Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

An Overview of the Latest Applications of Platelet-Derived Microparticles and Nanoparticles in Medical Technology 2010-2020

Author(s): Tahereh Zadeh Mehrizi*

Volume 22, Issue 6, 2022

Published on: 28 September, 2021

Page: [524 - 539] Pages: 16

DOI: 10.2174/1566524021666210928152015

Price: $65

Abstract

Today, Platelets and platelet-derived nanoparticles and microparticles have found many applications in nanomedical technology. The results of our review study show that no article has been published in this field to review the current status of applications of these platelet derivatives so far. Therefore, in the present study, our goal is to compare the applications of platelet derivatives and review their latest status between 2010 and 2020 to present the latest findings to researchers. A very interesting point about the role of platelet derivatives is the presence of molecules on their surface, which makes them capable of hiding from the immune system, reaching different target cells, and specifically attaching to different cell types. According to the results of this study, most of their applications include drug delivery, diagnosis of various diseases, and tissue engineering. However, their application in drug delivery is limited due to heterogeneity, large size, and the possibility of interference with cellular pathways in microparticles derived from other cells. On the other hand, platelet nanoparticles are more controllable and have been widely used for drug delivery in the treatment of cancer, atherosclerosis, thrombosis, infectious diseases, repair of damaged tissue, and photothermal therapy. The results of this study show that platelet nanoparticles are more controllable than platelet microparticles and have a higher potential for use in medicine.

Keywords: Clinical applications, drug delivery, platelet-derived microparticles, platelet nanoparticles, medical technology, platelet derivatives.

[1]
Burnouf T, Burnouf P-A, Wu Y-W, Chuang E-Y, Lu L-S, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today 2018; 23(5): 934-43.
[http://dx.doi.org/10.1016/j.drudis.2017.08.012] [PMID: 28917821]
[2]
Li Z, Hu S, Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B Mater Biol Med 2018; 6(45): 7354-65.
[http://dx.doi.org/10.1039/C8TB02301H] [PMID: 31372220]
[3]
Montoro-García S, Shantsila E, Hernández-Romero D, et al. Small-size platelet microparticles trigger platelet and monocyte functionality and modulate thrombogenesis via P-selectin. Br J Haematol 2014; 166(4): 571-80.
[http://dx.doi.org/10.1111/bjh.12913] [PMID: 24766273]
[4]
Fatemeh DR, Ebrahimi Shahmabadi H, Abedi A, et al. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status. Indian J Clin Biochem 2014; 29(3): 333-8.
[http://dx.doi.org/10.1007/s12291-013-0364-6] [PMID: 24966482]
[5]
Shahabi J, Shahmabadi HE, Alavi SE, et al. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: an in vitro study. Indian J Clin Biochem 2014; 29(3): 315-20.
[http://dx.doi.org/10.1007/s12291-013-0355-7] [PMID: 24966479]
[6]
Zadeh Mehrizi T, Khamesipour A, Shafiee Ardestani M, et al. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine 2019; 14: 7593-607.
[http://dx.doi.org/10.2147/IJN.S220410] [PMID: 31802863]
[7]
Zadeh Mehrizi T, Mosaffa N, Shafiee Ardestani M, et al. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch Clin Infect Dis 2018; 13(5): e80314.
[http://dx.doi.org/10.5812/archcid.80314]
[8]
Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, et al. Effective materials of medicinal plants for leishmania treatment in vivo environment. J Med Plants 2020; 19(74): 39-62.
[http://dx.doi.org/10.29252/jmp.19.74.39]
[9]
Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in kidney. Sci Rep 2018; 8(1): 11759.
[http://dx.doi.org/10.1038/s41598-018-30103-7] [PMID: 30082741]
[10]
Mehrizi TZ, Ardestani MS, Molla Hoseini MH, Khamesipour A, Mosaffa N, Ramezani A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond) 2018; 13(24): 3129-47.
[http://dx.doi.org/10.2217/nnm-2018-0063] [PMID: 30463469]
[11]
Mehrizi TZ, Ardestani MS, Khamesipour A, et al. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of Leishmania major. J Mater Sci Mater Med 2018; 29(8): 125.
[http://dx.doi.org/10.1007/s10856-018-6122-9] [PMID: 30056571]
[12]
Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 2020; 327: 546-70.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.012] [PMID: 32911013]
[13]
Zargar SM, Hafshejani DK, Eskandarinia A, Rafienia M, Kharazi AZ. A review of controlled drug delivery systems based on cells and cell membranes. J Med Signals Sens 2019; 9(3): 181-9.
[http://dx.doi.org/10.4103/jmss.JMSS_53_18] [PMID: 31544058]
[14]
Lu M, Xing H, Xun Z, et al. Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems. Eur J Pharm Sci 2018; 121: 34-46.
[http://dx.doi.org/10.1016/j.ejps.2018.05.001] [PMID: 29733979]
[15]
Vijayan V, Uthaman S, Park I-K. Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy. Adv Exp Med Biol 2018; 1064: 45-59.
[16]
Xu J, Zhang Y, Xu J, et al. Engineered nanoplatelets for targeted delivery of plasminogen activators to reverse thrombus in multiple mouse thrombosis models. Adv Mater 2020; 32(4): e1905145.
[http://dx.doi.org/10.1002/adma.201905145] [PMID: 31788896]
[17]
Hyslop SR, Josefsson EC. Undercover agents: targeting tumours with modified platelets. Trends Cancer 2017; 3(3): 235-46.
[http://dx.doi.org/10.1016/j.trecan.2017.01.006] [PMID: 28718434]
[18]
Li S, Liu J, Sun M, Wang J, Wang C, Sun Y. Cell membrane-camouflaged nanocarriers for cancer diagnostic and therapeutic. Front Pharmacol 2020; 11: 24.
[http://dx.doi.org/10.3389/fphar.2020.00024] [PMID: 32116701]
[19]
Zhang Z, Xiao C, Yong T, Yang X, Gan L, Li Z. Cellular microparticles for tumor targeting delivery: from bench to bedside. Chem Commun (Camb) 2020; 56(46): 6171-88.
[http://dx.doi.org/10.1039/D0CC02333G] [PMID: 32478343]
[20]
Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 2010; 6(1): 21-9.
[http://dx.doi.org/10.1038/nrrheum.2009.229] [PMID: 19949432]
[21]
Mause SF. Platelet microparticles: reinforcing the hegemony of platelets in atherothrombosis. Thromb Haemost 2013; 109(1): 5-6.
[http://dx.doi.org/10.1160/TH12-11-0817] [PMID: 23196668]
[22]
Diehl P, Fricke A, Sander L, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012; 93(4): 633-44.
[http://dx.doi.org/10.1093/cvr/cvs007] [PMID: 22258631]
[23]
Yurkin ST, Wang Z. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery. Nanomedicine (Lond) 2017; 12(16): 2007-19.
[http://dx.doi.org/10.2217/nnm-2017-0100] [PMID: 28745122]
[24]
Esmaili MA, Yari F, Sharifi Z, Nikougoftar M, Fadaei R. Effects of platelet microparticles on the activation of B cells. Pathobiol Res 2013; 15(4): 1-10.
[25]
Badimon L, Suades R, Fuentes E, Palomo I, Padró T. Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis. Front Pharmacol 2016; 7: 293.
[http://dx.doi.org/10.3389/fphar.2016.00293] [PMID: 27630570]
[26]
Banskota S, Yousefpour P, Chilkoti A. Cell-based biohybrid drug delivery systems: the best of the synthetic and natural worlds. Macromol Biosci 2017; 17(1): 1600361.
[http://dx.doi.org/10.1002/mabi.201600361] [PMID: 27925398]
[27]
Wang S, Duan Y, Zhang Q, et al. Drug targeting via platelet membrane-coated nanoparticles. Small Structures 2020; 1(1): 2000018.
[http://dx.doi.org/10.1002/sstr.202000018] [PMID: 33817693]
[28]
Italiano JE Jr, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 2010; 17(6): 578-84.
[http://dx.doi.org/10.1097/MOH.0b013e32833e77ee] [PMID: 20739880]
[29]
Yang J, Wang S, Liu P, et al. Platelet-inspired medicine for tumor therapy. Oncotarget 2017; 8(70): 115748-53.
[http://dx.doi.org/10.18632/oncotarget.22853] [PMID: 29383198]
[30]
Jung H, Kang YY, Mok H. Platelet-derived nanovesicles for hemostasis without release of pro-inflammatory cytokines. Biomater Sci 2019; 7(3): 856-9.
[http://dx.doi.org/10.1039/C8BM01480A] [PMID: 30644930]
[31]
Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev 2007; 21(3): 157-71.
[http://dx.doi.org/10.1016/j.blre.2006.09.001] [PMID: 17118501]
[32]
Semple JW. Platelets deliver small packages of genetic function. Blood 2013; 122(2): 155-6.
[http://dx.doi.org/10.1182/blood-2013-05-502609] [PMID: 23847185]
[33]
Acebes-Huerta A, Arias-Fernández T, Bernardo Á, et al. Platelet-derived bio-products: classification update, applications, concerns and new perspectives. Transfus Apheresis Sci 2020; 59(1): 102716.
[http://dx.doi.org/10.1016/j.transci.2019.102716] [PMID: 31928859]
[34]
Dovizio M, Bruno A, Contursi A, Grande R, Patrignani P. Platelets and extracellular vesicles in cancer: diagnostic and therapeutic implications. Cancer Metastasis Rev 2018; 37(2-3): 455-67.
[http://dx.doi.org/10.1007/s10555-018-9730-4] [PMID: 29855749]
[35]
Xu K, Liu Q, Wu K, et al. Extracellular vesicles as potential biomarkers and therapeutic approaches in autoimmune diseases. J Transl Med 2020; 18(1): 432.
[http://dx.doi.org/10.1186/s12967-020-02609-0] [PMID: 33183315]
[36]
Burnouf T, Goubran HA, Chou M-L, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014; 28(4): 155-66.
[http://dx.doi.org/10.1016/j.blre.2014.04.002] [PMID: 24826991]
[37]
Gao J, Chu D, Wang Z. Cell membrane-formed nanovesicles for disease-targeted delivery. J Control Release 2016; 224: 208-16.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.024] [PMID: 26778696]
[38]
Zhang X, Wang J, Chen Z, et al. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett 2018; 18(9): 5716-25.
[http://dx.doi.org/10.1021/acs.nanolett.8b02321] [PMID: 30063143]
[39]
Hu Q, Sun W, Wang J, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng 2018; 2(11): 831-40.
[http://dx.doi.org/10.1038/s41551-018-0310-2] [PMID: 31015615]
[40]
Manoochehrabadi T, Sharifi Z, Yari F. Role of platelet-derived microparticles in transfer of the chemokine receptor CXCR4 to CXCR4-negative cells. Med J Islam Repub Iran 2019; 33: 55.
[http://dx.doi.org/10.47176/mjiri.33.55] [PMID: 31456979]
[41]
Kailashiya J, Gupta V, Dash D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget 2019; 10(56): 5835-46.
[http://dx.doi.org/10.18632/oncotarget.27223] [PMID: 31645903]
[42]
Wu Y-W, Huang C-C, Changou CA, Lu L-S, Goubran H, Burnouf T. Clinical-grade cryopreserved doxorubicin-loaded platelets: role of cancer cells and platelet extracellular vesicles activation loop. J Biomed Sci 2020; 27(1): 45.
[http://dx.doi.org/10.1186/s12929-020-00633-2] [PMID: 32200762]
[43]
Gasperi V, Vangapandu C, Savini I, Ventimiglia G, Adorno G, Catani MV. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines. J Nutr Biochem 2019; 74: 108242.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108242] [PMID: 31665654]
[44]
Ortiz-Otero N, Marshall JR, Lash BW, King MR. Platelet mediated TRAIL delivery for efficiently targeting circulating tumor cells. Nanoscale Adv 2020; 2(9): 3942-53.
[http://dx.doi.org/10.1039/D0NA00271B]
[45]
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107(9): 1047-57.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226456] [PMID: 21030722]
[46]
Alexandru N, Andrei E, Dragan E, Georgescu A. Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: role of transplanted endothelial progenitor cells and platelet microparticles. Biol Cell 2015; 107(6): 189-204.
[http://dx.doi.org/10.1111/boc.201400071] [PMID: 25763472]
[47]
Hayon Y, Dashevsky O, Shai E, Brill A, Varon D, Leker RR. Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr Neurovasc Res 2012; 9(3): 185-92.
[http://dx.doi.org/10.2174/156720212801619018] [PMID: 22621230]
[48]
Ohtsuka M, Sasaki K, Ueno T, et al. Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients. Atherosclerosis 2013; 227(2): 275-82.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.040] [PMID: 23433826]
[49]
Windeløv NA, Johansson PI, Sørensen AM, et al. Low level of procoagulant platelet microparticles is associated with impaired coagulation and transfusion requirements in trauma patients. J Trauma Acute Care Surg 2014; 77(5): 692-700.
[http://dx.doi.org/10.1097/TA.0000000000000437] [PMID: 25494419]
[50]
Ma F, Liu H, Shen Y, Zhang Y, Pan S. Platelet-derived microvesicles are involved in cardio-protective effects of remote preconditioning. Int J Clin Exp Pathol 2015; 8(9): 10832-9.
[PMID: 26617796]
[51]
Anene C, Graham AM, Boyne J, Roberts W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim Biophys Acta Mol Basis Dis 2018; 1864(8): 2633-43.
[http://dx.doi.org/10.1016/j.bbadis.2018.04.013] [PMID: 29684582]
[52]
Miyazawa B, Trivedi A, Togarrati PP, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg 2019; 86(6): 931-42.
[http://dx.doi.org/10.1097/TA.0000000000002230] [PMID: 31124890]
[53]
Liang C, Huang J, Luo P, et al. Platelet-derived microparticles mediate the intra-articular homing of mesenchymal stem cells in early-stage cartilage lesions. Stem Cells Dev 2020; 29(7): 414-24.
[http://dx.doi.org/10.1089/scd.2019.0137] [PMID: 32000580]
[54]
Li Z, Hu S, Huang K, Su T, Cores J, Cheng K. Targeted anti-IL-1β platelet microparticles for cardiac detoxing and repair. Sci Adv 2020; 6(6): eaay0589.
[http://dx.doi.org/10.1126/sciadv.aay0589] [PMID: 32076644]
[55]
Soleymani S, Yari F, Bolhassani A, Bakhshandeh H. Platelet microparticles: an effective delivery system for anti-viral drugs. J Drug Deliv Sci Technol 2019; 51: 290-6.
[http://dx.doi.org/10.1016/j.jddst.2019.03.009]
[56]
Pawlowski CL, Li W, Sun M, et al. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 2017; 128: 94-108.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.012] [PMID: 28314136]
[57]
Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 2017; 28(1): 23-32.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00569] [PMID: 27798829]
[58]
Zhang Y, Liu G, Wei J, Nie G. Platelet membrane-based and tumor-associated platelettargeted drug delivery systems for cancer therapy. Front Med 2018; 12(6): 667-77.
[http://dx.doi.org/10.1007/s11684-017-0583-y] [PMID: 29619757]
[59]
Zhai Y, Su J, Ran W, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 2017; 7(10): 2575-92.
[http://dx.doi.org/10.7150/thno.20118] [PMID: 28819448]
[60]
Lu Y, Hu Q, Jiang C, Gu Z. Platelet for drug delivery. Curr Opin Biotechnol 2019; 58: 81-91.
[http://dx.doi.org/10.1016/j.copbio.2018.11.010] [PMID: 30529814]
[61]
Wu M, Le W, Mei T, et al. Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. Int J Nanomedicine 2019; 14: 4431-48.
[http://dx.doi.org/10.2147/IJN.S200284] [PMID: 31354269]
[62]
Xu C-H, Ye P-J, Zhou Y-C, He D-X, Wei H, Yu C-Y. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater 2020; 105: 1-14.
[http://dx.doi.org/10.1016/j.actbio.2020.01.036] [PMID: 32001369]
[63]
Liu L, He H, Liu J. Advances on non-genetic cell membrane engineering for biomedical applications. Polymers (Basel) 2019; 11(12): 2017.
[http://dx.doi.org/10.3390/polym11122017] [PMID: 31817418]
[64]
Wang H, Wu J, Williams GR, et al. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnology 2019; 17(1): 60.
[http://dx.doi.org/10.1186/s12951-019-0494-y] [PMID: 31084622]
[65]
Moghimi SM, Hunter AC, Peer D. Platelet mimicry: The emperor’s new clothes? Nanomedicine 2016; 12(1): 245-8.
[http://dx.doi.org/10.1016/j.nano.2015.09.005] [PMID: 26409192]
[66]
Hu Q, Sun W, Qian C, Wang C, Bomba HN, Gu Z. Anticancer platelet‐mimicking nanovehicles. Adv Mater 2015; 27(44): 7043-50.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[67]
Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond) 2017; 12(21): 2677-92.
[http://dx.doi.org/10.2217/nnm-2017-0225] [PMID: 28965474]
[68]
Wei X, Gao J, Fang RH, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 2016; 111: 116-23.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.003] [PMID: 27728811]
[69]
Montecinos VP, Morales CH, Fischer TH, et al. Selective targeting of bioengineered platelets to prostate cancer vasculature: new paradigm for therapeutic modalities. J Cell Mol Med 2015; 19(7): 1530-7.
[http://dx.doi.org/10.1111/jcmm.12515] [PMID: 25736582]
[70]
Li J, Ai Y, Wang L, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 2016; 76: 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046] [PMID: 26519648]
[71]
Hu Q, Qian C, Sun W, et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater 2016; 28(43): 9573-80.
[http://dx.doi.org/10.1002/adma.201603463] [PMID: 27626769]
[72]
Wang C, Sun W, Ye Y, Hu Q, Bomba HN, Gu Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat Biomed Eng 2017; 1(2): 1-10.
[http://dx.doi.org/10.1038/s41551-016-0011] [PMID: 30214831]
[73]
Hu Q, Sun W, Qian C, Bomba HN, Xin H, Gu Z. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy. Adv Mater 2017; 29(13): 1605803.
[http://dx.doi.org/10.1002/adma.201605803] [PMID: 28160337]
[74]
Liu G, Zhao X, Zhang Y, et al. Engineering biomimetic platesomes for pH‐responsive drug delivery and enhanced antitumor activity. Adv Mater 2019; 31(32): e1900795.
[http://dx.doi.org/10.1002/adma.201900795] [PMID: 31222856]
[75]
Bang K-H, Na Y-G, Huh HW, et al. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane. Cancers (Basel) 2019; 11(6): 807.
[http://dx.doi.org/10.3390/cancers11060807] [PMID: 31212681]
[76]
Shang Y, Wang Q, Li J, et al. Platelet-membrane-camouflaged zirconia nanoparticles inhibit the invasion and metastasis of HeLa cells. Front Chem 2020; 8: 377.
[http://dx.doi.org/10.3389/fchem.2020.00377] [PMID: 32457875]
[77]
Wang H, Bremner DH, Wu K, et al. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer. Chem Eng J 2020; 382: 122848.
[http://dx.doi.org/10.1016/j.cej.2019.122848]
[78]
Zhuang J, Gong H, Zhou J, et al. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci Adv 2020; 6(13): eaaz6108.
[http://dx.doi.org/10.1126/sciadv.aaz6108] [PMID: 32258408]
[79]
Kim MW, Lee G, Niidome T, Komohara Y, Lee R, Park YI. Platelet-like gold nanostars for cancer therapy: the ability to treat cancer and evade immune reactions. Front Bioeng Biotechnol 2020; 8: 133.
[http://dx.doi.org/10.3389/fbioe.2020.00133] [PMID: 32158752]
[80]
Mei D, Gong L, Zou Y, et al. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemothera-peutical efficacy. J Control Release 2020; 324: 341-53.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.016] [PMID: 32422212]
[81]
Rao L, Bu LL, Meng QF, et al. Antitumor platelet‐mimicking magnetic nanoparticles. Adv Funct Mater 2017; 27(9): 1604774.
[http://dx.doi.org/10.1002/adfm.201604774]
[82]
Xu L, Gao F, Fan F, Yang L. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 2018; 159: 59-67.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.028] [PMID: 29309994]
[83]
Jing L, Qu H, Wu D, et al. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 2018; 8(10): 2683-95.
[http://dx.doi.org/10.7150/thno.23654] [PMID: 29774068]
[84]
Ye H, Wang K, Wang M, et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 2019; 206: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.024] [PMID: 30921730]
[85]
Chen Y, Zhao G, Wang S, et al. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomater Sci 2019; 7(8): 3450-9.
[http://dx.doi.org/10.1039/C9BM00599D] [PMID: 31268067]
[86]
Wu L, Xie W, Zan H-M, et al. Platelet membrane-coated nanoparticles for targeted drug delivery and local chemo-photothermal therapy of orthotopic hepatocellular carcinoma. J Mater Chem B Mater Biol Med 2020; 8(21): 4648-59.
[http://dx.doi.org/10.1039/D0TB00735H] [PMID: 32373904]
[87]
Zuo H, Tao J, Shi H, He J, Zhou Z, Zhang C. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater 2018; 80: 296-307.
[http://dx.doi.org/10.1016/j.actbio.2018.09.017] [PMID: 30223092]
[88]
Tang J, Su T, Huang K, et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat Biomed Eng 2018; 2(1): 17-26.
[http://dx.doi.org/10.1038/s41551-017-0182-x] [PMID: 29862136]
[89]
Menasché P. Platelet vesicles help cardiac stem cells engraft. Nat Biomed Eng 2018; 2(1): 4-5.
[http://dx.doi.org/10.1038/s41551-017-0185-7] [PMID: 31015661]
[90]
Du R, Wang Y, Huang Y, et al. Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating. NPG Asia Mater 2018; 10(7): 642-58.
[http://dx.doi.org/10.1038/s41427-018-0064-z]
[91]
Huang Y, Yu L, Ren J, et al. An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy. J Control Release 2019; 300: 1-12.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.033] [PMID: 30807804]
[92]
Song Y, Huang Z, Liu X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice. Nanomedicine 2019; 15(1): 13-24.
[http://dx.doi.org/10.1016/j.nano.2018.08.002] [PMID: 30171903]
[93]
Wang B, Chen G, Urabe G, et al. A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials 2018; 178: 293-301.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.025] [PMID: 29958152]
[94]
Wang S, Wang R, Meng N, et al. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J Control Release 2020; 328: 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.030] [PMID: 32853731]
[95]
Yang H, Song Y, Chen J, et al. Platelet membrane-coated nanoparticles target sclerotic aortic valves in ApoE−/− mice by multiple binding mechanisms under pathological shear stress. Int J Nanomedicine 2020; 15: 901-12.
[http://dx.doi.org/10.2147/IJN.S224024] [PMID: 32103945]
[96]
He Y, Li R, Liang J, et al. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res 2018; 11(11): 6086-101.
[http://dx.doi.org/10.1007/s12274-018-2126-5]
[97]
Wei X, Ying M, Dehaini D, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano 2018; 12(1): 109-16.
[http://dx.doi.org/10.1021/acsnano.7b07720] [PMID: 29216423]
[98]
Hu C-MJ, Fang RH, Wang K-C, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015; 526(7571): 118-21.
[http://dx.doi.org/10.1038/nature15373] [PMID: 26374997]
[99]
Dehaini D, Wei X, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater 2017; 29(16): 1606209.
[http://dx.doi.org/10.1002/adma.201606209] [PMID: 28199033]
[100]
Zarà M, Guidetti GF, Camera M, et al. Biology and role of Extracellular Vesicles (EVs) in the pathogenesis of thrombosis. Int J Mol Sci 2019; 20(11): 2840.
[http://dx.doi.org/10.3390/ijms20112840] [PMID: 31212641]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy