Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Multimodal Medical Image Fusion Based on Content-based and PCA-sigmoid

Author(s): Srinivasu Polinati, Durga Prasad Bavirisetti*, Kandala N.V.P.S. Rajesh and Ravindra Dhuli

Volume 18, Issue 5, 2022

Published on: 24 February, 2022

Article ID: e041021196965 Pages: 17

DOI: 10.2174/1573405617666211004114726

Price: $65

Abstract

Objective: The objective of any multimodal medical image fusion algorithm is to assist a radiologist for better decision-making during the diagnosis and therapy by integrating the anatomical (magnetic resonance imaging) and functional (positron emission tomography/ single-photon emission computed tomography) information.

Methods: We proposed a new medical image fusion method based on content-based decomposition, Principal Component Analysis (PCA), and sigmoid function. We considered Empirical Wavelet Transform (EWT) for content-based decomposition purposes since it can preserve crucial medical image information such as edges and corners. PCA is used to obtain initial weights corresponding to each detail layer.

Results: In our experiments, we found that direct usage of PCA for detail layer fusion introduces severe artifacts into the fused image due to weight scaling issues. In order to tackle this, we considered using the sigmoid function for better weight scaling. We considered 24 pairs of MRI-PET and 24 pairs of MRI-SPECT images for fusion, and the results are measured using four significant quantitative metrics.

Conclusion: Finally, we compared our proposed method with other state-of-the-art transformbased fusion approaches, using traditional and recent performance measures. An appreciable improvement is observed in both qualitative and quantitative results compared to other fusion methods.

Keywords: Empirical wavelet transform, principal component analysis, sigmoid, MRI, PET, SPECT, medical fusion.

Graphical Abstract

[1]
Dasarathy BV. Medical image fusion: A survey of the state of the art. Inf Fusion 2014; 19: 4-19.
[http://dx.doi.org/10.1016/j.inffus.2013.12.002]
[2]
Bavirisetti DP, Kollu V, Gang X, Dhuli R. Fusion of MRI and CT images using guided image filter and image statistics. Int J Imaging Syst Technol 2017; 27(3): 227-37.
[http://dx.doi.org/10.1002/ima.22228]
[3]
Wang Z, Cui Z, Zhu Y. Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Comput Biol Med 2020; 123: 103823.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103823 ] [PMID: 32658780]
[4]
Isik A, Isik N, Kurnaz E. Complete breast autoamputation: clinical image. Breast J 2020; 26(11): 2265-6.
[http://dx.doi.org/10.1111/tbj.14072] [PMID: 33037830]
[5]
Isik A, Ramanathan R. Approaches to the treatment of pilonidal sinus disease, clinical practice in 2019. Int Wound J 2020; 17(2): 508-9.
[http://dx.doi.org/10.1111/iwj.13265] [PMID: 31710171]
[6]
El-Gamal F, Elmogy M, Journal AA-EI. U. Current trends in medical image registration and fusion. Egypt Inform J 2016; 17(1): 99-124.
[http://dx.doi.org/10.1016/j.eij.2015.09.002]
[7]
Nawaz Q, Xiao B, Hamid I, Jiao D. Multi-modal color medical image fusion using quaternion discrete Fourier transform. Sens Imaging 2016; 17(1): 7.
[http://dx.doi.org/10.1007/s11220-016-0131-x]
[8]
Wang H-H. A new multiwavelet-based approach to image fusion. J Math Imaging Vis 2004; 21(2): 177-92.
[http://dx.doi.org/10.1023/B:JMIV.0000035181.00093.e3]
[9]
Li S, Kang X, Fang L, Hu J, Yin H. Pixel-level image fusion: A survey of the state of the art. Inf Fusion 2017; 33: 100-12.
[http://dx.doi.org/10.1016/j.inffus.2016.05.004]
[10]
Du J, Li W, Lu K. An overview of multi-modal medical image fusion. Neurocompouting 2016; 215: 3-20.
[http://dx.doi.org/10.1016/j.neucom.2015.07.160]
[11]
Chavan SS, Mahajan A, Talbar SN, Desai S, Thakur M, D’cruz A. Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis. Comput Biol Med 2017; 81: 64-78.
[http://dx.doi.org/10.1016/j.compbiomed.2016.12.006] [PMID: 28013026]
[12]
Guihong Q, Dali Z, Pingfan Y. Medical image fusion by wavelet transform modulus maxima. Opt Express 2001; 9(4): 184-90.
[http://dx.doi.org/10.1364/OE.9.000184] [PMID: 19421288]
[13]
He C, Liu Q, Li H, Wang H. Multimodal medical image fusion based on IHS and PCA. Procedia Eng 2010; 7: 280-5.
[http://dx.doi.org/10.1016/j.proeng.2010.11.045]
[14]
Xu Z. Medical image fusion using multi-level local extrema. Inf Fusion 2014; 19: 38-48.
[http://dx.doi.org/10.1016/j.inffus.2013.01.001]
[15]
Du J, Li W, Xiao B. Anatomical-Functional Image Fusion by Information of Interest in Local Laplacian Filtering Domain. IEEE Trans Image Process 2017; 26(12): 5855-66.
[http://dx.doi.org/10.1109/TIP.2017.2745202] [PMID: 28858799]
[16]
Du J, Li W, Xiao B, Nawaz Q. Union Laplacian pyramid with multiple features for medical image fusion. Neurocomputing 2016; 194: 326-39.
[http://dx.doi.org/10.1016/j.neucom.2016.02.047]
[17]
Yin M, Liu X, Liu Y, Chen X. Medical Image Fusion With Parameter-Adaptive Pulse Coupled-Neural Network in Nonsubsampled Shearlet Transform Domain. IEEE Trans Instrum Meas 2018; 68(1): 49-64.
[18]
Tannaz A, Mousa S, Sabalan D, Masoud P. Fusion of multimodal medical images using nonsubsampled shearlet transform and particle swarm optimization. Multidimens Syst Signal Process 2020; 31(1): 269-87.
[http://dx.doi.org/10.1007/s11045-019-00662-7]
[19]
Arif M, Wang G. Fast curvelet transform through genetic algorithm for multimodal medical image fusion. Soft Comput 2020; 24(3): 1815-36.
[http://dx.doi.org/10.1007/s00500-019-04011-5]
[20]
Gilles J, Tran G, Osher S. 2D empirical transforms. Wavelets, ridgelets, and curvelets revisited. SIAM J Imaging Sci 2014; 7(1): 157-86.
[http://dx.doi.org/10.1137/130923774]
[21]
Vijayarajan R, Muttan S. Discrete wavelet transform based principal component averaging fusion for medical images. AEU-International J Electron Commun 2015; 69(6): 896-902.
[http://dx.doi.org/10.1016/j.aeue.2015.02.007]
[22]
Hossny M, Nahavandi S, Creighton D. Comments on ‘ Information measure for performance of image fusion ’ Elect lett 2008; 44(18): 1066-7.
[23]
Xydeas CS, Petrovi V. Objective image fusion performance measure. Elect lett 2000; 36(4): 308-9.
[24]
Sheikh HR, Bovik AC. Image information and visual quality. IEEE Trans Image Process 2006; 15(2): 430-44.
[http://dx.doi.org/10.1109/TIP.2005.859378] [PMID: 16479813]
[25]
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: Srom error visibility to structural similarity. IEEE Trans Image Process 2004; 13(4): 600-12.
[http://dx.doi.org/10.1109/TIP.2003.819861] [PMID: 15376593]
[26]
Gilles J. Empirical wavelet transform. IEEE Trans Signal Process 2013; 61(16): 3999-4010.
[http://dx.doi.org/10.1109/TSP.2013.2265222]
[27]
Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab Syst 1987; 2(1–3): 37-52.
[http://dx.doi.org/10.1016/0169-7439(87)80084-9]
[28]
Hassan N, Akamatsu N. A new approach for contrast enhancement using sigmoid function. 2004.
[29]
Rattanapitak W, Udomhunsakul S. Comparative efficiency of color models for multi-focus color image fusion. 2010.
[30]
Shenton ME, Kikinis R, McCarley W, Saiviroonporn P, Hokama HH, Robatino A, et al. Harvard brain atlas: a teaching and visualization tool.Proceedings 1995 Biomedical Visualization. IEEE 1995; pp. 10-7.
[http://dx.doi.org/10.1109/BIOVIS.1995.528700]
[31]
The whole brain atlas [Internet].. 2021.http://www.med.harvard.edu/AANLIB/home.html

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy