Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

CD155: A Key Receptor Playing Diversified Roles

Author(s): Shyam Sundar Nandi*, Trupti Gohil, Sonali Ankush Sawant, Upendra Pradeep Lambe, Sudip Ghosh and Snehasis Jana

Volume 22, Issue 7, 2022

Published on: 24 February, 2022

Page: [594 - 607] Pages: 14

DOI: 10.2174/1566524021666210910112906

Price: $65

Abstract

Cluster of differentiation (CD155), formerly identified as poliovirus receptor (PVR) and later as immunoglobulin molecule, is involved in cell adhesion, proliferation, invasion and migration. It is a surface protein expressed mostly on normal and transformed malignant cells. The expression of the receptor varies based on the origin of tissue. The expression of the protein is determined by factors involved in the sonic hedgehog pathway, Ras-MEK-ERK pathway and during stressful conditions like DNA damage response. The protein uses an alternate splicing mechanism, producing four isoforms, two being soluble (CD155β and CD155γ) and two being transmembrane protein (CD155α and CD155δ). Apart from being a viral receptor, researchers have identified CD155 to play important roles in cancer research and the cell signaling field. The receptor is recognized as a biomarker for identifying cancerous tissue. The receptor interacts with molecules involved in the cells’ defense mechanism. The immunesurveillance role of CD155 is being deciphered to understand the mechanistic approach it utilizes as an onco-immunologic molecule. CD155 is a non-MHC-I ligand which helps in identifying non-self to NK cells via an inhibitory TIGIT ligand. The TIGIT–CD155 pathway is a novel MHC-I-independent education mechanism for cell tolerance and activation of NK cells. The receptor also has a role in metastasis of cancer and transendothelial mechanism. In this review, the authors discuss the virus-host interaction that occurs via a single transmembrane receptor, the poliovirus infection pathway, which is being exploited as a therapeutic pathway. The oncolytic virotherapy is now a promising modality for curing cancer.

Keywords: CD155, PVR, poliovirus, cancer, PDGFR, VEGFR.

[1]
Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989; 56(5): 855-65.
[http://dx.doi.org/10.1016/0092-8674(89)90690-9] [PMID: 2538245]
[2]
Koike S, Horie H, Ise I. The poliovirus receptor protein is produced membrane-bound and secreted forms. EMBO J 1990; 9: 3217-24.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07520.x]
[3]
Siddique T, McKinney R, Hung WY, et al. The poliovirus sensitivity (PVS) gene is on chromosome 19q12-q13.2. Genomics 1988; 3(2): 156-60.
[http://dx.doi.org/10.1016/0888-7543(88)90147-4] [PMID: 2852161]
[4]
Morimoto K, Satoh-Yamaguchi K, Hamaguchi A, et al. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene 2008; 27(3): 264-73.
[http://dx.doi.org/10.1038/sj.onc.1210645] [PMID: 17637752]
[5]
Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000; 10(5): 305-19.
[http://dx.doi.org/10.1002/1099-1654(200009/10)10:5<305:AID-RMV286>3.0.CO;2-T] [PMID: 11015742]
[6]
Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 2003; 94(8): 655-67.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01499.x] [PMID: 12901789]
[7]
Ogita H, Takai Y. Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 2006; 58(5-6): 334-43.
[http://dx.doi.org/10.1080/15216540600719622] [PMID: 16754328]
[8]
Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: Roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008; 9(8): 603-15.
[http://dx.doi.org/10.1038/nrm2457] [PMID: 18648374]
[9]
Takahashi K, Nakanishi H, Miyahara M, et al. Nectin/PRR: An immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 1999; 145(3): 539-49.
[http://dx.doi.org/10.1083/jcb.145.3.539] [PMID: 10225955]
[10]
Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG. CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res 2005; 65(23): 10930-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1890] [PMID: 16322240]
[11]
Ikeda W, Kakunaga S, Itoh S, et al. Tage4/Nectin-like molecule-5 heterophilically trans-interacts with cell adhesion molecule Nectin-3 and enhances cell migration. J Biol Chem 2003; 278(30): 28167-72.
[http://dx.doi.org/10.1074/jbc.M303586200] [PMID: 12740392]
[12]
Baury B, Geraghty RJ, Masson D, Lustenberger P, Spear PG, Denis MG. Organization of the rat Tage4 gene and herpesvirus entry activity of the encoded protein. Gene 2001; 265(1-2): 185-94.
[http://dx.doi.org/10.1016/S0378-1119(01)00343-2] [PMID: 11255021]
[13]
Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998; 280(5369): 1618-20.
[http://dx.doi.org/10.1126/science.280.5369.1618] [PMID: 9616127]
[14]
Gao J, Zheng Q, Xin N, Wang W, Zhao C. CD155, an onco-immunologic molecule in human tumors. Cancer Sci 2017; 108(10): 1934-8.
[http://dx.doi.org/10.1111/cas.13324] [PMID: 28730595]
[15]
Chan CJ, Andrews DM, Smyth MJ. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 2012; 24(2): 246-51.
[http://dx.doi.org/10.1016/j.coi.2012.01.009] [PMID: 22285893]
[16]
Soriani A, Zingoni A, Cerboni C, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 2009; 113(15): 3503-11.
[http://dx.doi.org/10.1182/blood-2008-08-173914] [PMID: 19098271]
[17]
Soriani A, Fionda C, Ricci B, Iannitto ML, Cippitelli M, Santoni A. Chemotherapy-elicited upregulation of NKG2D and DNAM-1 ligands as a therapeutic target in multiple myeloma. OncoImmunology 2013; 2(12): e26663.
[http://dx.doi.org/10.4161/onci.26663] [PMID: 24498552]
[18]
Faris RA, Mcentire KD, Thompson NL. Identification and characterization of a rat epatic oncofetal membrane glycoprotein. Cancer Res 1990; 50: 4755-63.
[19]
Bowers JR, Readler JM, Sharma P, Excoffon KJDA. Poliovirus Receptor: More than a simple viral receptor. Virus Res 2017; 242: 1-6.
[http://dx.doi.org/10.1016/j.virusres.2017.09.001] [PMID: 28870470]
[20]
Bibb JA, Bernhardt G, Wimmer E. Cleavage site of the poliovirus receptor signal sequence. J Gen Virol 1994; 75(Pt 8): 1875-81.
[http://dx.doi.org/10.1099/0022-1317-75-8-1875] [PMID: 8046389]
[21]
Koike S, Ise I, Nomoto A. Functional domains of the poliovirus receptor. Proc Natl Acad Sci USA 1991; 88(10): 4104-8.
[http://dx.doi.org/10.1073/pnas.88.10.4104] [PMID: 1851992]
[22]
Oda T, Ohka S, Nomoto A. Ligand stimulation of CD155α inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem Biophys Res Commun 2004; 319(4): 1253-64.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.111] [PMID: 15194502]
[23]
Speir ML, Zweig AS, Rosenbloom KR, et al. The UCSC Genome Browser database: 2016 update. Nucleic Acids Res 2016; 44(D1): D717-25.
[http://dx.doi.org/10.1093/nar/gkv1275] [PMID: 26590259]
[24]
Baury B, Masson D, McDermott BM Jr, et al. Identification of secreted CD155 isoforms. Biochem Biophys Res Commun 2003; 309(1): 175-82.
[http://dx.doi.org/10.1016/S0006-291X(03)01560-2] [PMID: 12943679]
[25]
Iguchi-Manaka A, Okumura G, Kojima H, et al. Increased soluble CD155 in the serum of cancer patients. PLoS One 2016; 11(4): e0152982.
[http://dx.doi.org/10.1371/journal.pone.0152982] [PMID: 27049654]
[26]
Ohka S, Ohno H, Tohyama K, Nomoto A. Basolateral sorting of human poliovirus receptor α involves an interaction with the μ1B subunit of the clathrin adaptor complex in polarized epithelial cells. Biochem Biophys Res Commun 2001; 287(4): 941-8.
[http://dx.doi.org/10.1006/bbrc.2001.5660] [PMID: 11573956]
[27]
Rieder E, Wimmer E. Cellular receptors of picornaviruses: An overview. In: Molecular Biology of Picornavirus. Sewler BL, Wimmer E, Eds.; USA: Wiley 2002; pp. 61-70.
[28]
Mueller S, Wimmer E. Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to α(v)β3 integrin-containing membrane microdomains. J Biol Chem 2003; 278(33): 31251-60.
[http://dx.doi.org/10.1074/jbc.M304166200] [PMID: 12759359]
[29]
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-312.
[30]
Bernhardt G, Bibb JA, Bradley J, Wimmer E. Molecular characterization of the cellular receptor for poliovirus. Virology 1994; 199(1): 105-13.
[http://dx.doi.org/10.1006/viro.1994.1102] [PMID: 8116232]
[31]
Zhang P, Mueller S, Morais MC, et al. Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc Natl Acad Sci USA 2008; 105(47): 18284-9.
[http://dx.doi.org/10.1073/pnas.0807848105] [PMID: 19011098]
[32]
Belnap DM, McDermott BM Jr, Filman DJ, et al. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc Natl Acad Sci USA 2000; 97(1): 73-8.
[http://dx.doi.org/10.1073/pnas.97.1.73] [PMID: 10618373]
[33]
Zell R, Delwart E, Gorbalenya AE, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol 2017; 98(10): 2421-2.
[http://dx.doi.org/10.1099/jgv.0.000911] [PMID: 28884666]
[34]
Oberste MS, Maher K, Kilpatrick DR, Pallansch MA. Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 1999; 73(3): 1941-8.
[http://dx.doi.org/10.1128/JVI.73.3.1941-1948.1999] [PMID: 9971773]
[35]
Ryu W. Molecular virology of human pathogenic viruses. Academic Press 2016; pp. 153-64.
[36]
Ozaki-Kuroda K, Nakanishi H, Ohta H. Tutorial for Windows and Macintosh Reference Sequence. J Virol 2018; 4939: 1-11.
[37]
Adeyemi OO, Sherry L, Ward JC, et al. Involvement of a nonstructural protein in poliovirus capsid assembly. J Virol 2019; 93(5): e01447-18.
[http://dx.doi.org/10.1128/JVI.01447-18] [PMID: 30541849]
[38]
Teterina NL, Pinto Y, Weaver JD, Jensen KS, Ehrenfeld E. Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells. J Virol 2011; 85(9): 4284-96.
[http://dx.doi.org/10.1128/JVI.02398-10] [PMID: 21345960]
[39]
Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM. The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol 2005; 79(12): 7745-55.
[http://dx.doi.org/10.1128/JVI.79.12.7745-7755.2005] [PMID: 15919927]
[40]
Rossmann MG, Arnold E, Erickson JW, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 1985; 317(6033): 145-53.
[http://dx.doi.org/10.1038/317145a0] [PMID: 2993920]
[41]
Butan C, Filman DJ, Hogle JM. Cryo-electron microscopy reconstruction shows poliovirus 135S particles poised for membrane interaction and RNA release. J Virol 2014; 88(3): 1758-70.
[http://dx.doi.org/10.1128/JVI.01949-13] [PMID: 24257617]
[42]
Fricks CE, Hogle JM. Cell-induced conformational change in poliovirus: Externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 1990; 64(5): 1934-45.
[http://dx.doi.org/10.1128/jvi.64.5.1934-1945.1990] [PMID: 2157861]
[43]
Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM. Characterization of early steps in the poliovirus infection process: Receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J Virol 2006; 80(1): 172-80.
[http://dx.doi.org/10.1128/JVI.80.1.172-180.2006] [PMID: 16352541]
[44]
Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM. Imaging poliovirus entry in live cells. PLoS Biol 2007; 5: e183.
[http://dx.doi.org/10.1371/journal.pbio.0050183]
[45]
Chow M, Newman JFE, Filman D, Hogle JM, Rowlands DJ, Brown F. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 1987; 327(6122): 482-6.
[http://dx.doi.org/10.1038/327482a0] [PMID: 3035380]
[46]
Selinka HC, Zibert A, Wimmer E. Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Proc Natl Acad Sci USA 1991; 88(9): 3598-602.
[http://dx.doi.org/10.1073/pnas.88.9.3598] [PMID: 1673787]
[47]
Chothia C, Jones EY. The molecular structure of cell adhesion molecules. Annu Rev Biochem 1997; 66: 823-62.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.823] [PMID: 9242926]
[48]
Strauss M, Filman DJ, Belnap DM, Cheng N, Noel RT, Hogle JM. Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry. J Virol 2015; 89(8): 4143-57.
[http://dx.doi.org/10.1128/JVI.03101-14] [PMID: 25631086]
[49]
Nandi SS, Sharma DK, Deshpande JM. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene. Indian J Med Res 2016; 144(1): 38-45.
[http://dx.doi.org/10.4103/0971-5916.193281] [PMID: 27834324]
[50]
Selinka H-C, Zibert A, Wimmer E. A chimeric poliovirus/CD4 receptor confers susceptibility to poliovirus on mouse cells. J Virol 1992; 66(4): 2523-6.
[http://dx.doi.org/10.1128/jvi.66.4.2523-2526.1992] [PMID: 1312641]
[51]
Mueller S, Cao X, Welker R, Wimmer E. Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J Biol Chem 2002; 277(10): 7897-904.
[http://dx.doi.org/10.1074/jbc.M111937200] [PMID: 11751937]
[52]
Ohka S, Matsuda N, Tohyama K, et al. Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J Virol 2004; 78(13): 7186-98.
[http://dx.doi.org/10.1128/JVI.78.13.7186-7198.2004] [PMID: 15194795]
[53]
Aoki J, Koike S, Ise I, Sato-Yoshida Y, Nomoto A. Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J Biol Chem 1994; 269(11): 8431-8.
[http://dx.doi.org/10.1016/S0021-9258(17)37212-5] [PMID: 8132569]
[54]
Ren R, Racaniello VR. Poliovirus spreads from muscle to the central nervous system by neural pathways. J Infect Dis 1992; 166(4): 747-52.
[http://dx.doi.org/10.1093/infdis/166.4.747] [PMID: 1326581]
[55]
Zhang S, Racaniello VR. Expression of the poliovirus receptor in intestinal epithelial cells is not sufficient to permit poliovirus replication in the mouse gut. J Virol 1997; 71(7): 4915-20.
[http://dx.doi.org/10.1128/jvi.71.7.4915-4920.1997] [PMID: 9188553]
[56]
Pelletier J, Kaplan G, Racaniello VR, Sonenberg N. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5′ noncoding region. Mol Cell Biol 1988; 8(3): 1103-12.
[http://dx.doi.org/10.1128/MCB.8.3.1103] [PMID: 2835660]
[57]
Schaechter M. Encyclopedia of Microbiology. Academic Press 2009; pp. 459-68.
[58]
Lévêque N, Semler BLAA. 21st century perspective of poliovirus replication. PLoS Pathog 2015; 15: e1004825.
[59]
Ida-Hosonuma M, Iwasaki T, Yoshikawa T, et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 2005; 79(7): 4460-9.
[http://dx.doi.org/10.1128/JVI.79.7.4460-4469.2005] [PMID: 15767446]
[60]
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74(18): 4967-75.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1666] [PMID: 25172843]
[61]
Solecki DJ, Gromeier M, Mueller S, Bernhardt G, Wimmer E. Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J Biol Chem 2002; 277(28): 25697-702.
[http://dx.doi.org/10.1074/jbc.M201378200] [PMID: 11983699]
[62]
Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 2016; 8(2): 22.
[http://dx.doi.org/10.3390/cancers8020022] [PMID: 26891329]
[63]
Gromeier M, Lachmann S, Rosenfeld M. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci 2000; 97: 6803-8.
[64]
Gromeier M, Solecki D, Patel DD, Wimmer E. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: Implications for the pathogenesis of poliomyelitis. Virology 2000; 273(2): 248-57.
[http://dx.doi.org/10.1006/viro.2000.0418] [PMID: 10915595]
[65]
Vassena L, Giuliani E, Matusali G, Cohen ÉA, Doria M. The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J Gen Virol 2013; 94(Pt 12): 2664-9.
[http://dx.doi.org/10.1099/vir.0.055541-0] [PMID: 24045107]
[66]
Tomasec P, Wang EC, Davison AJ, et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 2005; 6(2): 181-8.
[http://dx.doi.org/10.1038/ni1156] [PMID: 15640804]
[67]
Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JSB, Gasser S. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One 2013; 8: e54406.
[http://dx.doi.org/10.1371/journal.pone.0054406]
[68]
Chan CJ, Martinet L, Gilfillan S, et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 2014; 15(5): 431-8.
[http://dx.doi.org/10.1038/ni.2850] [PMID: 24658051]
[69]
Blake SJ, Dougall WC, Miles JJ, Teng MW, Smyth MJ. Molecular pathways: Targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 2016; 22(21): 5183-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0933] [PMID: 27620276]
[70]
He W, Zhang H, Han F, et al. CD155T/TIGIT signaling regulates CD8 + T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res 2017; 77(22): 6375-88.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0381] [PMID: 28883004]
[71]
Shibuya A, Campbell D, Hannum C, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996; 4(6): 573-81.
[http://dx.doi.org/10.1016/S1074-7613(00)70060-4] [PMID: 8673704]
[72]
Gilfillan S, Chan CJ, Cella M, et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 2008; 205(13): 2965-73.
[http://dx.doi.org/10.1084/jem.20081752] [PMID: 19029380]
[73]
Billadeau D. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel immune checkpoints for natural killer cell-based cancer immunotherapy. Lancet 2019; 186: 3773-81.
[74]
Pauken KE, Wherry EJ. TIGIT and CD226: Tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 2014; 26(6): 785-7.
[http://dx.doi.org/10.1016/j.ccell.2014.11.016] [PMID: 25490444]
[75]
Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 2015; 15(4): 243-54.
[http://dx.doi.org/10.1038/nri3799] [PMID: 25743219]
[76]
Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA. The TIGIT/CD226 axis regulates human T cell function. J Immunol 2012; 188(8): 3869-75.
[http://dx.doi.org/10.4049/jimmunol.1103627] [PMID: 22427644]
[77]
Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev 2017; 276(1): 112-20.
[http://dx.doi.org/10.1111/imr.12518] [PMID: 28258695]
[78]
Li XY, Das I, Lepletier A, et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J Clin Invest 2018; 128(6): 2613-25.
[http://dx.doi.org/10.1172/JCI98769] [PMID: 29757192]
[79]
Cluxton CD, Spillane C, O’Toole SA, Sheils O, Gardiner CM, O’Leary JJ. Suppression of Natural Killer cell NKG2D and CD226 anti-tumour cascades by platelet cloaked cancer cells: Implications for the metastatic cascade. PLoS One 2019; 14: e0211538.
[80]
Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 2013; 31: 413-41.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095951] [PMID: 23298206]
[81]
He Y, Peng H, Sun R, et al. Contribution of inhibitory receptor TIGIT to NK cell education. J Autoimmun 2017; 81: 1-12.
[http://dx.doi.org/10.1016/j.jaut.2017.04.001] [PMID: 28438433]
[82]
Brodin P, Kärre K, Höglund P. NK cell education: Not an on-off switch but a tunable rheostat. Trends Immunol 2009; 30(4): 143-9.
[http://dx.doi.org/10.1016/j.it.2009.01.006] [PMID: 19282243]
[83]
Kim S, Poursine-Laurent J, Truscott SM, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005; 436(7051): 709-13.
[http://dx.doi.org/10.1038/nature03847] [PMID: 16079848]
[84]
Viant C, Fenis A, Chicanne G, Payrastre B, Ugolini S, Vivier E. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nat Commun 2014; 5: 5108.
[http://dx.doi.org/10.1038/ncomms6108] [PMID: 25355530]
[85]
Gumbleton M, Vivier E, Kerr WG. SHIP1 intrinsically regulates NK cell signaling and education, resulting in tolerance of an MHC class I-mismatched bone marrow graft in mice. J Immunol 2015; 194(6): 2847-54.
[http://dx.doi.org/10.4049/jimmunol.1402930] [PMID: 25687756]
[86]
Xu D, Han Q, Hou Z, Zhang C, Zhang J. miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol 2017; 14(8): 712-20.
[http://dx.doi.org/10.1038/cmi.2015.113] [PMID: 26996068]
[87]
Liu S, Zhang H, Li M, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 2013; 20(3): 456-64.
[http://dx.doi.org/10.1038/cdd.2012.141] [PMID: 23154388]
[88]
Lowin-Kropf B, Kunz B, Beermann F, Held W. Impaired natural killing of MHC class I-deficient targets by NK cells expressing a catalytically inactive form of SHP-1. J Immunol 2000; 165(3): 1314-21.
[http://dx.doi.org/10.4049/jimmunol.165.3.1314] [PMID: 10903732]
[89]
Ueda Y, Kedashiro S, Maruoka M, Mizutani K, Takai Y. Roles of the third Ig-like domain of Necl-5/PVR and the fifth Ig-like domain of the PDGF receptor in its signaling. Genes Cells 2018; 23(3): 214-24.
[http://dx.doi.org/10.1111/gtc.12564] [PMID: 29431243]
[90]
Sato T, Irie K, Ooshio T, Ikeda W, Takai Y. Involvement of heterophilic trans-interaction of Necl-5/Tage4/PVR/CD155 with nectin-3 in formation of nectin- and cadherin-based adherens junctions. Genes Cells 2004; 9(9): 791-9.
[http://dx.doi.org/10.1111/j.1365-2443.2004.00763.x] [PMID: 15330856]
[91]
Kakunaga S, Ikeda W, Shingai T, et al. Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by Necl-5/Tage4/poliovirus receptor/CD155 through the Ras-Raf-MEK-ERK signaling. J Biol Chem 2004; 279(35): 36419-25.
[http://dx.doi.org/10.1074/jbc.M406340200] [PMID: 15213219]
[92]
Sullivan DP, Seidman MA, Muller WA. Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99. Am J Pathol 2013; 182(3): 1031-42.
[http://dx.doi.org/10.1016/j.ajpath.2012.11.037] [PMID: 23333754]
[93]
Reymond N, Imbert AM, Devilard E, et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 2004; 199(10): 1331-41.
[http://dx.doi.org/10.1084/jem.20032206] [PMID: 15136589]
[94]
Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178(2): 449-60.
[http://dx.doi.org/10.1084/jem.178.2.449] [PMID: 8340753]
[95]
Billadeau DD, Leibson PJ. ITAMs versus ITIMs: Striking a balance during cell regulation. J Clin Invest 2002; 109(2): 161-8.
[http://dx.doi.org/10.1172/JCI0214843] [PMID: 11805126]
[96]
Sloan KE, Eustace BK, Stewart JK, et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 2004; 4: 73.
[http://dx.doi.org/10.1186/1471-2407-4-73] [PMID: 15471548]
[97]
Muller WA. How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am J Pathol 2014; 184(4): 886-96.
[http://dx.doi.org/10.1016/j.ajpath.2013.12.033] [PMID: 24655376]
[98]
Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015; 107(3): 321-30.
[http://dx.doi.org/10.1093/cvr/cvv147] [PMID: 25990461]
[99]
Honda T, Shimizu K, Fukuhara A, Irie K, Takai Y. Regulation by nectin of the velocity of the formation of adherens junctions and tight junctions. Biochem Biophys Res Commun 2003; 306(1): 104-9.
[http://dx.doi.org/10.1016/S0006-291X(03)00919-7] [PMID: 12788073]
[100]
Liu L, You X, Han S, Sun Y, Zhang J, Zhang Y. CD155/TIGIT, a novel immune checkpoint in human cancers. (Review) Oncol Rep 2021; 45(3): 835-45.
[http://dx.doi.org/10.3892/or.2021.7943] [PMID: 33469677]
[101]
Kajita M, Ikeda W, Tamaru Y, Takai Y. Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 2007; 12(3): 345-57.
[http://dx.doi.org/10.1111/j.1365-2443.2007.01062.x] [PMID: 17352739]
[102]
Nishiwada S, Sho M, Yasuda S, et al. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res 2015; 35(4): 2287-97.
[PMID: 25862891]
[103]
Kinugasa M, Amano H, Satomi-Kobayashi S, et al. Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis. Circ Res 2012; 110(5): 716-26.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.256834] [PMID: 22282193]
[104]
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[105]
Qu P, Huang X, Zhou X, et al. Loss of CD155 expression predicts poor prognosis in hepatocellular carcinoma. Histopathology 2015; 66(5): 706-14.
[http://dx.doi.org/10.1111/his.12584] [PMID: 25320021]
[106]
Atsumi S, Matsumine A, Toyoda H, Niimi R, Iino T, Sudo A. Prognostic significance of CD155 mRNA expression in soft tissue sarcomas. Oncol Lett 2013; 5(6): 1771-6.
[http://dx.doi.org/10.3892/ol.2013.1280] [PMID: 23833639]
[107]
Liu F, Huang J, Xiong Y, Li S, Liu Z. Large-scale analysis reveals the specific clinical and immune features of CD155 in glioma. Aging (Albany NY) 2019; 11(15): 5463-82.
[http://dx.doi.org/10.18632/aging.102131] [PMID: 31377744]
[108]
Zhuo B, Li Y, Gu F, et al. Overexpression of CD155 relates to metastasis and invasion in osteosarcoma. Oncol Lett 2018; 15(5): 7312-8.
[http://dx.doi.org/10.3892/ol.2018.8228] [PMID: 29725446]
[109]
Huang DW, Huang M, Lin XS, Huang Q. CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. OncoTargets Ther 2017; 10: 3817-25.
[http://dx.doi.org/10.2147/OTT.S141476] [PMID: 28814880]
[110]
Parangi S, O’Reilly M, Christofori G, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 1996; 93(5): 2002-7.
[http://dx.doi.org/10.1073/pnas.93.5.2002] [PMID: 8700875]
[111]
Zheng Q, Wang B, Gao J, et al. CD155 knockdown promotes apoptosis via AKT/Bcl-2/Bax in colon cancer cells. J Cell Mol Med 2018; 22(1): 131-40.
[http://dx.doi.org/10.1111/jcmm.13301] [PMID: 28816021]
[112]
Gao J, Zheng Q, Shao Y, Wang W, Zhao C. CD155 downregulation synergizes with adriamycin to induce breast cancer cell apoptosis. Apoptosis 2018; 23(9-10): 512-20.
[http://dx.doi.org/10.1007/s10495-018-1473-8] [PMID: 30039180]
[113]
Triki H, Charfi S, Bouzidi L, et al. CD155 expression in human breast cancer: Clinical significance and relevance to natural killer cell infiltration. Life Sci 2019; 231: 116543.
[http://dx.doi.org/10.1016/j.lfs.2019.116543] [PMID: 31176775]
[114]
Yong H, Cheng R, Li X, et al. CD155 expression and its prognostic value in postoperative patients with breast cancer. Biomed Pharmacother 2019; 115: 108884.
[http://dx.doi.org/10.1016/j.biopha.2019.108884] [PMID: 31035013]
[115]
Lee E, Lee SJ, Koskimaki JE, Han Z, Pandey NB, Popel AS. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Sci Rep 2014; 4: 7139.
[http://dx.doi.org/10.1038/srep07139] [PMID: 25409905]
[116]
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16(1): 40-52.
[http://dx.doi.org/10.1038/s41423-018-0168-y] [PMID: 30275538]
[117]
Fang L, Zhao F, Iwanowycz S, et al. Anticancer activity of emodin is associated with downregulation of CD155. Int Immunopharmacol 2019; 75: 105763.
[http://dx.doi.org/10.1016/j.intimp.2019.105763] [PMID: 31325728]
[118]
Stanietsky N, Simic H, Arapovic J. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. PNAS 2009; 106: 17858-63.
[http://dx.doi.org/10.1073/pnas.0903474106]
[119]
Stamm H, Klingler F, Grossjohann EM, et al. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Oncogene 2018; 37(39): 5269-80.
[http://dx.doi.org/10.1038/s41388-018-0288-y] [PMID: 29855615]
[120]
Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol 2016; 136(1): 255-63.
[http://dx.doi.org/10.1038/JID.2015.404] [PMID: 26763445]
[121]
Nasiri H, Valedkarimi Z, Aghebati-Maleki L, Majidi J. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J Cell Physiol 2018; 233(9): 6441-57.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[122]
Gromeier M, Nair SK. Recombinant poliovirus for cancer immunotherapy. Annu Rev Med 2018; 69: 289-99.
[http://dx.doi.org/10.1146/annurev-med-050715-104655] [PMID: 29414253]
[123]
Gromeier M, Alexander L, Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci USA 1996; 93(6): 2370-5.
[http://dx.doi.org/10.1073/pnas.93.6.2370] [PMID: 8637880]
[124]
Brown MC, Dobrikova EY, Dobrikov MI, et al. Oncolytic polio virotherapy of cancer. Cancer 2014; 120(21): 3277-86.
[http://dx.doi.org/10.1002/cncr.28862] [PMID: 24939611]
[125]
Walton RW, Brown MC, Sacco MT, Gromeier M. Engineered oncolytic poliovirus PVSRIPO subverts MDA5-dependent innate immune responses in cancer cells. J Virol 2018; 92(19): 92.
[http://dx.doi.org/10.1128/JVI.00879-18] [PMID: 29997212]
[126]
Goetz C, Everson RG, Zhang LC, Gromeier M. MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther 2010; 18(11): 1937-46.
[http://dx.doi.org/10.1038/mt.2010.145] [PMID: 20648000]
[127]
Denniston E, Crewdson H, Rucinsky N, et al. The practical consideration of poliovirus as an oncolytic virotherapy. Am J Virol 2016; 5(1): 1-7.
[http://dx.doi.org/10.3844/ajvsp.2016.1.7] [PMID: 28203321]
[128]
Holl EK, Brown MC, Boczkowski D, et al. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 2016; 7(48): 79828-41.
[http://dx.doi.org/10.18632/oncotarget.12975] [PMID: 27806313]
[129]
Morantz RA, Wood GW, Foster M, Clark M, Gollahon K. Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. J Neurosurg 1979; 50(3): 298-304.
[http://dx.doi.org/10.3171/jns.1979.50.3.0298] [PMID: 217977]
[130]
Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33(3): 119-26.
[http://dx.doi.org/10.1016/j.it.2011.12.001] [PMID: 22277903]
[131]
Dobrikova EY, Goetz C, Walters RW, et al. Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus: Rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 2012; 86(5): 2750-9.
[http://dx.doi.org/10.1128/JVI.06427-11] [PMID: 22171271]
[132]
Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81-5.
[http://dx.doi.org/10.1016/j.coviro.2015.05.007] [PMID: 26083317]
[133]
Kunert A, Debets R. Engineering T cells for adoptive therapy: Outsmarting the tumor. Curr Opin Immunol 2018; 51: 133-9.
[http://dx.doi.org/10.1016/j.coi.2018.03.014] [PMID: 29579622]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy