Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Mini-Review Article

Artificial Intelligence and Cancer Drug Development

Author(s): Fan Yang, Jerry A. Darsey, Anindya Ghosh, Hong-Yu Li, Mary Q. Yang* and Shanzhi Wang*

Volume 17, Issue 1, 2022

Published on: 28 July, 2021

Page: [2 - 8] Pages: 7

DOI: 10.2174/1574892816666210728123758

Price: $65

Abstract

Background: The development of cancer drugs is among the most focused “bench to bedside activities” to improve human health. Because of the amount of data publicly available to cancer research, drug development for cancers has significantly benefited from big data and Artificial Intelligence (AI). In the meantime, challenges, like curating the data of low quality, remain to be resolved.

Objectives: This review focused on the recent advancements and challenges of AI in developing cancer drugs.

Methods: We discussed target validation, drug repositioning, de novo design, and compounds' synthetic strategies.

Results and Conclusion: AI can be applied to all stages during drug development, and some excellent reviews detailing the applications of AI in specific stages are available.

Keywords: Artificial intelligence, drug design, target validation, drug discovery, deep learning, machine learning.

[1]
Kadam D. Artificial intelligence (AI)-An inflection point in the global history and its significance for a national strategy. Indian J Plast Surg 2019; 52(2): 145-7.
[http://dx.doi.org/10.1055/s-0039-1700367] [PMID: 31602127]
[2]
Zhavoronkov A. Artificial intelligence for drug discovery, biomarker development and generation of novel chemistry. Mol Pharm 2018; 15(10): 4311-3.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00930] [PMID: 30269508]
[3]
McCorduck P. Machines who think.A personal inquiry into the history and prospects of artificial intelligence. London New York.: Routledge 2004.
[4]
Levinson P. The soft edge a natural history and future of the information revolution.London New York.: Routledge. 1998.
[5]
Nilsson N J. The quest for artificial intelligence. A history of ideas and achievements
[6]
Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules 2018; 23(10): 2520.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[7]
Zhong F, Xing J, Li X, et al. Artificial intelligence in drug design. Sci China Life Sci 2018; 61(10): 1191-204.
[http://dx.doi.org/10.1007/s11427-018-9342-2] [PMID: 30054833]
[8]
Lerchner A, Higgins I, Sonnerat N, et al. Learning visual concepts using neural networks. US20200234468A1, 2020.
[9]
Mullard A. The drug-maker’s guide to the galaxy. Nature 2017; 549(7673): 445-7.
[http://dx.doi.org/10.1038/549445a] [PMID: 28959982]
[10]
Szymkuć S, Gajewska EP, Klucznik T, et al. Computer-assisted synthetic planning: The end of the beginning. Angew Chem Int Ed Engl 2016; 55(20): 5904-37.
[http://dx.doi.org/10.1002/anie.201506101] [PMID: 27062365]
[11]
Nicolaou C A, Kelley BP, Nutt RF, Bassett Susan. Method and system for artificial intelligence directed lead discovery through multi-domain clustering. US6904423B1, 2005.
[12]
Yuan J-s, Chakrabarti D, Salem M, Arshadi AK. Artificial intelligence-based methods for early drug discovery and related training methods. US20210065913A1, 2021.
[13]
Spink WW. History of medicine. The drama of sulfanilamide, penicillin and other antibiotics 1936-1972. Minn Med 1973; 56(6): 551-6.
[PMID: 4575904]
[14]
Stewart AJ, Devlin PM. The history of the smallpox vaccine. J Infect 2006; 52(5): 329-34.
[http://dx.doi.org/10.1016/j.jinf.2005.07.021] [PMID: 16176833]
[15]
Oono K, Clayton J, Ota N. Generative machine learning systems for drug design. US10776712B2, 2020.
[16]
Wei G, Nguyen D, Cang Z. System and methods for machine learning for drug design and discovery. US20190304568A1, 2019.
[17]
Tatonetti N, Altman RB, Fernald GH. Signal detection algorithms to identify drug effects and drug interactions. US10354202B2, 2019.
[18]
Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[19]
Hsieh KR, Chen WT. A neural network model which combines unsupervised and supervised learning. IEEE Trans Neural Netw 1993; 4(2): 357-60.
[http://dx.doi.org/10.1109/72.207624] [PMID: 18267736]
[20]
Bishop CM. Model-based machine learning. Philos Trans- Royal Soc, Math Phys Eng Sci 2012; 371(1984): 20120222.
[http://dx.doi.org/10.1098/rsta.2012.0222] [PMID: 23277612]
[21]
Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today 2018; 23(6): 1241-50.
[http://dx.doi.org/10.1016/j.drudis.2018.01.039] [PMID: 29366762]
[22]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[23]
Kang BK, Lee M, Lee S-w, Nam H, Cha S. Artificial neutral network deep learning-based method, apparatus, learning strategy, and system for analyte analysis. US20210015431A1., 2021.
[24]
Dana D, Gadhiya SV, St Surin LG, et al. Deep learning in drug discovery and medicine; scratching the surface. Molecules 2018; 23(9): 2384.
[http://dx.doi.org/10.3390/molecules23092384] [PMID: 30231499]
[25]
Fan J, Liu K, Sun X. Neural network for predicting drug property. US10923214B2, 2021.
[26]
Morrone JA, Weber JK, Cornell WD. Target molecule-ligand binding mode prediction combining deep learning-based informatics with molecular docking. US20200342953A1, 2020.
[27]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[28]
Sellwood MA, Ahmed M, Segler MH, Brown N. Artificial intelligence in drug discovery. Future Med Chem 2018; 10(17): 2025-8.
[http://dx.doi.org/10.4155/fmc-2018-0212] [PMID: 30101607]
[29]
Workman P, Al-Lazikani B. Drugging cancer genomes. Nat Rev Drug Discov 2013; 12(12): 889-90.
[http://dx.doi.org/10.1038/nrd4184] [PMID: 24287764]
[30]
Yap TA, Workman P. Exploiting the cancer genome: Strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol 2012; 52: 549-73.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134532] [PMID: 22235862]
[31]
The future of cancer genomics. Nat Med 2015; 21(2): 99.
[http://dx.doi.org/10.1038/nm.3801] [PMID: 25654590]
[32]
Xu J, Yang P, Xue S, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet 2019; 138(2): 109-24.
[http://dx.doi.org/10.1007/s00439-019-01970-5] [PMID: 30671672]
[33]
Osborne GF, Chin SSM, Mcdonald P, Schneider S. Artificial intelligence system for genetic analysis. US8693751B2, 2014.
[34]
Luo R, Lam T-w, Liu C-m. Variant calling in single molecule sequencing using a convolutional neural network. US20200303038A1, 2020.
[35]
Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med 2019; 11(1): 70.
[http://dx.doi.org/10.1186/s13073-019-0689-8] [PMID: 31744524]
[36]
Nawy T. Variants from the deep. Nat Methods 2018; 15(11): 861.
[http://dx.doi.org/10.1038/s41592-018-0209-6] [PMID: 30377361]
[37]
Liu W-m. Rare variant calls in ultra-deep sequencing. US10216895B2., 2019.
[38]
Kadurin A, Aliper A, Kazennov A, et al. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017; 8(7): 10883-90.
[http://dx.doi.org/10.18632/oncotarget.14073] [PMID: 28029644]
[39]
Workman P, Antolin AA, Al-Lazikani B. Transforming cancer drug discovery with Big Data and AI. Expert Opin Drug Discov 2019; 14(11): 1089-95.
[http://dx.doi.org/10.1080/17460441.2019.1637414] [PMID: 31284790]
[40]
Ho D. Artificial intelligence in cancer therapy. Science 2020; 367(6481): 982-3.
[http://dx.doi.org/10.1126/science.aaz3023] [PMID: 32108102]
[41]
Michie S, Thomas J, Johnston M, et al. The human behaviour-change project: Harnessing the power of artificial intelligence and machine learning for evidence synthesis and interpretation. Implement Sci 2017; 12(1): 121.
[http://dx.doi.org/10.1186/s13012-017-0641-5] [PMID: 29047393]
[42]
Empel C, Koenigs RM. Artificial-intelligence-driven organic synthesis-en route towards autonomous synthesis? Angew Chem Int Ed Engl 2019; 58(48): 17114-6.
[http://dx.doi.org/10.1002/anie.201911062] [PMID: 31638733]
[43]
Struble TJ, Alvarez JC, Brown SP, et al. Current and future roles of artificial intelligence in medicinal chemistry synthesis. J Med Chem 2020; 63(16): 8667-82.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02120] [PMID: 32243158]
[44]
Nicolaou KC, Rigol S. The role of organic synthesis in the emergence and development of antibody-drug conjugates as targeted cancer therapies. Angew Chem Int Ed Engl 2019; 58(33): 11206-41.
[http://dx.doi.org/10.1002/anie.201903498] [PMID: 31012193]
[45]
Huang Q, Li LL, Yang SY. RASA: A rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules. J Chem Inf Model 2011; 51(10): 2768-77.
[http://dx.doi.org/10.1021/ci100216g] [PMID: 21932860]
[46]
Nair VH, Schwaller P, Laino T. Data-driven chemical reaction prediction and retrosynthesis. Chimia (Aarau) 2019; 73(12): 997-1000.
[http://dx.doi.org/10.2533/chimia.2019.997] [PMID: 31883550]
[47]
Coley C W, Thomas D A 3rd, Lummiss J A M, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019; 365-6453.
[http://dx.doi.org/10.1126/science.aax1566]
[48]
Granda JM, Donina L, Dragone V, Long DL, Cronin L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018; 559(7714): 377-81.
[http://dx.doi.org/10.1038/s41586-018-0307-8] [PMID: 30022133]
[49]
Lee CI, Houssami N, Elmore JG, Buist DSM. Pathways to breast cancer screening artificial intelligence algorithm validation. Breast 2020; 52: 146-9.
[http://dx.doi.org/10.1016/j.breast.2019.09.005] [PMID: 31540699]
[50]
Belic A, Grabnar I, Karba R, Mrhar A. Pathways of paracetamol absorption from layered excipient suppositories: Artificial intelligence approach. Eur J Drug Metab Pharmacokinet 2003; 28(1): 31-40.
[http://dx.doi.org/10.1007/BF03190864] [PMID: 14503662]
[51]
Leahy DE, Sykora V. Automation of decision making in drug design. Drug Discov Today Technol 2013; 10(3): e437-41.
[http://dx.doi.org/10.1016/j.ddtec.2013.02.005] [PMID: 24179997]
[52]
Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol 2013; 31(15): 1803-5.
[http://dx.doi.org/10.1200/JCO.2013.49.4799] [PMID: 23589545]
[53]
Tran W T, Jerzak K, Lu F I, et al. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. J Med Imaging Radiat Sci 2019; 50(4S2): S32-41.
[http://dx.doi.org/10.1016/j.jmir.2019.07.010]
[54]
Abousy KM, Sallam H, Abouissa S. System, method, and device for personal medical care, intelligent analysis, and diagnosis. US20190392931A1, 2019.
[55]
Itahashi K, Kondo S, Kubo T, et al. Evaluating clinical genome sequence analysis by watson for genomics. Front Med (Lausanne) 2018; 5: 305.
[http://dx.doi.org/10.3389/fmed.2018.00305] [PMID: 30474028]
[56]
Ibrahim NE, McCarthy CP, Shrestha S, et al. A clinical, proteomics, and artificial intelligence-driven model to predict acute kidney injury in patients undergoing coronary angiography. Clin Cardiol 2019; 42(2): 292-8.
[http://dx.doi.org/10.1002/clc.23143] [PMID: 30582197]
[57]
Kohli A, Mahajan V, Seals K, Kohli A, Jha S. Concepts in U.S. food and drug administration regulation of artificial intelligence for medical imaging. AJR Am J Roentgenol 2019; 213(4): 886-8.
[http://dx.doi.org/10.2214/AJR.18.20410] [PMID: 31166758]
[58]
Bertucci F, Le Corroller-Soriano AG, Monneur A, et al. E-health and “Cancer outside the hospital walls”, Big Data and artificial intelligence. Bull Cancer 2020; 107(1): 102-12.
[http://dx.doi.org/10.1016/j.bulcan.2019.07.006] [PMID: 31543271]
[59]
Kantarjian H, Yu PP. Artificial Intelligence, Big Data, and Cancer. JAMA Oncol 2015; 1(5): 573-4.
[http://dx.doi.org/10.1001/jamaoncol.2015.1203] [PMID: 26181906]
[60]
Osborne GF, Chin SSM, Mcdonald P, Schneider S. Artificial intelligence system for genetic analysis. US7062076B1, 2006.
[61]
Blasiak A, Khong J, Kee T. CURATE.AI: Optimizing personalized medicine with artificial intelligence. SLAS Technol 2020; 25(2): 95-105.
[http://dx.doi.org/10.1177/2472630319890316] [PMID: 31771394]
[62]
Narain NR, Sarangarajan R, Vishnudas VK. Interrogatory cell-based assays for identifying drug-induced toxicity markers. US20190304566A1, 2019.
[63]
Lee S-Y, Yun S-j, Kim T-y, Park J-c, Park J-w, Lee K-s. Method of predicting toxicity of chemicals with respect to microorganisms and method of evaluating biosynthetic pathways by using their predicted toxicities. US20140257773A1, 2014.
[64]
Burki T. A new paradigm for drug development. Lancet Digit Health 2020; 2(5): e226-7.
[http://dx.doi.org/10.1016/S2589-7500(20)30088-1] [PMID: 32373787]
[65]
Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM. A deep learning approach to antibiotic discovery. Cell . 180(4): 688-702. e13. Available from: http://dx.doi.org/10.1016/j.cell.2020.01.02

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy