Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review

Author(s): Sheng-Xiong Zhang, Wei Liu, Bo Ai, Ling-Ling Sun, Zhe-Sheng Chen* and Li-Zhu Lin*

Volume 17, Issue 1, 2022

Published on: 26 November, 2021

Page: [26 - 41] Pages: 16

DOI: 10.2174/1574892816666210929165729

Price: $65

conference banner
Abstract

Background: Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs.

Objectives: Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy.

Conclusion: The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients.

Keywords: Gastric cancer, chemoresistance, chemotherapy, multidrug resistance, overcoming chemoresistance, natural products.

[1]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Wang W, Sun Z, Deng JY, et al. A novel nomogram individually predicting disease-specific survival after D2 gastrectomy for advanced gastric cancer. Cancer Commun (Lond) 2018; 38(1): 23.
[http://dx.doi.org/10.1186/s40880-018-0293-0] [PMID: 29764518]
[3]
Khan U, Shah MA. Optimizing Therapies in the Perioperative Management of Gastric Cancer. Curr Treat Options Oncol 2019; 20(7): 57.
[http://dx.doi.org/10.1007/s11864-019-0654-1] [PMID: 31144054]
[4]
Zou K, Yang S, Zheng L, Yang C, Xiong B. Efficacy and safety of target combined chemotherapy in advanced gastric cancer: a meta-analysis and system review. BMC Cancer 2016; 16(1): 737.
[http://dx.doi.org/10.1186/s12885-016-2772-5] [PMID: 27633381]
[5]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Balakrishnan M, George R, Sharma A, Graham DY. Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep 2017; 19(8): 36.
[http://dx.doi.org/10.1007/s11894-017-0575-8] [PMID: 28730504]
[7]
De Angelis R, Sant M, Coleman MP, et al. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE- 5-a population-based study. Lancet Oncol 2014; 15(1): 23-34.
[http://dx.doi.org/10.1016/S1470-2045(13)70546-1] [PMID: 24314615]
[8]
Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol 2006; 20(4): 633-49.
[http://dx.doi.org/10.1016/j.bpg.2006.04.008] [PMID: 16997150]
[9]
González CA, Jakszyn P, Pera G, et al. Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst 2006; 98(5): 345-54.
[http://dx.doi.org/10.1093/jnci/djj071] [PMID: 16507831]
[10]
Kim J, Cho YA, Choi WJ, Jeong SH. Gene-diet interactions in gastric cancer risk: a systematic review. World J Gastroenterol 2014; 20(28): 9600-10.
[http://dx.doi.org/10.3748/wjg.v20.i28.9600] [PMID: 25071358]
[11]
Woo HD, Lee J, Choi IJ, et al. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients 2014; 6(11): 4961-73.
[http://dx.doi.org/10.3390/nu6114961] [PMID: 25389898]
[12]
Wu W, Zhen T, Yu J, Yang Q. Circular rnas as new regulators in gastric cancer: Diagnosis and cancer therapy. Front Oncol 2020; 10: 1526.
[http://dx.doi.org/10.3389/fonc.2020.01526] [PMID: 33072546]
[13]
Smyth E, Schöder H, Strong VE, et al. A prospective evaluation of the utility of 2-deoxy-2-((18) F)fluoro-D-glucose positron emission tomography and computed tomography in staging locally advanced gastric cancer. Cancer 2012; 118(22): 5481-8.
[http://dx.doi.org/10.1002/cncr.27550] [PMID: 22549558]
[14]
Jia SQ, Niu ZJ, Zhang LH, et al. Identification of prognosis-related proteins in advanced gastric cancer by mass spectrometry-based comparative proteomics. J Cancer Res Clin Oncol 2009; 135(3): 403-11.
[http://dx.doi.org/10.1007/s00432-008-0474-3] [PMID: 18830628]
[15]
Kang C, Lee Y, Lee JE. Recent advances in mass spectrometry-based proteomics of gastric cancer. World J Gastroenterol 2016; 22(37): 8283-93.
[http://dx.doi.org/10.3748/wjg.v22.i37.8283] [PMID: 27729735]
[16]
Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer 2014; 17(1): 26-33.
[http://dx.doi.org/10.1007/s10120-013-0259-5] [PMID: 23572188]
[17]
Yu J, Zheng W. An alternative method for screening gastric cancer based on serum levels of CEA, CA19-9, and CA72-4. J Gastrointest Cancer 2018; 49(1): 57-62.
[http://dx.doi.org/10.1007/s12029-016-9912-7] [PMID: 28028765]
[18]
Huang L, Wu RL, Xu AM. Epithelial-mesenchymal transition in gastric cancer. Am J Transl Res 2015; 7(11): 2141-58.
[PMID: 26807164]
[19]
Fuccio L, Zagari RM, Eusebi LH, et al. Meta-analysis: can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann Intern Med 2009; 151(2): 121-8.
[http://dx.doi.org/10.7326/0003-4819-151-2-200907210-00009] [PMID: 19620164]
[20]
Shiota S, Yamaoka Y. Strategy for the treatment of Helicobacter pylori infection. Curr Pharm Des 2014; 20(28): 4489-500.
[http://dx.doi.org/10.2174/13816128113196660731] [PMID: 24180402]
[21]
Biagioni A, Skalamera I, Peri S, et al. Update on gastric cancer treatments and gene therapies. Cancer Metastasis Rev 2019; 38(3): 537-48.
[http://dx.doi.org/10.1007/s10555-019-09803-7] [PMID: 31486976]
[22]
Raufi AG, Klempner SJ. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol 2015; 6(5): 561-9.
[http://dx.doi.org/10.3978/j.issn.2078-6891.2015.037] [PMID: 26487950]
[23]
Hudler P. Challenges of deciphering gastric cancer heterogeneity. World J Gastroenterol 2015; 21(37): 10510-27.
[http://dx.doi.org/10.3748/wjg.v21.i37.10510] [PMID: 26457012]
[24]
Marrelli D, Polom K, Pascale V, et al. Strong prognostic value of microsatellite instability in intestinal type non-cardia gastric cancer. Ann Surg Oncol 2016; 23(3): 943-50.
[http://dx.doi.org/10.1245/s10434-015-4931-3] [PMID: 26530444]
[25]
Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390(10111): 2461-71.
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5] [PMID: 28993052]
[26]
Sasaki A, Nakamura Y, Togashi Y, et al. Enhanced tumor response to radiotherapy after PD-1 blockade in metastatic gastric cancer. Gastric Cancer 2020; 23(5): 893-903.
[http://dx.doi.org/10.1007/s10120-020-01058-4] [PMID: 32180056]
[27]
Tamura T, Ohira M, Tanaka H, et al. Programmed death-1 ligand-1 (PDL1) expression is associated with the prognosis of patients with stage II/III gastric cancer. Anticancer Res 2015; 35(10): 5369-76.
[PMID: 26408698]
[28]
Dai C, Geng R, Wang C, et al. Concordance of immune checkpoints within tumor immune contexture and their prognostic significance in gastric cancer. Mol Oncol 2016; 10(10): 1551-8.
[http://dx.doi.org/10.1016/j.molonc.2016.09.004] [PMID: 27720576]
[29]
Harada K, Dong X, Estrella JS, et al. Tumor-associated macrophage infiltration is highly associated with PD-L1 expression in gastric adenocarcinoma. Gastric Cancer 2018; 21(1): 31-40.
[http://dx.doi.org/10.1007/s10120-017-0760-3] [PMID: 28801853]
[30]
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014; 507(7492): 315-22.
[http://dx.doi.org/10.1038/nature12965] [PMID: 24476821]
[31]
Fuchs CS, Doi T, Jang RW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical keynote-059 trial. JAMA Oncol 2018; 4(5): e180013.
[http://dx.doi.org/10.1001/jamaoncol.2018.0013] [PMID: 29543932]
[32]
Chung HC, Arkenau HT, Lee J, et al. Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: phase 1b results from the JAVELIN Solid Tumor trial. J Immunother Cancer 2019; 7(1): 30.
[http://dx.doi.org/10.1186/s40425-019-0508-1] [PMID: 30717797]
[33]
Doi T, Iwasa S, Muro K, et al. Phase 1 trial of avelumab (anti-PD-L1) in Japanese patients with advanced solid tumors, including dose expansion in patients with gastric or gastroesophageal junction cancer: the JAVELIN Solid Tumor JPN trial. Gastric Cancer 2019; 22(4): 817-27.
[http://dx.doi.org/10.1007/s10120-018-0903-1] [PMID: 30515672]
[34]
Bang YJ, Kang YK, Catenacci DV, et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer 2019; 22(4): 828-37.
[http://dx.doi.org/10.1007/s10120-018-00909-5] [PMID: 30911859]
[35]
Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, Reyes VE. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol 2006; 176(5): 3000-9.
[http://dx.doi.org/10.4049/jimmunol.176.5.3000] [PMID: 16493058]
[36]
Lu B, Chen L, Liu L, et al. T-cell-mediated tumor immune surveillance and expression of B7 co-inhibitory molecules in cancers of the upper gastrointestinal tract. Immunol Res 2011; 50(2-3): 269-75.
[http://dx.doi.org/10.1007/s12026-011-8227-9] [PMID: 21717068]
[37]
Kim ST, Cristescu R, Bass AJ, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018; 24(9): 1449-58.
[http://dx.doi.org/10.1038/s41591-018-0101-z] [PMID: 30013197]
[38]
Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376(9742): 687-97.
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[39]
Yin X, Fang T, Wang Y, et al. Efficacy of postoperative FOLFOX Versus XELOX chemotherapy for gastric cancer and prognostic value of platelet-lymphocyte ratio in patients receiving XELOX. Front Oncol 2020; 10: 584772.
[http://dx.doi.org/10.3389/fonc.2020.584772] [PMID: 33425738]
[40]
Johnston FM, Beckman M. Updates on management of gastric cancer. Curr Oncol Rep 2019; 21(8): 67.
[http://dx.doi.org/10.1007/s11912-019-0820-4] [PMID: 31236716]
[41]
Dulak AM, Schumacher SE, van Lieshout J, et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res 2012; 72(17): 4383-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3893] [PMID: 22751462]
[42]
Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK, Kim WH. EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology 2008; 52(6): 738-46.
[http://dx.doi.org/10.1111/j.1365-2559.2008.03021.x]
[43]
Stahl M, Maderer A, Lordick F, et al. Perioperative chemotherapy with or without epidermal growth factor receptor blockade in unselected patients with locally advanced oesophagogastric adenocarcinoma: Randomized phase II study with advanced biomarker program of the German Cancer Society (AIO/CAO STO-0801). Eur J Cancer 2018; 93: 119-26.
[http://dx.doi.org/10.1016/j.ejca.2018.01.079] [PMID: 29501977]
[44]
Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27(Suppl. 5): v38-49.
[http://dx.doi.org/10.1093/annonc/mdw350] [PMID: 27664260]
[45]
Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 2017; 20(1): 1-19.
[http://dx.doi.org/10.1007/s10120-016-0622-4] [PMID: 27342689]
[46]
Glimelius B, Ekström K, Hoffman K, et al. Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer. Ann Oncol 1997; 8(2): 163-8.
[http://dx.doi.org/10.1023/A:1008243606668] [PMID: 9093725]
[47]
Slagter AE, Vollebergh MA, Jansen EPM, et al. Towards personalization in the curative treatment of gastric cancer. Front Oncol 2020; 10: 614907.
[http://dx.doi.org/10.3389/fonc.2020.614907] [PMID: 33330111]
[48]
Murad AM, Santiago FF, Petroianu A, Rocha PR, Rodrigues MA, Rausch M. Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric cancer. Cancer 1993; 72(1): 37-41.
[49]
Goekkurt E, Al-Batran SE, Hartmann JT, et al. Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: a study of the arbeitsgemeinschaft internistische onkologie. J Clin Oncol 2009; 27(17): 2863-73.
[http://dx.doi.org/10.1200/JCO.2008.19.1718] [PMID: 19332728]
[50]
Okines AFC, Norman AR, McCloud P, Kang YK, Cunningham D. Meta-analysis of the REAL-2 and ML17032 trials: evaluating capecitabine-based combination chemotherapy and infused 5-fluorouracil-based combination chemotherapy for the treatment of advanced oesophago-gastric cancer. Ann Oncol 2009; 20(9): 1529-34.
[http://dx.doi.org/10.1093/annonc/mdp047] [PMID: 19474114]
[51]
Cunningham D, Okines AF, Ashley S. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 2010; 362(9): 858-9.
[http://dx.doi.org/10.1056/NEJMc0911925] [PMID: 20200397]
[52]
Ajani JA, D’Amico TA, Almhanna K, et al. Gastric Cancer, Version 3.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2016; 14(10): 1286-312.
[http://dx.doi.org/10.6004/jnccn.2016.0137] [PMID: 27697982]
[53]
Fuchs CS, Shitara K, Di Bartolomeo M, et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2019; 20(3): 420-35.
[http://dx.doi.org/10.1016/S1470-2045(18)30791-5] [PMID: 30718072]
[54]
Muro K, Van Cutsem E, Narita Y, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer: a JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann Oncol 2019; 30(1): 19-33.
[http://dx.doi.org/10.1093/annonc/mdy502] [PMID: 30475956]
[55]
Pinedo HM, Peters GF. Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988; 6(10): 1653-64.
[http://dx.doi.org/10.1200/JCO.1988.6.10.1653] [PMID: 3049954]
[56]
Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[57]
Wang JB, Li P, Liu XL, et al. An immune checkpoint score system for prognostic evaluation and adjuvant chemotherapy selection in gastric cancer. Nat Commun 2020; 11(1): 6352.
[http://dx.doi.org/10.1038/s41467-020-20260-7] [PMID: 33311518]
[58]
Woynarowski JM, Faivre S, Herzig MC, et al. Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol 2000; 58(5): 920-7.
[http://dx.doi.org/10.1124/mol.58.5.920] [PMID: 11040038]
[59]
Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007; 33(1): 9-23.
[http://dx.doi.org/10.1016/j.ctrv.2006.09.006] [PMID: 17084534]
[60]
Schwarz RE, Zagala-Nevarez K. Ethnic survival differences after gastrectomy for gastric cancer are better explained by factors specific for disease location and individual patient comorbidity. Eur J Surg Oncol 2002; 28(3): 214-9.
[http://dx.doi.org/10.1053/ejso.2001.1234] [PMID: 11944952]
[61]
Yang XF, Yang L, Mao XY, Wu DY, Zhang SM, Xin Y. Pathobiological behavior and molecular mechanism of signet ring cell carcinoma and mucinous adenocarcinoma of the stomach: a comparative study. World J Gastroenterol 2004; 10(5): 750-4.
[http://dx.doi.org/10.3748/wjg.v10.i5.750] [PMID: 14991954]
[62]
Ajani JA, Faust J, Ikeda K, et al. Phase I pharmacokinetic study of S-1 plus cisplatin in patients with advanced gastric carcinoma. J Clin Oncol 2005; 23(28): 6957-65.
[http://dx.doi.org/10.1200/JCO.2005.01.917] [PMID: 16145066]
[63]
Hass HG, Smith U, Jäger C, et al. Signet ring cell carcinoma of the stomach is significantly associated with poor prognosis and diffuse gastric cancer (Lauren’s): single-center experience of 160 cases. Onkologie 2011; 34(12): 682-6.
[http://dx.doi.org/10.1159/000334545] [PMID: 22156447]
[64]
Shirasaka T, Shimamato Y, Ohshimo H, et al. Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. Anticancer Drugs 1996; 7(5): 548-57.
[http://dx.doi.org/10.1097/00001813-199607000-00010] [PMID: 8862723]
[65]
Wagner AD, Syn NL, Moehler M, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev 2017; 8: CD004064.
[http://dx.doi.org/10.1002/14651858.CD004064.pub4] [PMID: 28850174]
[66]
Shimada T, Yamazaki H, Guengerich FP. Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P4502A6 in liver microsomes of Japanese and Caucasian populations. Xenobiotica 1996; 26(4): 395-403.
[http://dx.doi.org/10.3109/00498259609046718] [PMID: 9173680]
[67]
Fareed KR, Kaye P, Soomro IN, et al. Biomarkers of response to therapy in oesophago-gastric cancer. Gut 2009; 58(1): 127-43.
[http://dx.doi.org/10.1136/gut.2008.155861] [PMID: 19091831]
[68]
Kang YK, Chin K, Chung HC, et al. S-1 plus leucovorin and oxaliplatin versus S-1 plus cisplatin as first-line therapy in patients with advanced gastric cancer (SOLAR): a randomised, open-label, phase 3 trial. Lancet Oncol 2020; 21(8): 1045-56.
[http://dx.doi.org/10.1016/S1470-2045(20)30315-6] [PMID: 32682457]
[69]
Bang YJ, Kim YW, Yang HK, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 2012; 379(9813): 315-21.
[http://dx.doi.org/10.1016/S0140-6736(11)61873-4] [PMID: 22226517]
[70]
Shitara K, Chin K, Yoshikawa T, et al. Phase II study of adjuvant chemotherapy of S-1 plus oxaliplatin for patients with stage III gastric cancer after D2 gastrectomy. Gastric Cancer 2017; 20(1): 175-81.
[http://dx.doi.org/10.1007/s10120-015-0581-1] [PMID: 26626800]
[71]
Mohammad NH, ter Veer E, Ngai L, Mali R, van Oijen MG, van Laarhoven HW. Optimal first-line chemotherapeutic treatment in patients with locally advanced or metastatic esophagogastric carcinoma: triplet versus doublet chemotherapy: a systematic literature review and meta-analysis. Cancer Metastasis Rev 2015; 34(3): 429-41.
[http://dx.doi.org/10.1007/s10555-015-9576-y] [PMID: 26267802]
[72]
Noh SH, Park SR, Yang HK, et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 2014; 15(12): 1389-96.
[http://dx.doi.org/10.1016/S1470-2045(14)70473-5] [PMID: 25439693]
[73]
Park YH, Lee JL, Ryoo BY, et al. Capecitabine in combination with Oxaliplatin (XELOX) as a first-line therapy for advanced gastric cancer. Cancer Chemother Pharmacol 2008; 61(4): 623-9.
[http://dx.doi.org/10.1007/s00280-007-0515-7] [PMID: 17522863]
[74]
Louvet C, André T, Tigaud JM, et al. Phase II study of oxaliplatin, fluorouracil, and folinic acid in locally advanced or metastatic gastric cancer patients. J Clin Oncol 2002; 20(23): 4543-8.
[http://dx.doi.org/10.1200/JCO.2002.02.021] [PMID: 12454110]
[75]
Shin K, Park SJ, Lee J, et al. Efficacy of capecitabine and oxaliplatin versus S-1 as adjuvant chemotherapy in gastric cancer after D2 lymph node dissection according to lymph node ratio and N stage. BMC Cancer 2019; 19(1): 1232.
[http://dx.doi.org/10.1186/s12885-019-6433-3] [PMID: 31852475]
[76]
Baumgartner R, Taghizadeh H, Jomrich G, Schoppmann SF, Preusser M, Ilhan-Mutlu A. Utilization and efficacy of palliative chemotherapy for locally advanced or metastatic gastroesophageal carcinoma. Anticancer Res 2020; 40(2): 965-75.
[http://dx.doi.org/10.21873/anticanres.14030] [PMID: 32014941]
[77]
Marin JJ, Al-Abdulla R, Lozano E, et al. Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer Agents Med Chem 2016; 16(3): 318-34.
[http://dx.doi.org/10.2174/1871520615666150803125121] [PMID: 26234359]
[78]
Sandström M, Lindman H, Nygren P, Johansson M, Bergh J, Karlsson MO. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol 2006; 58(2): 143-56.
[http://dx.doi.org/10.1007/s00280-005-0140-2] [PMID: 16465545]
[79]
Shitara K, Matsuo K, Takahari D, et al. Neutropenia as a prognostic factor in advanced gastric cancer patients undergoing second- line chemotherapy with weekly paclitaxel. Ann Oncol 2010; 21(12): 2403-9.
[http://dx.doi.org/10.1093/annonc/mdq248] [PMID: 20494962]
[80]
Lordick F, Janjigian YY. Clinical impact of tumour biology in the management of gastroesophageal cancer. Nat Rev Clin Oncol 2016; 13(6): 348-60.
[http://dx.doi.org/10.1038/nrclinonc.2016.15] [PMID: 26925958]
[81]
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5(3): 219-34.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[82]
Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012; 12(9): 587-98.
[http://dx.doi.org/10.1038/nrc3342] [PMID: 22918414]
[83]
Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 1999; 17(3): 1061-70.
[http://dx.doi.org/10.1200/JCO.1999.17.3.1061] [PMID: 10071301]
[84]
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53: 615-27.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[85]
Pérez-Tomás R. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 2006; 13(16): 1859-76.
[http://dx.doi.org/10.2174/092986706777585077] [PMID: 16842198]
[86]
Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011; 30(1): 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[87]
Shimizu S, Yoshida T, Tsujioka M, Arakawa S. Autophagic cell death and cancer. Int J Mol Sci 2014; 15(2): 3145-53.
[http://dx.doi.org/10.3390/ijms15023145] [PMID: 24566140]
[88]
Xu JL, Yuan L, Tang YC, et al. The role of autophagy in gastric cancer chemoresistance: Friend or Foe? Front Cell Dev Biol 2020; 8: 621428.
[http://dx.doi.org/10.3389/fcell.2020.621428] [PMID: 33344463]
[89]
Cui Q, Wang JQ, Assaraf YG, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41: 1-25.
[http://dx.doi.org/10.1016/j.drup.2018.11.001] [PMID: 30471641]
[90]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[91]
Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol 2016; 173(6): 970-9.
[http://dx.doi.org/10.1111/bph.13422] [PMID: 26750865]
[92]
Narayanan S, Cai CY, Assaraf YG, et al. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48: 100663.
[http://dx.doi.org/10.1016/j.drup.2019.100663] [PMID: 31785545]
[93]
Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl) 2021; 99(2): 193-212.
[http://dx.doi.org/10.1007/s00109-020-02015-5] [PMID: 33392633]
[94]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[95]
Xia P, Xu XY. Epithelial-mesenchymal transition and gastric cancer stem cell. Tumour Biol 2017; 39(5): 1010428317698373.
[http://dx.doi.org/10.1177/1010428317698373] [PMID: 28459211]
[96]
Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life 2008; 60(3): 165-70.
[http://dx.doi.org/10.1002/iub.25] [PMID: 18380008]
[97]
Li X, Yao R, Yue L, et al. FOXM1 mediates resistance to docetaxel in gastric cancer via up-regulating Stathmin. J Cell Mol Med 2014; 18(5): 811-23.
[http://dx.doi.org/10.1111/jcmm.12216] [PMID: 24628949]
[98]
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance. Int J Mol Sci 2017; 18(7): E1434.
[http://dx.doi.org/10.3390/ijms18071434] [PMID: 28677634]
[99]
Urano N, Fujiwara Y, Doki Y, et al. Clinical significance of class III beta-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int J Oncol 2006; 28(2): 375-81.
[PMID: 16391792]
[100]
Bhat KM, Setaluri V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 2007; 13(10): 2849-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3040] [PMID: 17504982]
[101]
Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta 2011; 1816(2): 164-71.
[http://dx.doi.org/10.1016/j.bbcan.2011.06.001] [PMID: 21741453]
[102]
Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010; 10(3): 194-204.
[http://dx.doi.org/10.1038/nrc2803] [PMID: 20147901]
[103]
Galletti G, Zhang C, Gjyrezi A, et al. Microtubule engagement with taxane is altered in taxane-resistant gastric cancer. Clin Cancer Res 2020; 26(14): 3771-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3018] [PMID: 32321717]
[104]
Wan J, Chao L, Lee AC, Chen Q. Higher expression of ERCC1 may be associated with resistance to adjuvant platinum-based chemotherapy in gastric cancer. Cancer Invest 2017; 35(2): 85-91.
[http://dx.doi.org/10.1080/07357907.2016.1267741] [PMID: 28102711]
[105]
Liu X, Wu Z, Lin E, et al. Systemic prognostic score and nomogram based on inflammatory, nutritional and tumor markers predict cancer-specific survival in stage II-III gastric cancer patients with adjuvant chemotherapy. Clin Nutr 2019; 38(4): 1853-60.
[http://dx.doi.org/10.1016/j.clnu.2018.07.015] [PMID: 30075998]
[106]
Mori M, Shuto K, Kosugi C, et al. An increase in the neutrophil- to-lymphocyte ratio during adjuvant chemotherapy indicates a poor prognosis in patients with stage II or III gastric cancer. BMC Cancer 2018; 18(1): 1261.
[http://dx.doi.org/10.1186/s12885-018-5171-2] [PMID: 30558575]
[107]
Lenz HJ, Leichman CG, Danenberg KD, et al. Thymidylate synthase mRNA level in adenocarcinoma of the stomach: a predictor for primary tumor response and overall survival. J Clin Oncol 1996; 14(1): 176-82.
[http://dx.doi.org/10.1200/JCO.1996.14.1.176] [PMID: 8558194]
[108]
Metzger R, Leichman CG, Danenberg KD, et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 1998; 16(1): 309-16.
[http://dx.doi.org/10.1200/JCO.1998.16.1.309] [PMID: 9440758]
[109]
Ichikawa W, Takahashi T, Suto K, et al. Simple combinations of 5-FU pathway genes predict the outcome of metastatic gastric cancer patients treated by S-1. Int J Cancer 2006; 119(8): 1927-33.
[http://dx.doi.org/10.1002/ijc.22080] [PMID: 16736497]
[110]
Ishikawa Y, Kubota T, Otani Y, et al. Dihydropyrimidine dehydrogenase and messenger RNA levels in gastric cancer: possible predictor for sensitivity to 5-fluorouracil. Jpn J Cancer Res 2000; 91(1): 105-12.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb00866.x] [PMID: 10744051]
[111]
Yeh KH, Shun CT, Chen CL, et al. High expression of thymidylate synthase is associated with the drug resistance of gastric carcinoma to high dose 5-fluorouracil-based systemic chemotherapy. Cancer 1998; 82(9): 1626-31.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980501)82:9<1626::AID-CNCR5>3.0.CO;2-8] [PMID: 9576280]
[112]
West CM, Jones T, Price P. The potential of positron-emission tomography to study anticancer-drug resistance. Nat Rev Cancer 2004; 4(6): 457-69.
[http://dx.doi.org/10.1038/nrc1368] [PMID: 15170448]
[113]
Chun-Zhi Z, Lei H, An-Ling Z, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010; 10: 367.
[http://dx.doi.org/10.1186/1471-2407-10-367] [PMID: 20618998]
[114]
Liu YY, Zhang LY, Du WZ. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep 2019; 39(12): BSR20193045.
[http://dx.doi.org/10.1042/BSR20193045] [PMID: 31793989]
[115]
Wei L, Sun J, Zhang N, et al. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19(1): 62.
[http://dx.doi.org/10.1186/s12943-020-01185-7] [PMID: 32192494]
[116]
Wu X, Zheng Y, Han B, Dong X. Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother 2018; 99: 832-8.
[http://dx.doi.org/10.1016/j.biopha.2018.01.130] [PMID: 29710482]
[117]
Han Y, Ye J, Wu D, et al. LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial- to-mesenchymal transition. BMC Cancer 2014; 14: 932.
[http://dx.doi.org/10.1186/1471-2407-14-932] [PMID: 25496320]
[118]
Lan WG, Xu DH, Xu C, et al. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep 2016; 36(1): 263-70.
[http://dx.doi.org/10.3892/or.2016.4771] [PMID: 27121324]
[119]
Li H, Ma X, Yang D, Suo Z, Dai R, Liu C. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J Cell Biochem 2020; 121(2): 1353-61.
[http://dx.doi.org/10.1002/jcb.29370] [PMID: 31478258]
[120]
Ye Y, Yang S, Han Y, et al. HOXD-AS1 confers cisplatin resistance in gastric cancer through epigenetically silencing PDCD4 via recruiting EZH2. Open Biol 2019; 9(9): 190068.
[http://dx.doi.org/10.1098/rsob.190068] [PMID: 31551012]
[121]
Xu YD, Shang J, Li M, Zhang YY. LncRNA DANCR accelerates the development of multidrug resistance of gastric cancer. Eur Rev Med Pharmacol Sci 2019; 23(7): 2794-802.
[http://dx.doi.org/10.26355/eurrev_201904_17554] [PMID: 31002130]
[122]
Li Y, Lv S, Ning H, et al. Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed Pharmacother 2018; 108: 1775-82.
[http://dx.doi.org/10.1016/j.biopha.2018.09.181] [PMID: 30372881]
[123]
Wei Y, Liu Z, Fang J. H19 functions as a competing endogenous RNA to regulate human epidermal growth factor receptor expression by sequestering let-7c in gastric cancer. Mol Med Rep 2018; 17(2): 2600-6.
[http://dx.doi.org/10.3892/mmr.2017.8184] [PMID: 29207111]
[124]
Shao Y, Li J, Lu R, et al. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med 2017; 6(6): 1173-80.
[http://dx.doi.org/10.1002/cam4.1055] [PMID: 28544609]
[125]
Sui W, Shi Z, Xue W, et al. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology. Oncol Rep 2017; 37(3): 1804-14.
[http://dx.doi.org/10.3892/or.2017.5415] [PMID: 28184940]
[126]
Li T, Shao Y, Fu L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl) 2018; 96(1): 85-96.
[http://dx.doi.org/10.1007/s00109-017-1600-y] [PMID: 29098316]
[127]
Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer 2019; 18(1): 71.
[http://dx.doi.org/10.1186/s12943-019-0969-3] [PMID: 30927924]
[128]
Xue M, Li G, Fang X, Wang L, Jin Y, Zhou Q. hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int 2019; 19: 25.
[http://dx.doi.org/10.1186/s12935-019-0737-x] [PMID: 30733646]
[129]
Hong L, Yang Z, Ma J, Fan D. Function of miRNA in controlling drug resistance of human cancers. Curr Drug Targets 2013; 14(10): 1118-27.
[http://dx.doi.org/10.2174/13894501113149990183] [PMID: 23834156]
[130]
Wang Y, Gu X, Li Z, Xiang J, Jiang J, Chen Z. microRNA expression profiling in multidrug resistance of the 5-Fu-induced SGC-7901 human gastric cancer cell line. Mol Med Rep 2013; 7(5): 1506-10.
[http://dx.doi.org/10.3892/mmr.2013.1384] [PMID: 23525256]
[131]
Wu G, Qin XQ, Guo JJ, Li TY, Chen JH. AKT/ERK activation is associated with gastric cancer cell resistance to paclitaxel. Int J Clin Exp Pathol 2014; 7(4): 1449-58.
[PMID: 24817940]
[132]
Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123(2): 372-9.
[http://dx.doi.org/10.1002/ijc.23501] [PMID: 18449891]
[133]
An Y, Zhang Z, Shang Y, et al. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis 2015; 6(5): e1766.
[http://dx.doi.org/10.1038/cddis.2015.123] [PMID: 25996293]
[134]
Shang Y, Zhang Z, Liu Z, et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 2014; 33(25): 3267-76.
[http://dx.doi.org/10.1038/onc.2013.297] [PMID: 23893241]
[135]
Zou J, Xu Y. MicroRNA-140 inhibits cell proliferation in gastric cancer cell line HGC-27 by suppressing SOX4. Med Sci Monit 2016; 22: 2243-52.
[http://dx.doi.org/10.12659/MSM.896633] [PMID: 27353653]
[136]
Zhao J, Nie Y, Wang H, Lin Y. MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene 2016; 576(2 Pt 2): 828-33.
[http://dx.doi.org/10.1016/j.gene.2015.11.013] [PMID: 26589846]
[137]
Li B, Wang W, Li Z, et al. MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett 2017; 410: 212-27.
[http://dx.doi.org/10.1016/j.canlet.2017.09.035] [PMID: 28965855]
[138]
Du X, Liu B, Luan X, Cui Q, Li L. miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Exp Ther Med 2018; 15(1): 599-605.
[http://dx.doi.org/10.3892/etm.2017.5354] [PMID: 29375703]
[139]
Zhu W, Shan X, Wang T, Shu Y, Liu P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010; 127(11): 2520-9.
[http://dx.doi.org/10.1002/ijc.25260] [PMID: 20162574]
[140]
Zhu P, Zhang J, Zhu J, Shi J, Zhu Q, Gao Y. MiR-429 induces gastric carcinoma cell apoptosis through Bc1-2. Cell Physiol Biochem 2015; 37(4): 1572-80.
[http://dx.doi.org/10.1159/000438524] [PMID: 26513239]
[141]
Korourian A, Roudi R, Shariftabrizi A, Madjd Z. MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells. Exp Biol Med (Maywood) 2017; 242(18): 1842-7.
[http://dx.doi.org/10.1177/1535370217728460]
[142]
Chen S, Wu J, Jiao K, et al. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis 2018; 9(11): 1070.
[http://dx.doi.org/10.1038/s41419-018-0950-x] [PMID: 30341283]
[143]
Liu Y, Peng H, Zhang JT. Expression profiling of ABC transporters in a drug-resistant breast cancer cell line using AmpArray. Mol Pharmacol 2005; 68(2): 430-8.
[http://dx.doi.org/10.1124/mol.105.011015] [PMID: 15901850]
[144]
Nieth C, Lage H. Induction of the ABC-transporters Mdr1/P-gp (Abcb1), mrpl (Abcc1), and bcrp (Abcg2) during establishment of multidrug resistance following exposure to mitoxantrone. J Chemother 2005; 17(2): 215-23.
[http://dx.doi.org/10.1179/joc.2005.17.2.215] [PMID: 15920909]
[145]
Hu BY, Gu YH, Cao CJ, et al. Reversal effect and mechanism of Ginkgo biloba exocarp extracts in multidrug resistance of mice S180 tumor cells. Exp Ther Med 2016; 12(4): 2053-62.
[http://dx.doi.org/10.3892/etm.2016.3589] [PMID: 27698692]
[146]
Zhang Q, Feng Y, Kennedy D. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? Cell Mol Life Sci 2017; 74(5): 777-801.
[http://dx.doi.org/10.1007/s00018-016-2362-3] [PMID: 27622244]
[147]
Chen XY, Wang JQ, Yang Y, Li J, Chen ZS. Natural product as substrates of ABC transporters: a review. Recent Pat Anticancer Drug Discov 2021.
[http://dx.doi.org/10.2174/1574892816666210218220943]
[148]
Lee JH, Lee DU, Jeong CS. Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats. Food Chem Toxicol 2009; 47(6): 1127-31.
[http://dx.doi.org/10.1016/j.fct.2009.01.037] [PMID: 19425231]
[149]
Wu SHG. Genipin-rich material and its use. U.S Patent RE46314,
[150]
Jo MJ, Jeong S, Yun HK, et al. Genipin induces mitochondrial dysfunction and apoptosis via downregulation of Stat3/mcl-1 pathway in gastric cancer. BMC Cancer 2019; 19(1): 739.
[http://dx.doi.org/10.1186/s12885-019-5957-x] [PMID: 31351462]
[151]
Kim BR, Jeong YA, Kim DY, et al. Genipin increases oxaliplatin-induced cell death through autophagy in gastric cancer. J Cancer 2020; 11(2): 460-7.
[http://dx.doi.org/10.7150/jca.34773] [PMID: 31897241]
[152]
Zhang YF, Li CS, Zhou Y, Lu XH. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppressing autophagy in gastric cancer. Life Sci 2020; 244: 117280.
[http://dx.doi.org/10.1016/j.lfs.2020.117280] [PMID: 31926239]
[153]
Zhou S, Sun Y, Zhao K, et al. miR-21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low-density lipoprotein-induced endothelial injury via suppressing oxidative stress and inflammatory response. Int J Mol Med 2020; 45(5): 1305-16.
[http://dx.doi.org/10.3892/ijmm.2020.4520] [PMID: 32323738]
[154]
Xu Z, Chen L, Xiao Z, et al. Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA. Phytomedicine 2018; 51: 58-67.
[http://dx.doi.org/10.1016/j.phymed.2018.05.012] [PMID: 30466628]
[155]
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH, Chang HI. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Lett 2015; 25(19): 4191-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.005] [PMID: 26283511]
[156]
Sun L, Wang X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J Gastroenterol 2003; 9(9): 1930-4.
[http://dx.doi.org/10.3748/wjg.v9.i9.1930] [PMID: 12970878]
[157]
Tao M, Gao L, Pan J, Wang X. Study on the inhibitory effect of allicin on human gastric cancer cell line SGC-7901 and its mechanism. Afr J Tradit Complement Altern Med 2013; 11(1): 176-9.
[http://dx.doi.org/10.4314/ajtcam.v11i1.28] [PMID: 24653574]
[158]
Bat-Chen W, Golan T, Peri I, Ludmer Z, Schwartz B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr Cancer 2010; 62(7): 947-57.
[http://dx.doi.org/10.1080/01635581.2010.509837] [PMID: 20924970]
[159]
Cha JH, Choi YJ, Cha SH, Choi CH, Cho WH. Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol Rep 2012; 28(1): 41-8.
[http://dx.doi.org/10.3892/or.2012.1772] [PMID: 22552443]
[160]
Ying Y. Method for producing tablet comprising natural allicin. U.S Patent 20110212082,
[161]
Williams DM, Pant CM. Process for the production of allicin. 20040247711,
[162]
Cañizares P, Gracia I, Gómez LA, et al. Allyl-thiosulfinates, the bacteriostatic compounds of garlic against Helicobacter pylori. Biotechnol Prog 2004; 20(1): 397-401.
[http://dx.doi.org/10.1021/bp034143b] [PMID: 14763870]
[163]
Takeuchi H, Trang VT, Morimoto N, Nishida Y, Matsumura Y, Sugiura T. Natural products and food components with anti-Helicobacter pylori activities. World J Gastroenterol 2014; 20(27): 8971-8.
[http://dx.doi.org/10.3748/wjg.v20.i27.8971] [PMID: 25083070]
[164]
Nicastro HL, Ross SA, Milner JA. Garlic and onions: their cancer prevention properties. Cancer Prev Res (Phila) 2015; 8(3): 181-9.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0172] [PMID: 25586902]
[165]
Park SY, Cho SJ, Kwon HC, Lee KR, Rhee DK, Pyo S. Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA. Cancer Lett 2005; 224(1): 123-32.
[http://dx.doi.org/10.1016/j.canlet.2004.10.009] [PMID: 15911108]
[166]
Zhang W, Ha M, Gong Y, Xu Y, Dong N, Yuan Y. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol Rep 2010; 24(6): 1585-92.
[http://dx.doi.org/10.3892/or_00001021] [PMID: 21042755]
[167]
Luo R, Fang D, Hang H, Tang Z. The mechanism in gastric cancer chemoprevention by allicin. Anticancer Agents Med Chem 2016; 16(7): 802-9.
[http://dx.doi.org/10.2174/1871520616666151111115443] [PMID: 26555611]
[168]
Fan Y, Mao Y, Cao S, et al. S5, a withanolide isolated from Physalis pubescens L., induces g2/m cell cycle arrest via the EGFR/P38 pathway in human melanoma A375 cells. Molecules 2018; 23(12): E3175.
[http://dx.doi.org/10.3390/molecules23123175] [PMID: 30513793]
[169]
Zhao X. Plant drug for preventing cancer. U.S Patent 20030180391A1, 2003.
[170]
Hu Q, Li L, Zou X, Xu L, Yi P. Berberine attenuated proliferation, invasion and migration by targeting the AMPK/HNF4α/WNT5A pathway in gastric carcinoma. Front Pharmacol 2018; 9: 1150.
[http://dx.doi.org/10.3389/fphar.2018.01150] [PMID: 30405404]
[171]
Ortiz LM, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules 2014; 19(8): 12349-67.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[172]
Rad SZK, Rameshrad M, Hosseinzadeh H. Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review. Iran J Basic Med Sci 2017; 20(5): 516-29.
[http://dx.doi.org/10.22038/IJBMS.2017.8676] [PMID: 28656087]
[173]
Coseri S. Natural products and their analogues as efficient anticancer drugs. Mini Rev Med Chem 2009; 9(5): 560-71.
[http://dx.doi.org/10.2174/138955709788167592] [PMID: 19456286]
[174]
Tan W, Lu J, Huang M, et al. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6(1): 27.
[http://dx.doi.org/10.1186/1749-8546-6-27] [PMID: 21777476]
[175]
Hsieh H M. Berberine-containing pharmaceutical composition for inhibiting cancer stem cell growth or carcinoma metastasis and application thereof. US20120321726 A1,
[176]
Wang Y, Zhou M, Shang D. Berberine inhibits human gastric cancer cell growth via deactivation of p38/JNK pathway, induction of mitochondrial-mediated apoptosis, caspase activation and NF-κB inhibition. J BUON 2020; 25(1): 314-8.
[PMID: 32277648]
[177]
Zhang Q, Wang X, Cao S, et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother 2020; 128: 110245.
[http://dx.doi.org/10.1016/j.biopha.2020.110245] [PMID: 32454290]
[178]
You HY, Xie XM, Zhang WJ, Zhu HL, Jiang FZ. Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In Vitro Cell Dev Biol Anim 2016; 52(8): 857-63.
[http://dx.doi.org/10.1007/s11626-016-0044-y] [PMID: 27142767]
[179]
Kou Y, Tong B, Wu W, Liao X, Zhao M. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/mTOR signaling pathway in gastric cancer. Front Pharmacol 2020; 11: 616251.
[http://dx.doi.org/10.3389/fphar.2020.616251] [PMID: 33362566]
[180]
Wu D. Flavonoid compositions for the treatment of cancer. US 15/279866,
[181]
Domitrović R, Cvijanović O, Pugel EP, Zagorac GB, Mahmutefendić H, Škoda M. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology 2013; 310: 115-23.
[http://dx.doi.org/10.1016/j.tox.2013.05.015] [PMID: 23770416]
[182]
Ren LQ, Li Q, Zhang Y. Luteolin suppresses the proliferation of gastric cancer cells and acts in synergy with oxaliplatin. BioMed Res Int 2020; 2020: 9396512.
[http://dx.doi.org/10.1155/2020/9396512] [PMID: 32149146]
[183]
Wu H, Huang M, Liu Y, Shu Y, Liu P. Luteolin induces apoptosis by up-regulating miR-34a in human gastric cancer cells. Technol Cancer Res Treat 2015; 14(6): 747-55.
[http://dx.doi.org/10.7785/tcrt.2012.500434] [PMID: 24988056]
[184]
Zang MD, Hu L, Fan ZY, et al. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med 2017; 15(1): 52.
[http://dx.doi.org/10.1186/s12967-017-1151-6] [PMID: 28241766]
[185]
Lu X, Li Y, Li X, Aisa HA. Luteolin induces apoptosis in vitro through suppressing the MAPK and PI3K signaling pathways in gastric cancer. Oncol Lett 2017; 14(2): 1993-2000.
[http://dx.doi.org/10.3892/ol.2017.6380] [PMID: 28789432]
[186]
Wang Y, Wang Q, Zhang S, Zhang Y, Tao L. Baicalein increases the cytotoxicity of cisplatin by enhancing gap junction intercellular communication. Mol Med Rep 2014; 10(1): 515-21.
[http://dx.doi.org/10.3892/mmr.2014.2157] [PMID: 24736991]
[187]
Wu Y. Pharmaceutical Compositions Containing Baicalein And Baicalin With Synergistic Effect In Tumor Treatment. US20080176932 A1,
[188]
Tang Q, Ji F, Sun W, et al. Combination of baicalein and 10-hydroxy camptothecin exerts remarkable synergetic anti-cancer effects. Phytomedicine 2016; 23(14): 1778-86.
[http://dx.doi.org/10.1016/j.phymed.2016.10.018] [PMID: 27912880]
[189]
Mu J, Liu T, Jiang L, et al. The traditional chinese medicine baicalein potently inhibits gastric cancer cells. J Cancer 2016; 7(4): 453-61.
[http://dx.doi.org/10.7150/jca.13548] [PMID: 26918059]
[190]
Chen F, Zhuang M, Peng J, et al. Baicalein inhibits migration and invasion of gastric cancer cells through suppression of the TGF-β signaling pathway. Mol Med Rep 2014; 10(4): 1999-2003.
[http://dx.doi.org/10.3892/mmr.2014.2452] [PMID: 25109410]
[191]
Qiao D, Jin J, Xing J, et al. Baicalein inhibits gastric cancer cell proliferation and migration through a FAK interaction via AKT/mTOR signaling. Am J Chin Med 2021; 49(2): 525-41.
[http://dx.doi.org/10.1142/S0192415X21500245] [PMID: 33641654]
[192]
Yan X, Rui X, Zhang K. Baicalein inhibits the invasion of gastric cancer cells by suppressing the activity of the p38 signaling pathway. Oncol Rep 2015; 33(2): 737-43.
[http://dx.doi.org/10.3892/or.2014.3669] [PMID: 25502212]
[193]
Chen F, Zhuang M, Zhong C, et al. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway. Oncol Rep 2015; 33(1): 457-63.
[http://dx.doi.org/10.3892/or.2014.3550] [PMID: 25333894]
[194]
Li P, Hu J, Shi B, Tie J. Baicalein enhanced cisplatin sensitivity of gastric cancer cells by inducing cell apoptosis and autophagy via Akt/mTOR and Nrf2/Keap 1 pathway. Biochem Biophys Res Commun 2020; 531(3): 320-7.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.045] [PMID: 32800561]
[195]
Chen ME, Su CH, Yang JS, et al. Baicalin, baicalein, and lactobacillus rhamnosus jb3 alleviated helicobacter pylori infections in vitro and in vivo. J Food Sci 2018; 83(12): 3118-25.
[http://dx.doi.org/10.1111/1750-3841.14372] [PMID: 30468256]
[196]
Zaid GH. Human therapeutic agents. U.S.Patent 14721011,
[197]
Zhang H, Sun K, Ding J, et al. Harmine induces apoptosis and inhibits tumor cell proliferation, migration and invasion through down-regulation of cyclooxygenase-2 expression in gastric cancer. Phytomedicine 2014; 21(3): 348-55.
[http://dx.doi.org/10.1016/j.phymed.2013.09.007] [PMID: 24176842]
[198]
Li C, Wang Y, Wang C, Yi X, Li M, He X. Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells. Phytomedicine 2017; 28: 10-8.
[http://dx.doi.org/10.1016/j.phymed.2017.02.008] [PMID: 28478808]
[199]
Tan B, Li Y, Zhao Q, Fan L, Zhang M. The impact of Harmine hydrochloride on growth, apoptosis and migration, invasion of gastric cancer cells. Pathol Res Pract 2020; 216(8): 152995.
[http://dx.doi.org/10.1016/j.prp.2020.152995] [PMID: 32402536]
[200]
Emanuele S, Notaro A, Palumbo Piccionello A, et al. Sicilian litchi fruit extracts induce autophagy versus apoptosis switch in human colon cancer cells. Nutrients 2018; 10(10): E1490.
[http://dx.doi.org/10.3390/nu10101490] [PMID: 30322062]
[201]
Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol 2019; 128: 240-55.
[http://dx.doi.org/10.1016/j.fct.2019.04.012] [PMID: 30991130]
[202]
Wong AS, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 2015; 32(2): 256-72.
[http://dx.doi.org/10.1039/C4NP00080C] [PMID: 25347695]
[203]
Liu L BL. Ginsenoside with anti-cancer activity and the preparation method thereof. US 9051348 B2,
[204]
Jeong W I. Composition for preventing or treating liver cancer containing ginsenoside F2: 15/461739.
[205]
Liang L BL. Novel Ginsenoside With Anti-cancer Activity And The Preparation Method Thereof. US20140135278 A1,
[206]
Yun T K. Cancer preventive composition comprising ginsenoside glycosides of red ginseng. US20040009243,
[207]
Jia W. Ginsenoside chemotherapy. US6759397 B2,
[208]
Wang Y, Xu H, Lu Z, et al. Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp Ther Med 2018; 15(6): 4916-24.
[http://dx.doi.org/10.3892/etm.2018.6067] [PMID: 29805515]
[209]
Zhang B, Zhou WJ, Gu CJ, et al. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 2018; 9(5): 574.
[http://dx.doi.org/10.1038/s41419-018-0581-2] [PMID: 29760378]
[210]
Zhou Y, Zheng X, Lu J, Chen W, Li X, Zhao L. Ginsenoside 20(S)-Rg3 inhibits the warburg effect via modulating DNMT3A/ MiR-532-3p/HK2 pathway in ovarian cancer cells. Cell Physiol Biochem 2018; 45(6): 2548-59.
[http://dx.doi.org/10.1159/000488273] [PMID: 29558748]
[211]
Wu C, Zeng MH, Liao G, Qian K, Li H. Neuropilin-1 interacts with fibronectin-1 to promote epithelial-mesenchymal transition progress in castric cancer. OncoTargets Ther 2020; 13: 10677-87.
[http://dx.doi.org/10.2147/OTT.S275327] [PMID: 33116644]
[212]
Chen T, Li B, Qiu Y, Qiu Z, Qu P. Functional mechanism of Ginsenosides on tumor growth and metastasis. Saudi J Biol Sci 2018; 25(5): 917-22.
[http://dx.doi.org/10.1016/j.sjbs.2018.01.012] [PMID: 30108441]
[213]
Wang J, Tian L, Khan MN, et al. Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness. Cancer Lett 2018; 415: 73-85.
[http://dx.doi.org/10.1016/j.canlet.2017.11.037] [PMID: 29199005]
[214]
Qian J, Li J, Jia JG, et al. Ginsenoside-Rh2 inhibits proliferation and induces apoptosis of human gastric cancer SGC-7901 side population cells. Asian Pac J Cancer Prev 2016; 17(4): 1817-21.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.1817] [PMID: 27221858]
[215]
Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol 2019; 168: 285-304.
[http://dx.doi.org/10.1016/j.bcp.2019.07.008] [PMID: 31301277]
[216]
Choi CH, Kang G, Min YD. Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med 2003; 69(3): 235-40.
[http://dx.doi.org/10.1055/s-2003-38483] [PMID: 12677527]
[217]
Kim SW, Kwon HY, Chi DW, et al. Reversal of P-glycoprotein- mediated multidrug resistance by ginsenoside Rg(3). Biochem Pharmacol 2003; 65(1): 75-82.
[http://dx.doi.org/10.1016/S0006-2952(02)01446-6] [PMID: 12473381]
[218]
Li N, Wang D, Ge G, Wang X, Liu Y, Yang L. Ginsenoside metabolites inhibit P-glycoprotein in vitro and in situ using three absorption models. Planta Med 2014; 80(4): 290-6.
[http://dx.doi.org/10.1055/s-0033-1360334] [PMID: 24493631]
[219]
Ferry DR, Smith A, Malkhandi J, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 1996; 2(4): 659-68.
[PMID: 9816216]
[220]
Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. Novel insights into the pharmacology of flavonoids. Phytother Res 2013; 27(11): 1588-96.
[http://dx.doi.org/10.1002/ptr.5023] [PMID: 23824931]
[221]
Lines T C. Method for stabilizing quercetin. US9402834B2,
[222]
Lines T C. Method for treating cancer with a combination of quercetin and a chemotherapy agent. US20190336473A1,
[223]
Ekström AM, Serafini M, Nyrén O, Wolk A, Bosetti C, Bellocco R. Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. Ann Oncol 2011; 22(2): 438-43.
[http://dx.doi.org/10.1093/annonc/mdq390] [PMID: 20688844]
[224]
Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 2001; 21: 381-406.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.381] [PMID: 11375442]
[225]
Shen X, Si Y, Wang Z, Wang J, Guo Y, Zhang X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. Int J Mol Med 2016; 38(2): 619-26.
[http://dx.doi.org/10.3892/ijmm.2016.2625] [PMID: 27278820]
[226]
Kim DO, Lee CY. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 2004; 44(4): 253-73.
[http://dx.doi.org/10.1080/10408690490464960] [PMID: 15462129]
[227]
Wang K, Liu R, Li J, et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy 2011; 7(9): 966-78.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[228]
Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem 2009; 106(1): 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[229]
Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011; 2011: 591356.
[http://dx.doi.org/10.1093/ecam/neq053] [PMID: 21792362]
[230]
Wang P, Zhang K, Zhang Q, et al. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol In Vitro. 2012; 26(2): 221-8.
[http://dx.doi.org/10.1016/j.tiv.2011.11.015] [PMID: 22222411]
[231]
González-Segovia R, Quintanar JL, Salinas E, Ceballos-Salazar R, Aviles-Jiménez F, Torres-López J. Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig. J Gastroenterol 2008; 43(6): 441-7.
[http://dx.doi.org/10.1007/s00535-008-2184-7] [PMID: 18600388]
[232]
Borska S, Chmielewska M, Wysocka T, Drag-Zalesinska M, Zabel M, Dziegiel P. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol 2012; 50(9): 3375-83.
[http://dx.doi.org/10.1016/j.fct.2012.06.035] [PMID: 22750388]
[233]
Shang HS, Lu HF, Lee CH, et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ Toxicol 2018; 33(11): 1168-81.
[http://dx.doi.org/10.1002/tox.22623] [PMID: 30152185]
[234]
Lee HH, Lee S, Shin YS, Cho M, Kang H, Cho H. Anti-cancer effect of quercetin in xenograft models with EBV-associated human gastric carcinoma. Molecules 2016; 21(10): E1286.
[http://dx.doi.org/10.3390/molecules21101286] [PMID: 27681719]
[235]
Brito AF, Ribeiro M, Abrantes AM, et al. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr Med Chem 2015; 22(26): 3025-39.
[http://dx.doi.org/10.2174/0929867322666150812145435] [PMID: 26264923]
[236]
Guo XF, Liu JP, Ma SQ, Zhang P, Sun WD. Avicularin reversed multidrug-resistance in human gastric cancer through enhancing Bax and BOK expressions. Biomed Pharmacother 2018; 103: 67-74.
[http://dx.doi.org/10.1016/j.biopha.2018.03.110] [PMID: 29635130]
[237]
Hyun HB, Moon JY, Cho SK. Quercetin suppresses CYR61-mediated multidrug resistance in human gastric adenocarcinoma AGS cells. Molecules 2018; 23(2): E209.
[http://dx.doi.org/10.3390/molecules23020209] [PMID: 29364834]
[238]
Webster RP, Gawde MD, Bhattacharya RK. Protective effect of rutin, a flavonol glycoside, on the carcinogen-induced DNA damage and repair enzymes in rats. Cancer Lett 1996; 109(1-2): 185-91.
[http://dx.doi.org/10.1016/S0304-3835(96)04443-6] [PMID: 9020919]
[239]
Fang J, Zhang S, Xue X, et al. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine 2018; 13: 5113-26.
[http://dx.doi.org/10.2147/IJN.S170862] [PMID: 30233175]
[240]
Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro. 2006; 20(2): 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[241]
Hayashi Y. Isolation of Liquiritin. JP1987000237004,
[242]
Wei F, Jiang X, Gao HY, Gao SH. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo. Int J Oncol 2017; 51(5): 1383-94.
[http://dx.doi.org/10.3892/ijo.2017.4134] [PMID: 29048624]
[243]
Kim TW, Lee SY, Kim M, et al. DSGOST regulates resistance via activation of autophagy in gastric cancer. Cell Death Dis 2018; 9(6): 649.
[http://dx.doi.org/10.1038/s41419-018-0658-y] [PMID: 29844404]
[244]
Xie R, Gao CC, Yang XZ, et al. Combining TRAIL and liquiritin exerts synergistic effects against human gastric cancer cells and xenograft in nude mice through potentiating apoptosis and ROS generation. Biomed Pharmacother 2017; 93: 948-60.
[http://dx.doi.org/10.1016/j.biopha.2017.06.095] [PMID: 28715876]
[245]
Kharat M, Du Z, Zhang G, McClements DJ. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature and molecular environment. J Agric Food Chem 2017; 65(8): 1525-32.
[http://dx.doi.org/10.1021/acs.jafc.6b04815] [PMID: 27935709]
[246]
Xu J, Chen Y, Yang R, et al. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch Biochem Biophys 2020; 684: 108314.
[http://dx.doi.org/10.1016/j.abb.2020.108314] [PMID: 32088220]
[247]
Xie W D LK. Cucurbitacin B and uses thereof. US 20090247495A1,
[248]
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The Essential Medicinal Chemistry of Curcumin. J Med Chem 2017; 60(5): 1620-37.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[249]
Cai XZ, Wang J, Li XD, et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther 2009; 8(14): 1360-8.
[http://dx.doi.org/10.4161/cbt.8.14.8720] [PMID: 19448398]
[250]
Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 2001; 21(2A): 873-8.
[PMID: 11396178]
[251]
Yu LL, Wu JG, Dai N, Yu HG, Si JM. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep 2011; 26(5): 1197-203.
[http://dx.doi.org/10.3892/or.2011.1410] [PMID: 21811763]
[252]
Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors 2013; 39(1): 56-68.
[http://dx.doi.org/10.1002/biof.1068] [PMID: 23303705]
[253]
Ru Q, Tian X, Wu YX, Wu RH, Pi MS, Li CY. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep 2014; 31(2): 842-8.
[http://dx.doi.org/10.3892/or.2013.2875] [PMID: 24284968]
[254]
Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 2010; 343(9): 489-99.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[255]
Lee YJ, Kim NY, Suh YA, Lee C. Involvement of ROS in Curcumin-induced Autophagic Cell Death. Korean J Physiol Pharmacol 2011; 15(1): 1-7.
[http://dx.doi.org/10.4196/kjpp.2011.15.1.1] [PMID: 21461234]
[256]
Wang L, Chen X, Du Z, et al. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics. J Exp Clin Cancer Res 2017; 36(1): 47.
[http://dx.doi.org/10.1186/s13046-017-0513-5] [PMID: 28359291]
[257]
Chen X, Chen X, Zhang X, et al. Curcuminoid B63 induces ROS- mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol 2019; 21: 101061.
[http://dx.doi.org/10.1016/j.redox.2018.11.019] [PMID: 30590310]
[258]
Neven P. Curcumin purification. US 10336677B2,
[259]
Ji J, Wang HS, Gao YY, Sang LM, Zhang L. Synergistic anti-tumor effect of KLF4 and curcumin in human gastric carcinoma cell line. Asian Pac J Cancer Prev 2014; 15(18): 7747-52.
[http://dx.doi.org/10.7314/APJCP.2014.15.18.7747] [PMID: 25292057]
[260]
Anirudhan TS, Nair AS, Bino SJ. Nanoparticle assisted solvent selective transdermal combination therapy of curcumin and 5-flurouracil for efficient cancer treatment. Carbohydr Polym 2017; 173: 131-42.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.045] [PMID: 28732851]
[261]
Mohammad N, Singh SV, Malvi P, et al. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci Rep 2015; 5: 11853.
[http://dx.doi.org/10.1038/srep11853] [PMID: 26149967]
[262]
Foryst-Ludwig A, Neumann M, Schneider-Brachert W, Naumann M. Curcumin blocks NF-kappaB and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochem Biophys Res Commun 2004; 316(4): 1065-72.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.158] [PMID: 15044093]
[263]
Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 2007; 67(8): 3853-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4257] [PMID: 17440100]
[264]
Sintara K, Thong-Ngam D, Patumraj S, Klaikeaw N, Chatsuwan T. Curcumin suppresses gastric NF-kappaB activation and macromolecular leakage in Helicobacter pylori-infected rats. World J Gastroenterol 2010; 16(32): 4039-46.
[http://dx.doi.org/10.3748/wjg.v16.i32.4039] [PMID: 20731017]
[265]
Yarla NS, Bishayee A, Sethi G, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41: 48-81.
[http://dx.doi.org/10.1016/j.semcancer.2016.02.001] [PMID: 26853158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy