Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

A Systematic Review of Machine Learning Based Gait Characteristics in Parkinson’s Disease

Author(s): Pooja Sharma, SK Pahuja and Karan Veer*

Volume 22, Issue 8, 2022

Published on: 04 January, 2022

Page: [1216 - 1229] Pages: 14

DOI: 10.2174/1389557521666210927151553

Price: $65

Abstract

Objective: Parkinson’s disease is a pervasive neuro disorder that affects people's quality of life throughout the world. The unsatisfactory results of clinical rating scales open the door for more research. PD treatment using current biomarkers seems a difficult task. So automatic evaluation at an early stage may enhance the quality and time period of life.

Methods: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) and population, Intervention, Comparison, and Outcome (PICO) search methodology schemes are followed to search the data and eligible studies for this survey. Approximate 1500 articles were extracted using related search strings. After the stepwise mapping and elimination of studies, 94 papers are found suitable for the present review.

Results: After the quality assessment of extracted studies, nine inhibitors are identified to analyze people's gait with Parkinson’s disease, where four are critical. This review also differentiates the various machine learning classification techniques with their PD analysis characteristics in previous studies. The extracted research gaps are described as future perspectives. Results can help practitioners understand the PD gait as a valuable biomarker for detection, quantification, and classification.

Conclusion: Due to less cost and easy recording of gait, gait-based techniques are becoming popular in PD detection. By encapsulating the gait-based studies, it gives an in-depth knowledge of PD, different measures that affect gait detection and classification.

Keywords: Gait, machine learning tools, parkinson’s disease, classifiers assessment GRADE, PICO.

« Previous
Graphical Abstract

[1]
Chen, P.H.; Wang, R.L.; Liou, D.J.; Shaw, J.S. Gait disorders in Parkinson’s disease: Assessment and management. Int. J. Gerontol., 2013, 7, 189-193.
[http://dx.doi.org/10.1016/j.ijge.2013.03.005]
[2]
Micheletti, R.G. An update on the diagnosis and treatment of hidradenitis suppurativa. Cutis, 2015, 96(6)(Suppl.), 7-12.
[PMID: 27051885]
[3]
Morris, R.; Martini, D.N.; Madhyastha, T.; Kelly, V.E.; Grabowski, T.J.; Nutt, J.; Horak, F. Overview of the cholinergic contribution to gait, balance and falls in Parkinson’s disease. Parkinsonism Relat. Disord., 2019, 63, 20-30.
[http://dx.doi.org/10.1016/j.parkreldis.2019.02.017] [PMID: 30796007]
[4]
Belić, M.; Bobić, V.; Badža, M.; Šolaja, N.; Đurić-Jovičić, M.; Kostić, V.S. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease-A review. Clin. Neurol. Neurosurg., 2019, 184, 105442.
[http://dx.doi.org/10.1016/j.clineuro.2019.105442] [PMID: 31351213]
[5]
Ortells, J.; Herrero-Ezquerro, M.T.; Mollineda, R.A. Vision-based gait impairment analysis for aided diagnosis. Med. Biol. Eng. Comput., 2018, 56(9), 1553-1564.
[http://dx.doi.org/10.1007/s11517-018-1795-2] [PMID: 29435705]
[6]
Zhou, C.; Mitsugami, I.; Yagi, Y. Detection of gait impairment in the elderly using patch-GEI. IEEE Transact. Electric. Electron. Engineer., 2015, 10, S69-S76.
[http://dx.doi.org/10.1002/tee.22166]
[7]
Kharb, A.; Saini, V.; Jain, Y.; Dhiman, S. A review of gait cycle and its parameters. Int. J. Computat. Engineer. Manage., 2011, 13, 78-83.
[8]
Prakash, C.; Kumar, R.; Mittal, N. Recent developments in human gait research: Parameters, approaches, applications, machine learning techniques, datasets and challenges. Artif. Intell. Rev., 2018, 49.
[http://dx.doi.org/10.1007/s10462-016-9514-6]
[9]
Gupta, P.; Singh, R.; Katiyar, R.; Rastogi, R. Biometrics System based on Human Gait Patterns. Int. J. Mach. Learn. Comput., 2011, 1, 378-387.
[http://dx.doi.org/10.7763/IJMLC.2011.V1.56]
[10]
Vaughan, C.L.; Davis, B.; O’Connor, J.C. Dynamics of human gait. Undefined, 2nd ed; Kiboho: Cape Town, 1992.
[11]
Rizek, P.; Kumar, N.; Mandar, S.J. An update on the diagnosis and treatment of Parkinson disease. Ann. Movement Disorder, 2018, 1(1), 30-38.
[12]
Stamford, J.A.; Schmidt, P.N.; Friedl, K.E. What engineering technology could do for quality of life in Parkinson’s disease: A review of current needs and opportunities. IEEE J. Biomed. Health Inform., 2015, 19(6), 1862-1872.
[http://dx.doi.org/10.1109/JBHI.2015.2464354] [PMID: 26259205]
[13]
Radhakrishnan, D.M.; Goyal, V. Parkinson’s disease: A review. Neurol. India, 2018, 66(Suppl.), S26-S35.
[http://dx.doi.org/10.4103/0028-3886.226451] [PMID: 29503325]
[14]
Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiat. Clin. Neurosci., 2002, 14(2), 223-236.
[http://dx.doi.org/10.1176/jnp.14.2.223] [PMID: 11983801]
[15]
Engelhardt, E.; Gomes, M.D.M. Lewy and his inclusion bodies: Discovery and rejection. Dement. Neuropsychol., 2017, 11(2), 198-201.
[http://dx.doi.org/10.1590/1980-57642016dn11-020012] [PMID: 29213511]
[16]
Carlsson, A.; Lindqvist, M.; Magnusson, T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 1957, 180(4596), 1200.
[http://dx.doi.org/10.1038/1801200a0] [PMID: 13483658]
[17]
Hornykiewicz, O. The discovery of dopamine deficiency in the parkinsonian brain. J. Neural Transm. Suppl., 2006, (70), 9-15.
[http://dx.doi.org/10.1007/978-3-211-45295-0_3] [PMID: 17017502]
[18]
Knutsson, E. An analysis of Parkinsonian gait. Brain, 1972, 95(3), 475-486.
[http://dx.doi.org/10.1093/brain/95.3.475] [PMID: 4655275]
[19]
Lieberman, A.; Dziatolowski, M.; Gopinathan, G.; Kupersmith, M.; Neophytides, A.; Korein, J. Evaluation of Parkinson’s disease. Adv. Biochem. Psychopharmacol., 1980, 23, 277-286.
[PMID: 7395619]
[20]
Blin, O.; Ferrandez, A.M.; Serratrice, G. Quantitative analysis of gait in Parkinson patients: Increased variability of stride length. J. Neurol. Sci., 1990, 98(1), 91-97.
[http://dx.doi.org/10.1016/0022-510X(90)90184-O] [PMID: 2230833]
[21]
Morris, M.E.; Matyas, T.A.; Iansek, R.; Summers, J.J. Temporal stability of gait in Parkinson’s disease. Phys. Ther., 1996, 76(7), 763-777.
[http://dx.doi.org/10.1093/ptj/76.7.763] [PMID: 8677280]
[22]
Morris, M.E.; McGinley, J.; Huxham, F.; Collier, J.; Iansek, R. Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum. Mov. Sci., 1999, 18, 461-483.
[http://dx.doi.org/10.1016/S0167-9457(99)00020-2]
[23]
Siegel, K.L.; Metman, L.V. Effects of bilateral posteroventral pallidotomy on gait of subjects with Parkinson disease. Arch. Neurol., 2000, 57(2), 198-204.
[http://dx.doi.org/10.1001/archneur.57.2.198] [PMID: 10681077]
[24]
Kauw-a-tjoe, R.; Thalen, J.; Marin-perianu, M.; Havinga, P. SensorShoe: Mobile gait analysis for Parkinson ’ s disease patients; Centre Telemat. Informat. Technol., 2007, pp. 187-191.
[25]
Jeon, H.S.; Han, J.; Yi, W.J.; Jeon, B.; Park, K.S. Classification of parkinson gait and normal gait using spatial-temporal image of plantar pressure.Proc. 30th Annual Int. Conf. IEEE Engineer. Med. Biol. Soc; , 2008, pp. 4672-4675.
[26]
Schrag, A.; Jahanshahi, M.; Quinn, N. How does Parkinson’s disease affect quality of life? A comparison with quality of life in the general population. Mov. Disord., 2000, 15(6), 1112-1118.
[http://dx.doi.org/10.1002/1531-8257(200011)15:6<1112::AID-MDS1008>3.0.CO;2-A] [PMID: 11104193]
[27]
Zheng, H.; Yang, M.; Wang, H.; Mcclean, S. Machine learning and statistical approaches to support the discrimination of neuro-degenerative diseases based on gait analysis. Stud. Computat. Intellig., 2009, 189, 57-70.
[http://dx.doi.org/10.1007/978-3-642-00179-6_4]
[28]
Cho, C.W.; Chao, W.H.; Lin, S.H.; Chen, Y.Y. A vision-based analysis system for gait recognition in patients with Parkinson’s disease. Expert Syst. Appl., 2009, 36, 7033-7039.
[http://dx.doi.org/10.1016/j.eswa.2008.08.076]
[29]
Tucker, C.S.; Behoora, I.; Nembhard, H.B.; Lewis, M.; Sterling, N.W.; Huang, X. Machine learning classification of medication adherence in patients with movement disorders using non-wearable sensors. Comput. Biol. Med., 2015, 66, 120-134.
[http://dx.doi.org/10.1016/j.compbiomed.2015.08.012] [PMID: 26406881]
[30]
Dewey, D.C.; Miocinovic, S.; Bernstein, I.; Khemani, P.; Dewey, R.B., III; Querry, R.; Chitnis, S.; Dewey, R.B. Jr Automated gait and balance parameters diagnose and correlate with severity in Parkinson disease. J. Neurol. Sci., 2014, 345(1-2), 131-138.
[http://dx.doi.org/10.1016/j.jns.2014.07.026] [PMID: 25082782]
[31]
Wingate, J.; Kollia, I.; Bidaut, L.; Kollias, S. Unified deep learning approach for prediction of Parkinson’s disease. IET Image Process., 2020, 14, 1980-1989.
[http://dx.doi.org/10.1049/iet-ipr.2019.1526]
[32]
Tiwari, A.K. Machine Learning Based Approaches for Prediction of Parkinson’s Disease. Machine Learning Applicat. Int. J., 2016, 3, 33-39.
[http://dx.doi.org/10.5121/mlaij.2016.3203]
[33]
Sun, B.; Zhang, Z.; Liu, X.; Hu, B.; Zhu, T. Self-esteem recognition based on gait pattern using Kinect. Gait Posture, 2017, 58, 428-432.
[http://dx.doi.org/10.1016/j.gaitpost.2017.09.001] [PMID: 28910655]
[34]
Abdulhay, E.; Arunkumar, N.; Narasimhan, K.; Vellaiappan, E.; Venkatraman, V. Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Gener. Comput. Syst., 2018, 83, 366-373.
[http://dx.doi.org/10.1016/j.future.2018.02.009]
[35]
Khoury, N.; Attal, F.; Amirat, Y.; Oukhellou, L.; Mohammed, S. Data-driven based approach to aid Parkinson’s disease diagnosis. Sensors (Basel), 2019, 19(2), 1-27.
[http://dx.doi.org/10.3390/s19020242] [PMID: 30634600]
[36]
Yao, S. FTD Tree Based Classification Model for Alzheimer’s Disease Prediction. Emerg. Technol. Data Mining Informat. Secur., 2019, 813, 871-877.
[37]
Aich, S.; Youn, J.; Chakraborty, S.; Pradhan, P.M.; Park, J.H.; Park, S.; Park, J. A supervised machine learning approach to detect the on/off state in parkinson’s disease using wearable based gait signals. Diagnostics (Basel), 2020, 10(6), 421.
[http://dx.doi.org/10.3390/diagnostics10060421] [PMID: 32575764]
[38]
Wei, K.; Lu, C.; Ge, L.; Pan, B.; Yang, H.; Tian, J.; Cao, N. Different types of mesh fixation for laproscopic repair of inguinal hernia. Medicine (Baltimore), 2018, 97(16), 1-4.
[http://dx.doi.org/10.1097/MD.0000000000010423]
[39]
Gao, Y.; Xu, S.; Shen, Y.; Liao, T.; Hu, S.; Zhou, S.; Chen, Q. Metformin and acupuncture for polycystic ovary syndrome: A protocol for a systematic review and meta-analysis. Medicine (Baltimore), 2020, 99(14), e19683.
[http://dx.doi.org/10.1097/MD.0000000000019683] [PMID: 32243405]
[40]
Sadeghirad, B. Applications and advances of grade in nutrition and child. PhD Thesis Submitted to McMaster University, Hamilton: Ontario, 2019.
[41]
Liu, J.; Zhang, H.; Zhang, X.; He, T.; Zhao, X.; Wang, Z. Percutaneous endoscopic decompression for lumbar spinal stenosis. Medicine (Baltimore), 2019, 98(20), 1-4.
[http://dx.doi.org/10.1097/MD.0000000000015635]
[42]
Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; Welch, V.; Thomson, H. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ, 2020, 368, l6890.
[http://dx.doi.org/10.1136/bmj.l6890] [PMID: 31948937]
[43]
Drosatos, G.; Kaldoudi, E. Blockchain applications in the biomedical domain: A scoping review. Comput. Struct. Biotechnol. J., 2019, 17, 229-240.
[http://dx.doi.org/10.1016/j.csbj.2019.01.010] [PMID: 30847041]
[44]
Zheng, W.F.; Zhan, J.; Chen, A.; Ma, H.; Yang, H.; Maharjan, R. Diagnostic value of Neutrophil-Lymphocyte ratio in preeclampsia. Medicine (Baltimore), 2019, 98(51), 1-9.
[http://dx.doi.org/10.1097/MD.0000000000018496] [PMID: 31861035]
[45]
Panic, N.; Leoncini, E.; Belvis, G.; Ricciardi, W.; Boccia, S. Evaluation of endorsement of the preferred reporting items for systematic review and meta-analyses. PLoS One, 2013, 8(12), 1-7.
[http://dx.doi.org/10.1371/journal.pone.0083138] [PMID: 24386151]
[46]
Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; Jaeschke, R.; Rind, D.; Meerpohl, J.; Dahm, P.; Schünemann, H.J. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol., 2011, 64(4), 383-394.
[http://dx.doi.org/10.1016/j.jclinepi.2010.04.026] [PMID: 21195583]
[47]
Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health, 2019, 47, 46.
[http://dx.doi.org/10.1186/s41182-019-0165-6] [PMID: 31388330]
[48]
Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res., 2014, 14, 579.
[http://dx.doi.org/10.1186/s12913-014-0579-0] [PMID: 25413154]
[49]
Terms, F.; Petticrew, M.; Roberts, H. Systematic reviews in the social sciences: A practical guide oxford: Blackwell 2006. Couns. Psychother. Res., 2006, 6, 304-305.
[50]
Keele, S. Guidelines for performing systematic literature reviews in software engineering. EBSE Technical Report, Version 2.3; University of Durham: UK, 2007.
[51]
Wieringa, R.; Maiden, N.; Mead, N.; Rolland, C. Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requirements Eng., 2006, 11, 102-107.
[http://dx.doi.org/10.1007/s00766-005-0021-6]
[52]
Sulayman, M.; Mendes, E. A systematic literature review of software process improvement in small and medium web companies. Commun. Commun. Comput. Inf. Sci., 2009, 59, 1-8.
[http://dx.doi.org/10.1007/978-3-642-10619-4_1]
[53]
Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Inf. Softw. Technol., 2015, 64, 1-18.
[http://dx.doi.org/10.1016/j.infsof.2015.03.007]
[54]
Ťupa, O.; Procházka, A.; Vyšata, O.; Schätz, M.; Mareš, J.; Vališ, M.; Mařík, V. Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect. Biomed. Eng. Online, 2015, 14, 97.
[http://dx.doi.org/10.1186/s12938-015-0092-7] [PMID: 26499251]
[55]
Dranca, L.; de Abetxuko Ruiz de Mendarozketa, L.; Goñi, A.; Illarramendi, A.; Navalpotro Gomez, I.; Delgado Alvarado, M.; Rodríguez-Oroz, M.C. Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment. BMC Bioinformat., 2018, 19(1), 471.
[http://dx.doi.org/10.1186/s12859-018-2488-4] [PMID: 30526473]
[56]
Lee, H.; Guan, L.; Lee, I. Video analysis of human gait and posture to determine neurological disorders. EURASIP J. Image Video Process., 2008.
[http://dx.doi.org/10.1155/2008/380867]
[57]
Tahir, N.M.; Manap, H.H. Parkinsons disease gait classification based on machine learning. J. Appl. Sci., 2012, 12(2), 180-185.
[http://dx.doi.org/10.3923/jas.2012.180.185]
[58]
Aich, S. A validation study of freezing of gait (GoF) detection and machine learning FoG prediction using etimated gait characterstics with a wearable accelrometers. Sensors, 2018, 18, 2-16.
[59]
Hadad, A.; Braidot, A. VI Latin American congress on biomedical engineering, parana, Argentina 2014.IFMBE Proc; , 2015, p. 49.
[60]
Li, M.H.; Mestre, T.A.; Fox, S.H.; Taati, B. Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation. J. Neuroeng. Rehabil., 2018, 15(1), 97.
[http://dx.doi.org/10.1186/s12984-018-0446-z] [PMID: 30400914]
[61]
Sun, R.; Wang, Z.; Martens, K.E.; Lewis, S. Convolutional 3D attention network for video based freezing of gait recognition. Int. Conf. Digital Image Comput.: Techniques Applicat., 2018.
[http://dx.doi.org/10.1109/DICTA.2018.8615791]
[62]
Verlekar, T.T.; Soares, L.D.; Correia, P.L. Automatic classification of gait impairments using a markerless 2D video-based system. Sensors (Basel), 2018, 18(9), 1-16.
[http://dx.doi.org/10.3390/s18092743] [PMID: 30134527]
[63]
Khan, T.; Westin, J.; Dougherty, M. Motion cue analysis for parkinsonian gait recognition. Open Biomed. Eng. J., 2013, 7, 1-8.
[http://dx.doi.org/10.2174/1874120701307010001] [PMID: 23407764]
[64]
Alcazar, J.C.L. Markerless Analysis of Gait Patterns in the Parkinson’s Disease. MTech dissertation. Bogota National University of Colombia, 2012.
[65]
Aich, S.; Pradhan, P.M.; Park, J.; Kim, H.C. A machine learning approach to distinguish Parkinson’s disease (PD) patient’s with shuffling gait from older adults based on gait signals using 3D motion analysis. IACSIT Int. J. Eng. Technol., 2018, 7, 153-156.
[http://dx.doi.org/10.14419/ijet.v7i3.29.18547]
[66]
Wahid, F.; Begg, R.K.; Hass, C.J.; Halgamuge, S.; Ackland, D.C. Classification of Parkinson’s disease gait using spatial-temporal gait features. IEEE J. Biomed. Health Inform., 2015, 19(6), 1794-1802.
[http://dx.doi.org/10.1109/JBHI.2015.2450232] [PMID: 26551989]
[67]
Kamthan, P. Classification of pathologies using a vision based feature extraction.11th Int. Conf. Ubiquitous Comput. Ambient Intelligence; , 2017, pp. 79-90.
[68]
Martínez, F.; León, J.C.; Romero, E. Pathology classification of Gait human gestures.Proc. Int. Conf. Comp. Vision Theory Applicat; , 2011, pp. 710-713.
[69]
Prochazka, A.; Vysata, O.; Valis, M. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Process.: Rev. J., 2015, 47, 169-177.
[70]
Kuhner, A.; Schubert, T.; Maurer, C.; Burgard, W. An online system for tracking the performance of Parkinson’s patients. IEEE Int. Conf. Intelligent Robots Sys., 2017, pp. 1664-9.
[http://dx.doi.org/10.1109/IROS.2017.8205977]
[71]
Soltaninejad, S.; Rosales-Castellanos, A.; Ba, F.; Ibarra-Manzano, M.A.; Cheng, I. Body movement monitoring for Parkinson’s disease patients using a smart sensor based non-invasive technique.IEEE 20th Int. Conf. e-Health Network. Applicat. Services Healthcom; , 2018, pp. 1-6.
[http://dx.doi.org/10.1109/HealthCom.2018.8531197]
[72]
Pistacchi, M.; Gioulis, M.; Sanson, F.; De Giovannini, E.; Filippi, G.; Rossetto, F.; Zambito Marsala, S. Gait analysis and clinical correlations in early Parkinson’s disease. Funct. Neurol., 2017, 32(1), 28-34.
[http://dx.doi.org/10.11138/FNeur/2017.32.1.028] [PMID: 28380321]
[73]
Chen, S.W. Quantification and recognition of parkinsonian gaitfrom monoculor video imaging using kernel-based principal component analysis. Biomed. Eng. (N.Y.), 2011, 2-21.
[74]
Hwang, S.; Woo, Y.; Lee, S.Y.; Shin, S.S.; Jung, S. Augmented feedback using visual cues for movement smoothness during gait performance of individuals with parkinson’s disease. J. Phys. Ther. Sci., 2012, 24, 553-556.
[http://dx.doi.org/10.1589/jpts.24.553]
[75]
Manap, H.H.; Tahir, N.M.; Abdullah, R. Parkinsonian gait motor impairment detection using decision tree. Europ. Model. Sympos. Comput. Model. Simulat; EMS, 2013, pp. 209-214.
[http://dx.doi.org/10.1109/EMS.2013.36]
[76]
Chen, Y.Y.; Cho, C.W.; Lin, S.H.; Lai, H.Y.; Lo, Y.C.; Chen, S.Y. A vision-based regression model to evaluate Parkinsonian gait from monocular image sequences. Expert Syst. Appl., 2012, 39, 520-526.
[http://dx.doi.org/10.1016/j.eswa.2011.07.042]
[77]
Ambrus, M.; Sanchez, J.A.; Fernandez-Del-Olmo, M. Walking on a treadmill improves the stride length-cadence relationship in individuals with Parkinson’s disease. Gait Posture, 2019, 68, 136-140.
[http://dx.doi.org/10.1016/j.gaitpost.2018.11.025] [PMID: 30476690]
[78]
Afzal, W.; Torkar, R.; Feldt, R. A systematic review of search-based testing for non-functional system properties. Inf. Softw. Technol., 2009, 51, 957-976.
[http://dx.doi.org/10.1016/j.infsof.2008.12.005]
[79]
Wu, Y.; Krishnan, S. Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng., 2010, 18(2), 150-158.
[http://dx.doi.org/10.1109/TNSRE.2009.2033062] [PMID: 20650700]
[80]
Godinho, C.; Domingos, J.; Cunha, G.; Santos, A.T.; Fernandes, R.M.; Abreu, D. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J. Neuroeng. Rehabil., 2016, 13, 1-10.
[81]
Novak, P.; Novak, V. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson’s disease: A pilot study. J. Neuroeng. Rehabil., 2006, 3, 9.
[http://dx.doi.org/10.1186/1743-0003-3-9] [PMID: 16674823]
[82]
Federolf, P.; Tecante, K.; Nigg, B. A holistic approach to study the temporal variability in gait. J. Biomech., 2012, 45(7), 1127-1132.
[http://dx.doi.org/10.1016/j.jbiomech.2012.02.008] [PMID: 22387120]
[83]
Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture, 1998, 8(1), 8-14.
[http://dx.doi.org/10.1016/S0966-6362(98)00020-4] [PMID: 10200394]
[84]
Balaji, E.; Brinda, D.; Balakrishnan, R. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl. Soft Comput., 2020, 94, 106494.
[http://dx.doi.org/10.1016/j.asoc.2020.106494]
[85]
Asuroglu, T.; Acici, K.; Berke Erdas, C.; Kilinc Toprak, M.; Erdem, H.; Ogul, H. Parkinson’s disease monitoring from gait analysis via foot-worn sensors. Biocybern. Biomed. Eng., 2018, 38, 760-772.
[http://dx.doi.org/10.1016/j.bbe.2018.06.002]
[86]
Bortone, I.; Buongiorno, D.; Lelli, G.; Di Candia, A.; Cascarano, G.D.; Trotta, G.F. Gait Analysis and Parkinson’s Disease: Recent Trends on Main Applications in Healthcare; Springer Nature Switzerland, 2019.
[87]
Raccagni, C.; Gaßner, H.; Eschlboeck, S.; Boesch, S.; Krismer, F.; Seppi, K.; Poewe, W.; Eskofier, B.M.; Winkler, J.; Wenning, G.; Klucken, J. Sensor-based gait analysis in atypical parkinsonian disorders. Brain Behav., 2018, 8(6), e00977.
[http://dx.doi.org/10.1002/brb3.977] [PMID: 29733529]
[88]
Cavallo, F.; Moschetti, A.; Esposito, D.; Maremmani, C.; Rovini, E. Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning. Parkinsonism Relat. Disord., 2019, 63, 111-116.
[http://dx.doi.org/10.1016/j.parkreldis.2019.02.028] [PMID: 30826265]
[89]
Rehman, R.Z. Comparision of walking protocols and gait assessment system for machine learning-based classification of Parkinson’s Diseas. Sensors (Basel), 2019, 19, 2-14.
[http://dx.doi.org/10.3390/s19245363]
[90]
di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait analysis in Parkinson’s disease: An overview of most accurate marker for diagnosis and symptoms monitoring. Sensors (Basel), 2020, 20(12), 2-22.
[http://dx.doi.org/10.3390/s20123529] [PMID: 32580330]
[91]
Brognara, L Assessing gait in Parkinson's Disease using wearable motion sensors: A systematic review. MDPI, 2019, 7(18), 2-14.
[http://dx.doi.org/10.3390/diseases7010018]
[92]
Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based classification of parkinson’s disease from gait: A sensitivity analysis on sensor location and feature selection. IEEE J. Biomed. Health Inform., 2018, 22(6), 1765-1774.
[http://dx.doi.org/10.1109/JBHI.2018.2865218] [PMID: 30106745]
[93]
Mancini, M.; Horak, F.B. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Rev. Med. Devices, 2016, 13(5), 455-462.
[http://dx.doi.org/10.1586/17434440.2016.1153421] [PMID: 26872510]
[94]
Kaur, N. Computer Vision-based Diagnosis of Parkinson's Disease via Gait: A survey. IEEE J. Mag., 2019, 7, 156620-156645.
[95]
Pham, T.D.; Yan, H. Tensor decomposition of gait dynamics in Parkinson’s disease. IEEE Trans. Biomed. Eng., 2018, 65(8), 1820-1827.
[http://dx.doi.org/10.1109/TBME.2017.2779884] [PMID: 29989951]
[96]
Kluken, J. Unbiased and mobile gait analysis detector motor impairment in Parkinson’s Disease. PLoS One, 2013, 8(2), 1-9.
[97]
Ricciardi, C.; Amboni, M.; De Santis, C.; Improta, G.; Volpe, G.; Iuppariello, L.; Ricciardelli, G.; D’Addio, G.; Vitale, C.; Barone, P.; Cesarelli, M. Using gait analysis’ parameters to classify Parkinsonism: A data mining approach. Comput. Methods Prog. Biomed., 2019, 180, 105033.
[http://dx.doi.org/10.1016/j.cmpb.2019.105033] [PMID: 31445485]
[98]
Rehman, R.Z.U.; Del Din, S.; Guan, Y.; Yarnall, A.J.; Shi, J.Q.; Rochester, L. Selecting clinically relevant gait characteristics for classification of early parkinson’s disease: A comprehensive machine learning approach. Sci. Rep., 2019, 9(1), 17269.
[http://dx.doi.org/10.1038/s41598-019-53656-7] [PMID: 31754175]
[99]
Ghassemi, N.H. Segmentation of gait sequence in sensor based movements analysis: A comparision of methods in Parkinson’s Disease. Sensors (Basel), 2018, 18(145), 2-15.
[http://dx.doi.org/10.3390/s18010145]
[100]
Khan, A.A.; Keung, J. Systematic review of success factors and barriers for software process improvement in global software development. IET Softw., 2016, 10, 125-135.
[http://dx.doi.org/10.1049/iet-sen.2015.0038]
[101]
Khan, A.A.; Basri, S.; Dominic, P.D.D.; Amin, F.E. Communication risks and best practices in global software development during requirements change management: A systematic literature review protocol. Res. J. Appl. Sci. Eng. Technol., 2013, 6, 3514-3519.
[http://dx.doi.org/10.19026/rjaset.6.3554]
[102]
Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics, 1977, 33(1), 159-174.
[http://dx.doi.org/10.2307/2529310] [PMID: 843571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy