Kangkang, X.; Yongzeng, F.; Ning, X.; Xiaolei, C. HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells. Gene, 2016, 587(1), 42-47.
[http://dx.doi.org/10.1016/j.gene.2016.04.029] [PMID: 27085483]
[148]
Baker, S.G. A cancer theory kerfuffle can lead to new lines of research. J. Natl. Cancer Inst., 2014, 107(2), 1-8.
[http://dx.doi.org/10.1093/jnci/dju405] [PMID: 25528755]
[149]
Baker, S.G.; Kramer, B.S. Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer, 2007, 7(1), 151.
[http://dx.doi.org/10.1186/1471-2407-7-151] [PMID: 17683619]
[150]
Baker, S.G.; Cappuccio, A.; Potter, J.D. Research on early-stage carcinogenesis: Are we approaching paradigm instability? J. Clin. Oncol., 2010, 28(20), 3215-3218.
[http://dx.doi.org/10.1200/JCO.2010.28.5460] [PMID: 20547997]
[151]
Soto, A.M.; Sonnenschein, C. The somatic mutation theory of cancer: Growing problems with the paradigm? BioEssays, 2004, 26(10), 1097-1107.
[http://dx.doi.org/10.1002/bies.20087] [PMID: 15382143]
[152]
Rosenfeld, S. Biomolecular self-defense and futility of high-specificity therapeutic targeting. Gene Regul. Syst. Bio., 2011, 5(5), 89-104.
[http://dx.doi.org/10.4137/GRSB.S8542] [PMID: 22272063]
[153]
Brock, A.; Huang, S. Precision oncology: Between vaguely right and precisely wrong. Cancer Res., 2017, 77(23), 6473-6479.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0448] [PMID: 29162615]
[154]
Sell, S.K.; Williams, O.D. Health under Capitalism: A global political economy of structural pathogenesis. Rev. Int. Polit. Econ., 2020, 27(1), 1-25.
[http://dx.doi.org/10.1080/09692290.2019.1659842]
[155]
Baru, R.V.; Mohan, M. Globalisation and neoliberalism as structural drivers of health inequities. Health Res. Policy Syst., 2018, 16(Suppl. 1), 91.
[http://dx.doi.org/10.1186/s12961-018-0365-2] [PMID: 30301457]
[156]
Birn, A.E. Philanthrocapitalism, Past and present: The rockefeller foundation, the gates foundation, and the setting(s) of the international/global health agenda. Hypothesis, 2014, 12(1), e8.
[http://dx.doi.org/10.5779/hypothesis.v12i1.229]
[157]
Parikshak, N.N.; Gandal, M.J.; Geschwind, D.H. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet., 2015, 16(8), 441-458.
[http://dx.doi.org/10.1038/nrg3934] [PMID: 26149713]
[158]
Baliga, N.S.; Björkegren, J.L.M.; Boeke, J.D.; Boutros, M.; Crawford, N.P.S.; Dudley, A.M.; Farber, C.R.; Jones, A.; Levey, A.I.; Lusis, A.J.; Mak, H.C.; Nadeau, J.H.; Noyes, M.B.; Petretto, E.; Seyfried, N.T.; Steinmetz, L.M.; Vonesch, S.C. The state of systems genetics in 2017. Cell Syst., 2017, 4(1), 7-15.
[http://dx.doi.org/10.1016/j.cels.2017.01.005] [PMID: 28125793]
[159]
Kitano, H. Cancer as a robust system: Implications for anticancer therapy. Nat. Rev. Cancer, 2004, 4(3), 227-235.
[http://dx.doi.org/10.1038/nrc1300] [PMID: 14993904]
[160]
Stelling, J.; Sauer, U.; Szallasi, Z.; Doyle, F.J., III; Doyle, J. Robustness of cellular functions. Cell, 2004, 118(6), 675-685.
[http://dx.doi.org/10.1016/j.cell.2004.09.008] [PMID: 15369668]
[161]
Adjiri, A. DNA mutations may not be the cause of cancer. Oncol. Ther., 2017, 5(1), 85-101.
[http://dx.doi.org/10.1007/s40487-017-0047-1] [PMID: 28680959]
[162]
Agoston, V.; Csermely, P.; Pongor, S. Multiple weak hits confuse complex systems: A transcriptional regulatory network as an example. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 71(5 Pt 1), 051909.
[http://dx.doi.org/10.1103/PhysRevE.71.051909] [PMID: 16089573]
[163]
Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Rica Capistrano, I.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.T.; Meheus, L.; Sukhatme, V.P.; Bouche, G. ReDO_DB: The repurposing drugs in oncology database. Ecancermedicalscience, 2018, 12, 886.
[http://dx.doi.org/10.3332/ecancer.2018.886] [PMID: 30679953]
[164]
Zapletalova, D.; André, N.; Deak, L.; Kyr, M.; Bajciova, V.; Mudry, P.; Dubska, L.; Demlova, R.; Pavelka, Z.; Zitterbart, K.; Skotakova, J.; Husek, K.; Martincekova, A.; Mazanek, P.; Kepak, T.; Doubek, M.; Kutnikova, L.; Valik, D.; Sterba, J. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: A multicenter experience. Oncology, 2012, 82(5), 249-260.
[http://dx.doi.org/10.1159/000336483] [PMID: 22538363]
[165]
Kast, R.E.; Skuli, N.; Cos, S.; Karpel-Massler, G.; Shiozawa, Y.; Goshen, R.; Halatsch, M.E. The ABC7 regimen: A new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. Breast Cancer (Dove Med. Press), 2017, 9, 495-514.
[http://dx.doi.org/10.2147/BCTT.S139963] [PMID: 28744157]
[166]
Kast, R.E.; Karpel-Massler, G.; Halatsch, M-E. CUSP9* treatment protocol for recurrent glioblastoma: Aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget, 2014, 5(18), 8052-8082.
[http://dx.doi.org/10.18632/oncotarget.2408] [PMID: 25211298]
[167]
Durif, F.; Paire, M.; Deffond, D.; Eschalier, A.; Dordain, G.; Tournilhac, M.; Lavarenne, J. Relation between clinical efficacy and pharmacokinetic parameters after sublingual apomorphine in Parkinson’s disease. Clin. Neuropharmacol., 1993, 16(2), 157-166.
[http://dx.doi.org/10.1097/00002826-199304000-00008] [PMID: 8477411]
[168]
Brana, I.; Ocana, A.; Chen, E.X.; Razak, A.R.A.; Haines, C.; Lee, C.; Douglas, S.; Wang, L.; Siu, L.L.; Tannock, I.F.; Bedard, P.L. A phase I trial of pantoprazole in combination with doxorubicin in patients with advanced solid tumors: evaluation of pharmacokinetics of both drugs and tissue penetration of doxorubicin. Invest. New Drugs, 2014, 32(6), 1269-1277.
[http://dx.doi.org/10.1007/s10637-014-0159-5] [PMID: 25213162]
[169]
Ciapponi, A.; Pizarro, R.; Harrison, J. WITHDRAWN: Trimetazidine for stable angina. Cochrane Database Syst. Rev., 2017, 3(3), CD003614.
[PMID: 28319269]
[170]
Moon, S.J.; Lee, S.; Jang, K.; Yu, K.S.; Yim, S.V.; Kim, B.H. Comparative pharmacokinetic and tolerability evaluation of two simvastatin 20 mg formulations in healthy Korean male volunteers. Transl. Clin. Pharmacol., 2017, 25(1), 10-14.
[http://dx.doi.org/10.12793/tcp.2017.25.1.10] [PMID: 32095453]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy