Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Nanoparticle Production of Zingiber officinale Roscoe Rhizome Extracts by ESS (Expansion of Supercritical Solution)

Author(s): Zahra Rezvanjoo and Farhad Raofie*

Volume 12, Issue 2, 2022

Published on: 20 April, 2022

Article ID: e011021196944 Pages: 8

DOI: 10.2174/2210681211666211001130028

Price: $65

conference banner
Abstract

A vast number of methods have been applied to water-insoluble pharmaceuticals to improve their solubility. Nanoparticle production of pharmaceuticals is considered as one of the high-speed ways to improve solubility.

Objective: Supercritical CO2 was applied to extract Zingiber officinale Roscoe rhizome pharmaceutical. Then, a modified RESS (Rapid Expansion of Supercritical Solution) method, called ESS (Expansion of Supercritical Solution), was exerted to obtain NPs (nanoparticles) of the extracted pharmaceuticals.

Methods: Initially, applying high pressure in supercritical CO2 contributed to the extract dissolution such that supercritical CO2 was saturated with the sample. Then, by decreasing the pressure, an expansion occurred in the saturated medium. This expansion reduced the power of supercritical CO2 solvent and induced the sample nanoparticle nucleation in the needle valve.

Results: LC-MS (Liquid Chromatography-Mass Spectrometry) and EDX (Energy Dispersive X-ray Spectroscopy) result provided solid evidence for the presence of anti-cancer pharmaceutical, [6]-Gingerol, in the extract. The medium size of the nanoparticles in FESEM (Field Emission Scanning Electron Microscopy) analysis was 36 nm. The most satisfactory parameters for a 2 mg mL-1 feeding solution were the initial pressure of 350 atm, secondary pressure of 160 atm, equilibrating time of 10 min, precipitating time of 20 min, and temperature of 48 °C.

Conclusion: Unlike rapid expansion of supercritical solution methodology, in this technique, the initial and secondary pressures were permanently above the critical pressure to provide a gentle expansion, which contributes to the production of uniform and small particles. The obtained uniform NPs had a narrow size distribution. Consequently, ESS technique can be considered as an efficient technique for improving the solubility of hydrophobic pharmaceuticals, such as [6]-gingerol.

Keywords: Liquid chromatography, mass spectrometry, supercritical fluids, nanoparticles, nanotechnology, Zingiber officinale.

Graphical Abstract

[1]
Li, C.; Li, J.; Jiang, F.; Tzvetkov, N.T.; Horbanczuk, J.O.; Li, Y.; Atanasov, A.G.; Wang, D. Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms. Food Funct., 2021, 12(5), 1897-1913.
[http://dx.doi.org/10.1039/D0FO02210A] [PMID: 33592084]
[2]
Nedungadi, D.; Binoy, A.; Vinod, V.; Vanuopadath, M.; Nair, S.S.; Nair, B.G.; Mishra, N. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage. Nutr. Cancer, 2021, 73(1), 147-159.
[http://dx.doi.org/10.1080/01635581.2019.1685113] [PMID: 31690139]
[3]
Jabborova, D.; Enakiev, Y.; Sulaymanov, K.; Kadirova, D.; Ali, A.; Annapurna, K. Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Sci. Today, 2021, 8(1), 66-71.
[http://dx.doi.org/10.14719/pst.2021.8.1.997]
[4]
Alsahli, M.A.; Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Anwar, S.; Almutary, A.G.; Alrumaihi, F.; Rahmani, A.H. 6-gingerol, a major ingredient of ginger attenuates diethylnitrosamine-induced liver injury in rats through the modulation of oxidative stress and anti-inflammatory activity. Mediators Inflamm., 2021, 2021, 6661937.
[5]
Wang, Q.; Wei, Q.; Yang, Q.; Cao, X.; Li, Q.; Shi, F.; Tong, S.S.; Feng, C.; Yu, Q.; Yu, J.; Xu, X. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect. Int. J. Pharm., 2018, 535(1-2), 308-315.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.006] [PMID: 29126908]
[6]
Reiser, S.; Shaban, M.; Weber, A.; Türk, M. CO2 assisted deposition of R/S-ibuprofen on different porous carrier materials: Influence of carrier properties on loading and dissolution behavior J. CO2 Util, 2018, 25, 216-225.
[7]
Jain, H.; Chella, N. Methods to improve the solubility of therapeutical natural products: A review. Environ. Chem. Lett., 2021, 19(1), 111-121.
[http://dx.doi.org/10.1007/s10311-020-01082-x]
[8]
Shah, S.M.A.; Nisar, Z.; Nisar, J.; Akram, M.; Ghotekar, S.; Oza, R. Nanobiomedicine: A new approach of medicinal plants and their therapeutic modalities. J. Mater. Environ. Sci., 2021, 12(1), 1-14.
[9]
Karimi, M.; Raofie, F. Micronization of vincristine extracted from Catharanthus roseus by Expansion of Supercritical fluid solution. J. Supercrit. Fluids, 2019, 146, 172-179.
[http://dx.doi.org/10.1016/j.supflu.2019.01.021]
[10]
Sodeifian, G.; Sajadian, S.A.; Saadati Ardestani, N.; Razmimanesh, F. Production of Loratadine drug nanoparticles using ultrasonic-assisted Rapid expansion of supercritical solution into aqueous solution (US-RESSAS). J. Supercrit. Fluids, 2019, 147, 241-253.
[http://dx.doi.org/10.1016/j.supflu.2018.11.007]
[11]
Salehi, H.; Karimi, M.; Rezaie, N.; Raofie, F. Extraction of β-Carboline alkaloids and preparation of extract nanoparticles from Peganum harmala L. capsules using supercritical fluid technique. J. Drug Deliv. Sci. Technol., 2020, 56, 101515.
[http://dx.doi.org/10.1016/j.jddst.2020.101515]
[12]
Momenkiaei, F.; Raofie, F. Preparation of Curcuma longa L. extract nanoparticles using supercritical solution expansion. J. Pharm. Sci., 2019, 108(4), 1581-1589.
[http://dx.doi.org/10.1016/j.xphs.2018.11.010] [PMID: 30439462]
[13]
Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.A.; Braga, M.E.M.; de Sousa, H.C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv. Drug Deliv. Rev., 2018, 131, 22-78.
[http://dx.doi.org/10.1016/j.addr.2018.07.010] [PMID: 30026127]
[14]
Karimi, M.; Raofie, F. Preparation of Withaferin A nanoparticles extracted from Withania somnifera by the expansion of supercritical fluid solution. Phytochem. Anal., 2020, 31(6), 957-967.
[http://dx.doi.org/10.1002/pca.2968] [PMID: 32666662]
[15]
Pessi, J.; Lassila, I. Meriläinen, A.; Räikkönen, H.; Hæggström, E.; Yliruusi, J. Controlled expansion of supercritical solution: A robust method to produce pure drug nanoparticles with narrow size-distribution. J. Pharm. Sci., 2016, 105(8), 2293-2297.
[http://dx.doi.org/10.1016/j.xphs.2016.05.022] [PMID: 27368121]
[16]
Momenkiaei, F.; Raofie, F. Preparation of Silybum marianum seeds extract nanoparticles by supercritical solution expansion. J. Supercrit. Fluids, 2018, 138, 46-55.
[http://dx.doi.org/10.1016/j.supflu.2018.03.011]
[17]
Long, B.; Ryan, K.M.; Padrela, L. From batch to continuous - New opportunities for supercritical CO2 technology in pharmaceutical manufacturing. Eur. J. Pharm. Sci., 2019, 137, 104971.
[http://dx.doi.org/10.1016/j.ejps.2019.104971] [PMID: 31247295]
[18]
Salea, R.; Veriansyah, B.; Tjandrawinata, R.R. Optimization and scale-up process for supercritical fluids extraction of ginger oil from Zingiber officinale var. Amarum. J. Supercrit. Fluids, 2017, 120, 285-294.
[http://dx.doi.org/10.1016/j.supflu.2016.05.035]
[19]
Oćwieja, M.; Adamczyk, Z.; Morga, M.; Bielańska, E.; Węgrzynowicz, A. Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. J. Colloid Interface Sci., 2012, 386(1), 51-59.
[http://dx.doi.org/10.1016/j.jcis.2012.06.056] [PMID: 22909964]
[20]
Tao, Y.; Li, W.; Liang, W.; Van Breemen, R.B. Identification and quantification of gingerols and related compounds in ginger dietary supplements using high-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 2009, 57(21), 10014-10021.
[http://dx.doi.org/10.1021/jf9020224] [PMID: 19817455]
[21]
Reverchon, E.; Donsi, G.; Gorgoglione, D. Salicylic acid solubilization in supercritical CO2 and its micronization by RESS. J. Supercrit. Fluids, 1993, 6(4), 241-248.
[http://dx.doi.org/10.1016/0896-8446(93)90034-U]
[22]
Yildiz, N.; Tuna, Ş. Döker, O.; Çalimli, A. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). J. Supercrit. Fluids, 2007, 41(3), 440-451.
[http://dx.doi.org/10.1016/j.supflu.2006.12.012]
[23]
Liu, G.T.; Nagahama, K. Application of rapid expansion of supercritical solutions in the crystallization separation. Ind. Eng. Chem. Res., 1996, 35(12), 4626-4634.
[http://dx.doi.org/10.1021/ie960142v]
[24]
Chakravarty, P.; Famili, A.; Nagapudi, K.; Al-Sayah, M.A. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems. Pharmaceutics, 2019, 11(12), 629-663.
[http://dx.doi.org/10.3390/pharmaceutics11120629] [PMID: 31775292]
[25]
Chaudhary, H.; Puri, N.; Kumar, V. Solid lipid nanoparticles: An innovative nano-vehicles for drug delivery. Nanosci. Nanotechnol. Asia, 2014, 4(1), 38-44.
[http://dx.doi.org/10.2174/22106812113036660003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy