Mini-Review Article

COVID-19、SARS-COV-2、血小板、细胞因子风暴、几种 COVID 形式、致命的 COVID 形式。

卷 22, 期 7, 2022

发表于: 05 January, 2022

页: [584 - 593] 页: 10

弟呕挨: 10.2174/1566524021666211004110101

价格: $65

摘要

背景:严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)由于广泛感染和强烈的免疫系统反应,死亡率很高。白细胞介素 (ILs) 是导致 2019 年冠状病毒 (COVID-19) 感染中免疫反应恶化和细胞因子风暴形成的主要免疫因素之一。 简介:这篇综述文章旨在调查冠状病毒家族引起的感染中病毒结构、危险因素和患者血浆白细胞介素水平之间的关系。 方法:在 ISI、PUBMED、SCOPUS 和谷歌学术数据库中搜索关键词“白细胞介素”、“冠状病毒结构”、“血浆”和“风险因素”,寻找不同白细胞介素、冠状病毒结构和风险因素之间的关系。 结果:具有独立免疫系统标志物组的高危患者更容易因 SARS-CoV-2 导致死亡。尽管炎症标志物相似,但 IL-4、IL-10 和 IL-15 可能在冠状病毒感染患者中以不同水平分泌。 SARS-CoV-2 和 SARS-CoV 增加 IL-4 的分泌,而在 MERS-CoV 感染中保持不变。 MERS-CoV 感染表明 IL-10 水平升高。虽然 IL-10 水平通常在 SARS-CoV 感染中增加,但在 SARS-CoV-2 中记录到不同的水平,即在一些患者中它增加而在另一些患者中降低。这种差异可能与患者的病情和SARS-CoV-2的致病性等因素有关。 MERS-CoV 增加了 IL-15 的分泌,而其在 SARS-CoV-2 中的水平保持不变。尚未研究 SARS-CoV 患者的 IL-15 水平。 结论:综上所述,SARS-CoV-2 的不同结构,如刺突蛋白或非结构蛋白 (NSP) 的长度以及患者因危险因素的不同而易感性,可能导致免疫标志物分泌和致病性的差异。因此,识别和控制白细胞介素水平可以在控制症状和开发个体特异性治疗方面发挥重要作用。

关键词: 冠状病毒结构、SARS-CoV-2、免疫系统、白细胞介素、血浆、危险因素。

[1]
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19).StatPearls. StatPearls Publishing 2020.
[2]
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[3]
Petrone L, Petruccioli E, Vanini V, et al. A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients. Clin Microbiol Infect 2021; 27(2): 286. e7-286.e13.
[PMID: 33045370]
[4]
Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua shao shang za zhi= Zhonghua shaoshang zazhi= Chinese journal of burns 2020; 36: E005.
[5]
Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 2020; 108(1): 17-41.
[http://dx.doi.org/10.1002/JLB.3COVR0520-272R] [PMID: 32534467]
[6]
Carpagnano GE, Buonamico E, Migliore G, et al. Bilevel and continuous positive airway pressure and factors linked to all-cause mortality in COVID-19 patients in an intermediate respiratory intensive care unit in Italy. Expert Rev Respir Med 2021; 15(6): 853-7.
[http://dx.doi.org/10.1080/17476348.2021.1866546] [PMID: 33334197]
[7]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology Seminars in immunopathology. Springer 2017.
[8]
Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020; 40(1): 37.
[http://dx.doi.org/10.1186/s41232-020-00146-3] [PMID: 33014208]
[9]
Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020; 9(1): 1123-30.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[10]
Liu X, Liu C, Liu G, Luo W, Xia N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics 2020; 10(17): 7821-35.
[http://dx.doi.org/10.7150/thno.47987] [PMID: 32685022]
[11]
McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med 2020; 202(6): 812-21.
[http://dx.doi.org/10.1164/rccm.202005-1583OC] [PMID: 32584597]
[12]
Sternberg A, McKee DL, Naujokat C. Novel drugs targeting the SARS-CoV-2/COVID-19 machinery. Curr Top Med Chem 2020; 20(16): 1423-33.
[http://dx.doi.org/10.2174/1568026620999200517043137] [PMID: 32416679]
[13]
Sanghai N, Shafiq K, Tranmer GK. Drug discovery by drug repurposing: Combating COVID-19 in the 21st century. Mini Rev Med Chem 2021; 21(1): 3-9.
[14]
Stadler K, Rappuoli R. SARS: understanding the virus and development of rational therapy. Curr Mol Med 2005; 5(7): 677-97.
[http://dx.doi.org/10.2174/156652405774641124] [PMID: 16305493]
[15]
Li D-D, Li Q-H. SARS-CoV-2: vaccines in the pandemic era. Mil Med Res 2021; 8(1): 1-15.
[http://dx.doi.org/10.1186/s40779-020-00296-y] [PMID: 33402220]
[16]
Strongin AY, Sloutsky A, Cieplak P. Note on the potential BCG vaccination-COVID‐19 molecular link. Coronaviruses 2020; 1: 4-6.
[http://dx.doi.org/10.2174/2666796701999200629003417]
[17]
Luo W, Zhang JW, Zhang W, Lin YL, Wang Q. Circulating levels of IL-2, IL-4, TNF-α, IFN-γ, and C-reactive protein are not associated with severity of COVID-19 symptoms. J Med Virol 2021; 93(1): 89-91.
[http://dx.doi.org/10.1002/jmv.26156] [PMID: 32519779]
[18]
Schön MP, Berking C, Biedermann T, et al. COVID‐19 and immunological regulations–from basic and translational aspects to clinical implications. JDDG 2020; 18(8): 795-807.
[http://dx.doi.org/10.1111/ddg.14169]
[19]
Angioni R, Sánchez-Rodríguez R, Munari F, et al. Age-severity matched cytokine profiling reveals specific signatures in Covid-19 patients. Cell Death Dis 2020; 11(11): 957.
[http://dx.doi.org/10.1038/s41419-020-03151-z] [PMID: 33159040]
[20]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[21]
Konno Y, Kimura I, Uriu K, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep 2020; 32(12): 108185.
[http://dx.doi.org/10.1016/j.celrep.2020.108185] [PMID: 32941788]
[22]
Bartlam M, Yang H, Rao Z. Structural insights into SARS coronavirus proteins. Curr Opin Struct Biol 2005; 15(6): 664-72.
[http://dx.doi.org/10.1016/j.sbi.2005.10.004] [PMID: 16263266]
[23]
Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 2007; 81(18): 9812-24.
[http://dx.doi.org/10.1128/JVI.01012-07] [PMID: 17596301]
[24]
Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol 2012; 2(3): 264-75.
[http://dx.doi.org/10.1016/j.coviro.2012.04.004] [PMID: 22572391]
[25]
Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 2009; 83(13): 6689-705.
[http://dx.doi.org/10.1128/JVI.02220-08] [PMID: 19369340]
[26]
Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. In: Advances in virus research. Elsevier. 2016; 96: pp. 219-43.
[27]
Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2007; 81(2): 548-57.
[http://dx.doi.org/10.1128/JVI.01782-06] [PMID: 17108024]
[28]
He R, Leeson A, Andonov A, et al. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 2003; 311(4): 870-6.
[http://dx.doi.org/10.1016/j.bbrc.2003.10.075] [PMID: 14623261]
[29]
Wathelet MG, Orr M, Frieman MB, Baric RS. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 2007; 81(21): 11620-33.
[http://dx.doi.org/10.1128/JVI.00702-07] [PMID: 17715225]
[30]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[31]
Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020; 7(1): 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[32]
Renu K, Subramaniam MD, Chakraborty R, et al. The role of Interleukin-4 in COVID-19 associated male infertility - A hypothesis. J Reprod Immunol 2020; 142: 103213.
[http://dx.doi.org/10.1016/j.jri.2020.103213] [PMID: 33080435]
[33]
Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264(5161): 965-8.
[http://dx.doi.org/10.1126/science.8178155] [PMID: 8178155]
[34]
Kandikattu HK, Venkateshaiah SU, Kumar S, Mishra A. IL-15 immunotherapy is a viable strategy for COVID-19. Cytokine Growth Factor Rev 2020; 54: 24-31.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.008] [PMID: 32536564]
[35]
Gong J, Dong H, Xia SQ, et al. Correlation analysis between disease severity and inflammation-related parameters in patients with covid-19 pneumonia. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.25.20025643]
[36]
Rojas JM, Avia M, Martín V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res 2017; 2017: 6104054.
[37]
Channappanavar R, Perlman S. Evaluation of activation and inflammatory activity of myeloid cells during pathogenic human coronavirus infection. In: MERS Coronavirus. Springer 2020; pp. 195-204.
[http://dx.doi.org/10.1007/978-1-0716-0211-9_15]
[38]
Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004; 136(1): 95-103.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02415.x] [PMID: 15030519]
[39]
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018; 104: 8-13.
[http://dx.doi.org/10.1016/j.cyto.2018.01.025] [PMID: 29414327]
[40]
Wei X, Su J, Lin Y, et al. SARS-COV-2 infection causes dyslipidemia and increases levels of cancer biomarkers in covid-19 patients. SSRN 3552854.2020 3: 21;
[http://dx.doi.org/10.2139/ssrn.3552854]
[41]
He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006; 210(3): 288-97.
[42]
Barsig J, Küsters S, Vogt K, Volk HD, Tiegs G, Wendel A. Lipopolysaccharide-induced interleukin-10 in mice: role of endogenous tumor necrosis factor-α. Eur J Immunol 1995; 25(10): 2888-93.
[http://dx.doi.org/10.1002/eji.1830251027] [PMID: 7589088]
[43]
Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol 2008; 180(9): 5771-7.
[http://dx.doi.org/10.4049/jimmunol.180.9.5771] [PMID: 18424693]
[44]
Zhang YY, Li BR, Ning BT. The comparative immunological characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 coronavirus infections. Front Immunol 2020; 11: 2033.
[http://dx.doi.org/10.3389/fimmu.2020.02033] [PMID: 32922406]
[45]
Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease, professional edition e-book 2014 5: 1472.
[46]
Lodolce JP, Burkett PR, Koka RM, Boone DL, Ma A. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 2002; 13(6): 429-39.
[http://dx.doi.org/10.1016/S1359-6101(02)00029-1] [PMID: 12401478]
[47]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[48]
Sikka G, Miller KL, Steppan J, et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age. Exp Gerontol 2013; 48(2): 128-35.
[http://dx.doi.org/10.1016/j.exger.2012.11.001] [PMID: 23159957]
[49]
Al-Shukaili A, Al-Ghafri S, Al-Marhoobi S, Al-Abri S, Al-Lawati J, Al-Maskari M. Analysis of inflammatory mediators in type 2 diabetes patients. Int J Endocrinol 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/976810]
[50]
Dashraath P, Wong JLJ, Lim MXK, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol 2020; 222(6): 521-31.
[http://dx.doi.org/10.1016/j.ajog.2020.03.021] [PMID: 32217113]
[51]
Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.30.20048058]
[52]
Leahy TR, McManus R, Doherty DG, et al. Interleukin-15 is associated with disease severity in viral bronchiolitis. Eur Respir J 2016; 47(1): 212-22.
[http://dx.doi.org/10.1183/13993003.00642-2015] [PMID: 26541527]
[53]
Huntington ND. The unconventional expression of IL-15 and its role in NK cell homeostasis. Immunol Cell Biol 2014; 92(3): 210-3.
[http://dx.doi.org/10.1038/icb.2014.1] [PMID: 24492800]
[54]
Ferlazzo G, Pack M, Thomas D, et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 2004; 101(47): 16606-11.
[http://dx.doi.org/10.1073/pnas.0407522101] [PMID: 15536127]
[55]
Janssen R, Bont L, Siezen CLE, et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis 2007; 196(6): 826-34.
[http://dx.doi.org/10.1086/520886] [PMID: 17703412]
[56]
Grześk E, Kołtan S, Dębski R, et al. Concentrations of IL-15, IL-18, IFN-γ and activity of CD4+, CD8+ and NK cells at admission in children with viral bronchiolitis. Exp Ther Med 2010; 1(5): 873-7.
[http://dx.doi.org/10.3892/etm.2010.119] [PMID: 22993612]
[57]
Clay CC, Donart N, Fomukong N, et al. Severe acute respiratory syndrome-coronavirus infection in aged nonhuman primates is associated with modulated pulmonary and systemic immune responses. Immun Ageing 2014; 11(1): 4.
[http://dx.doi.org/10.1186/1742-4933-11-4] [PMID: 24642138]
[58]
Kuczyński S, Winiarska H, Abramczyk M, Szczawińska K, Wierusz-Wysocka B, Dworacka M. IL-15 is elevated in serum patients with type 1 diabetes mellitus. Diabetes Res Clin Pract 2005; 69(3): 231-6.
[http://dx.doi.org/10.1016/j.diabres.2005.02.007] [PMID: 16098919]
[59]
Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75(1): 68-78.
[http://dx.doi.org/10.1016/j.cyto.2015.05.014] [PMID: 26070934]
[60]
Junttila IS. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol 2018; 9: 888.
[http://dx.doi.org/10.3389/fimmu.2018.00888] [PMID: 29930549]
[61]
Zhang Y, Li J, Zhan Y, et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun 2004; 72(8): 4410-5.
[http://dx.doi.org/10.1128/IAI.72.8.4410-4415.2004] [PMID: 15271897]
[62]
Kulkarni P, Mahadevappa M, Alluri S. COVID-19 pandemic and the impact on the cardiovascular disease patient care. Curr Cardiol Rev 2020; 16(3): 173-7.
[http://dx.doi.org/10.2174/1573403X16666200621154842] [PMID: 32564757]
[63]
Xiong T-Y, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J 2020; 41(19): 1798-800.
[http://dx.doi.org/10.1093/eurheartj/ehaa231] [PMID: 32186331]
[64]
Li SS, Cheng CW, Fu CL, et al. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation 2003; 108(15): 1798-803.
[http://dx.doi.org/10.1161/01.CIR.0000094737.21775.32] [PMID: 14504188]
[65]
Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39(7): 618-25.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02153.x] [PMID: 19453650]
[66]
Chafekar A, Fielding BC. MERS-CoV: understanding the latest human coronavirus threat. Viruses 2018; 10(2): 93.
[http://dx.doi.org/10.3390/v10020093] [PMID: 29495250]
[67]
Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020; 31(7): 894-901.
[http://dx.doi.org/10.1016/j.annonc.2020.03.296] [PMID: 32224151]
[68]
Choi KW, Chau TN, Tsang O, et al. Outcomes and prognostic factors in 267 patients with severe acute respiratory syndrome in Hong Kong. Ann Intern Med 2003; 139(9): 715-23.
[http://dx.doi.org/10.7326/0003-4819-139-9-200311040-00005] [PMID: 14597455]
[69]
Wang W, He J, Wu S. The definition and risks of cytokine release syndrome-like in 11 covid-19-infected pneumonia critically ill patients: Disease characteristics and retrospective analysis. Medrxiv 2020.
[http://dx.doi.org/10.1101/2020.02.26.20026989]
[70]
Lam CWK, Chan MHM, Wong CK. Severe acute respiratory syndrome: clinical and laboratory manifestations. Clin Biochem Rev 2004; 25(2): 121-32.
[PMID: 18458712]
[71]
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 2020; 146(3): 518-534. e511.
[72]
Kim ES, Choe PG, Park WB, et al. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci 2016; 31(11): 1717-25.
[http://dx.doi.org/10.3346/jkms.2016.31.11.1717] [PMID: 27709848]
[73]
Park J, Kim H, Kim SY, et al. In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients. Sci Rep 2020; 10(1): 22418.
[http://dx.doi.org/10.1038/s41598-020-80120-8] [PMID: 33376242]
[74]
Ghazavi A, Ganji A, Keshavarzian N, Rabiemajd S, Mosayebi G. Cytokine profile and disease severity in patients with COVID-19. Cytokine 2021; 137: 155323.
[http://dx.doi.org/10.1016/j.cyto.2020.155323] [PMID: 33045526]
[75]
Yilmaz MI, Solak Y, Saglam M, et al. The relationship between IL-10 levels and cardiovascular events in patients with CKD. Clin J Am Soc Nephrol 2014; 9(7): 1207-16.
[http://dx.doi.org/10.2215/CJN.08660813] [PMID: 24789549]
[76]
Leff Gelman P, Mancilla-Herrera I, Flores-Ramos M, et al. The cytokine profile of women with severe anxiety and depression during pregnancy. BMC Psychiatry 2019; 19(1): 104.
[http://dx.doi.org/10.1186/s12888-019-2087-6] [PMID: 30943938]
[77]
Lin L, Luo S, Qin R, et al. Long-term infection of SARS-CoV-2 changed the body’s immune status. Clin Immunol 2020; 218: 108524.
[http://dx.doi.org/10.1016/j.clim.2020.108524] [PMID: 32659373]
[78]
Burgos-Blasco B, Güemes-Villahoz N, Santiago JL, et al. Hypercytokinemia in COVID-19: Tear cytokine profile in hospitalized COVID-19 patients. Exp Eye Res 2020; 200: 108253.
[http://dx.doi.org/10.1016/j.exer.2020.108253] [PMID: 32949577]
[79]
Akbari H, Tabrizi R, Lankarani KB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci 2020; 258: 118167.
[http://dx.doi.org/10.1016/j.lfs.2020.118167] [PMID: 32735885]
[80]
Bülow Anderberg S, Luther T, Berglund M, et al. Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill Covid-19 patients. Cytokine 2021; 138: 155389.
[http://dx.doi.org/10.1016/j.cyto.2020.155389] [PMID: 33348065]
[81]
Blot M, Bour J-B, Quenot JP, et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. J Transl Med 2020; 18(1): 457.
[http://dx.doi.org/10.1186/s12967-020-02646-9] [PMID: 33272291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy