Review Article

成人海马神经发生在创伤性脑损伤中的潜在作用

卷 29, 期 19, 2022

发表于: 07 January, 2022

页: [3392 - 3419] 页: 28

弟呕挨: 10.2174/0929867328666210923143713

价格: $65

摘要

创伤性脑损伤(TBI)是年轻人和成人残疾和死亡的严重原因,表现出复杂的病理生理学,包括细胞和分子机制,尚未完全阐明。许多实验和临床研究调查了创伤性脑损伤与大脑中神经元形成的过程之间的潜在关系,这被称为神经发生。目前,还没有针对创伤性脑损伤长期后果的治疗方法,即寻找新的治疗靶点,这是最高科学和临床优先考虑的目标。一些研究评估了旨在改善创伤性脑损伤患者神经发生的治疗的好处。在这种情况下,我们回顾了目前的临床前研究,这些研究评估了改善创伤性脑损伤后神经发生的不同方法,同时获得更好的认知结果,这可能包括未来治疗的有趣的方法。

关键词: 创伤性脑损伤,神经发生,海马,模型,动物,齿状回,治疗学。

[1]
Magalhães, A.S.; Faleiro, L.C.; Teixeira, R.M.; Miranda, A.L. AS Epidemiologia do traumatismo cranioencefálico no Brasil. Rev. Bras. Neurol., 2017, 53(2), 15-22.
[2]
Robinson, C.; Apgar, C.; Shapiro, L.A. Astrocyte hypertrophy contributes to aberrant neurogenesis after traumatic brain injury. Neural Plast., 2016, 2016, 1347987.
[http://dx.doi.org/10.1155/2016/1347987] [PMID: 27274873]
[3]
Evans, R.W. CT, Acute mild traumatic brain injury (concussion) in adults. In: UpToDate;; Aminoff, MJ; Moreira, ME; Jarvik, J, Eds.; , 2018. UpToDate (Access on February 06, 2019)
[4]
Sun, D. The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural Regen. Res., 2014, 9(7), 688-692.
[http://dx.doi.org/10.4103/1673-5374.131567] [PMID: 25206873]
[5]
Rajajee, V. Traumatic brain injury: Epidemiology, classification, and pathophysiology. In: UpToDate;; MJ, A Ed.; , 2018. UpToDate (Access on February 06, 2019)
[6]
Weston, N.M.; Sun, D. The potential of stem cells in treatment of traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2018, 18(1), 1.
[http://dx.doi.org/10.1007/s11910-018-0812-z] [PMID: 29372464]
[7]
Richardson, R.M.; Sun, D.; Bullock, M.R. Neurogenesis after traumatic brain injury. Neurosurg. Clin. N. Am., 2007, 18(1), 169-181.
[http://dx.doi.org/10.1016/j.nec.2006.10.007] [PMID: 17244562]
[8]
Shors, T.J.; Townsend, D.A.; Zhao, M.; Kozorovitskiy, Y.; Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 2002, 12(5), 578-584.
[http://dx.doi.org/10.1002/hipo.10103] [PMID: 12440573]
[9]
Fernandes, R.N.R.S. Marlene., Epidemiology of traumatic brain injury in Brazil. Braz. Neurosurg., 2013, 32(3), 136-142.
[http://dx.doi.org/10.1055/s-0038-1626005]
[10]
Hyder, A.A.; Wunderlich, C.A.; Puvanachandra, P.; Gururaj, G.; Kobusingye, O.C. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation, 2007, 22(5), 341-353.
[http://dx.doi.org/10.3233/NRE-2007-22502] [PMID: 18162698]
[11]
Faul, M.X.L.; Wald, M.M.; Coronado, V.G. Traumatic brain injury in the united states: Emergency department visits, hospitalizations and deaths 2002–2006. Atlanta (GA): Centers for disease control and prevention, N. C. f. I. P. a. CED (Denver Colo.), 2010.
[12]
Chang, E.H.; Adorjan, I.; Mundim, M.V.; Sun, B.; Dizon, M.L.; Szele, F.G. Traumatic brain injury activation of the adult subventricular zone neurogenic niche. Front. Neurosci., 2016, 10, 332.
[http://dx.doi.org/10.3389/fnins.2016.00332] [PMID: 27531972]
[13]
de Almeida, C.E.; Filho, J.L.S.; Dourado, J.C.; Gontijo, P.A.; Dellaretti, M.A.; Costa, B.S. Traumatic brain injury epidemiology in Brazil. World Neurosurg., 2016, 87, 540-547.
[http://dx.doi.org/10.1016/j.wneu.2015.10.020] [PMID: 26485419]
[14]
Masel, B.E.; DeWitt, D.S. Traumatic brain injury: A disease process, not an event. J. Neurotrauma, 2010, 27(8), 1529-1540.
[http://dx.doi.org/10.1089/neu.2010.1358] [PMID: 20504161]
[15]
Gaetz, M. The neurophysiology of brain injury. Clin. Neurophysiol., 2004, 115(1), 4-18.
[http://dx.doi.org/10.1016/S1388-2457(03)00258-X] [PMID: 14706464]
[16]
McArthur, D.L.; Chute, D.J.; Villablanca, J.P. Moderate and severe traumatic brain injury: Epidemiologic, imaging and neuropathologic perspectives. Brain Pathol., 2004, 14(2), 185-194.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00052.x] [PMID: 15193031]
[17]
Bramlett, H.M.; Dietrich, W.D. Long-term consequences of traumatic brain injury: Current status of potential mechanisms of injury and neurological outcomes. J. Neurotrauma, 2015, 32(23), 1834-1848.
[http://dx.doi.org/10.1089/neu.2014.3352] [PMID: 25158206]
[18]
Younger, D.; Murugan, M.; Rama Rao, K.V.; Wu, L.J.; Chandra, N. Microglia receptors in animal models of traumatic brain injury. Mol. Neurobiol., 2019, 56(7), 5202-5228.
[http://dx.doi.org/10.1007/s12035-018-1428-7] [PMID: 30554385]
[19]
Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet, 1974, 2(7872), 81-84.
[http://dx.doi.org/10.1016/S0140-6736(74)91639-0] [PMID: 4136544]
[20]
Rutledge, R.; Lentz, C.W.; Fakhry, S.; Hunt, J. Appropriate use of the Glasgow Coma Scale in intubated patients: A linear regression prediction of the Glasgow verbal score from the Glasgow eye and motor scores. J. Trauma, 1996, 41(3), 514-522.
[http://dx.doi.org/10.1097/00005373-199609000-00022] [PMID: 8810973]
[21]
Blennow, K.; Brody, D.L.; Kochanek, P.M.; Levin, H.; McKee, A.; Ribbers, G.M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Primers, 2016, 2, 16084.
[http://dx.doi.org/10.1038/nrdp.2016.84] [PMID: 27853132]
[22]
Ibrahim, S.; Hu, W.; Wang, X.; Gao, X.; He, C.; Chen, J. Traumatic brain injury causes aberrant migration of adult-born neurons in the hippocampus. Sci. Rep., 2016, 6, 21793.
[http://dx.doi.org/10.1038/srep21793] [PMID: 26898165]
[23]
Han, X.; Tong, J.; Zhang, J.; Farahvar, A.; Wang, E.; Yang, J.; Samadani, U.; Smith, D.H.; Huang, J.H. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J. Neurotrauma, 2011, 28(6), 995-1007.
[http://dx.doi.org/10.1089/neu.2010.1563] [PMID: 21463148]
[24]
Schoch, K.M.; Madathil, S.K.; Saatman, K.E. Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury. Neurotherapeutics, 2012, 9(2), 323-337.
[http://dx.doi.org/10.1007/s13311-012-0107-z] [PMID: 22362424]
[25]
Wang, X.; Gao, X.; Michalski, S.; Zhao, S.; Chen, J. Traumatic brain injury severity affects neurogenesis in adult mouse hippocampus. J. Neurotrauma, 2016, 33(8), 721-733.
[http://dx.doi.org/10.1089/neu.2015.4097] [PMID: 26414411]
[26]
Loane, D.J.; Kumar, A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp. Neurol., 2016, 275(Pt 3), 316-327.
[http://dx.doi.org/10.1016/j.expneurol.2015.08.018] [PMID: 26342753]
[27]
Costine, B.A.; Missios, S.; Taylor, S.R.; McGuone, D.; Smith, C.M.; Dodge, C.P.; Harris, B.T.; Duhaime, A.C. The subventricular zone in the immature piglet brain: Anatomy and exodus of neuroblasts into white matter after traumatic brain injury. Dev. Neurosci., 2015, 37(2), 115-130.
[http://dx.doi.org/10.1159/000369091] [PMID: 25678047]
[28]
Lazarov, O.; Hollands, C. Hippocampal neurogenesis: Learning to remember. Prog. Neurobiol., 2016, 138-140, 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.006] [PMID: 26855369]
[29]
Seki, T.; Arai, Y. Age-related production of new granule cells in the adult dentate gyrus. Neuroreport, 1995, 6(18), 2479-2482.
[http://dx.doi.org/10.1097/00001756-199512150-00010] [PMID: 8741746]
[30]
Kuhn, H.G.; Dickinson-Anson, H.; Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J. Neurosci., 1996, 16(6), 2027-2033.
[http://dx.doi.org/10.1523/JNEUROSCI.16-06-02027.1996] [PMID: 8604047]
[31]
Kempermann, G.; Gast, D.; Gage, F.H. Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol., 2002, 52(2), 135-143.
[http://dx.doi.org/10.1002/ana.10262] [PMID: 12210782]
[32]
Carlson, S.W.; Madathil, S.K.; Sama, D.M.; Gao, X.; Chen, J.; Saatman, K.E. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J. Neuropathol. Exp. Neurol., 2014, 73(8), 734-746.
[http://dx.doi.org/10.1097/NEN.0000000000000092] [PMID: 25003234]
[33]
Azmitia, E.C. Cajal and brain plasticity: Insights relevant to emerging concepts of mind. Brain Res. Brain Res. Rev., 2007, 55(2), 395-405.
[http://dx.doi.org/10.1016/j.brainresrev.2007.01.010] [PMID: 18030688]
[34]
Rezaie, P.; Male, D. Mesoglia & microglia-a historical review of the concept of mononuclear phagocytes within the central nervous system. J. Hist. Neurosci., 2002, 11(4), 325-374.
[http://dx.doi.org/10.1076/jhin.11.4.325.8531] [PMID: 12557654]
[35]
Altman, J.; Das, G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol., 1965, 124(3), 319-335.
[http://dx.doi.org/10.1002/cne.901240303] [PMID: 5861717]
[36]
Kaplan, M.S.; Bell, D.H. Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J. Neurosci., 1984, 4(6), 1429-1441.
[http://dx.doi.org/10.1523/JNEUROSCI.04-06-01429.1984] [PMID: 6726341]
[37]
de Miranda, A.S.; Zhang, C.J.; Katsumoto, A.; Teixeira, A.L. Hippocampal adult neurogenesis: Does the immune system matter? J. Neurol. Sci., 2017, 372, 482-495.
[http://dx.doi.org/10.1016/j.jns.2016.10.052] [PMID: 27838002]
[38]
Xiong, Y.; Mahmood, A.; Chopp, M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr. Opin. Investig. Drugs, 2010, 11(3), 298-308.
[PMID: 20178043]
[39]
Pereira-Caixeta, A.R.; Guarnieri, L.O.; Pena, R.R.; Dias, T.L.; Pereira, G.S. Neurogenesis inhibition prevents enriched environment to prolong and strengthen social recognition memory, but not to increase BDNF expression. Mol. Neurobiol., 2017, 54(5), 3309-3316.
[http://dx.doi.org/10.1007/s12035-016-9922-2] [PMID: 27165290]
[40]
Xuan, W.; Agrawal, T.; Huang, L.; Gupta, G.K.; Hamblin, M.R. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J. Biophotonics, 2015, 8(6), 502-511.
[http://dx.doi.org/10.1002/jbio.201400069] [PMID: 25196192]
[41]
Xiong, Y.; Zhang, Y.; Mahmood, A.; Chopp, M. Investigational agents for treatment of traumatic brain injury. Expert Opin. Investig. Drugs, 2015, 24(6), 743-760.
[http://dx.doi.org/10.1517/13543784.2015.1021919] [PMID: 25727893]
[42]
Yang, Y.; Ye, Y.; Su, X.; He, J.; Bai, W.; He, X. MSCs-Derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front. Cell. Neurosci., 2017, 11, 55.
[http://dx.doi.org/10.3389/fncel.2017.00055] [PMID: 28293177]
[43]
Theus, M.H.; Ricard, J.; Bethea, J.R.; Liebl, D.J. EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells, 2010, 28(7), 1231-1242.
[PMID: 20496368]
[44]
Gao, X.; Chen, J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp. Neurol., 2013, 239, 38-48.
[http://dx.doi.org/10.1016/j.expneurol.2012.09.012] [PMID: 23022454]
[45]
Villasana, L.E.; Westbrook, G.L.; Schnell, E. Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp. Neurol., 2014, 261, 156-162.
[http://dx.doi.org/10.1016/j.expneurol.2014.05.016] [PMID: 24861442]
[46]
Li, D.; Ma, S.; Guo, D.; Cheng, T.; Li, H.; Tian, Y.; Li, J.; Guan, F.; Yang, B.; Wang, J. Environmental circadian disruption worsens neurologic impairment and inhibits hippocampal neurogenesis in adult rats after traumatic brain injury. Cell. Mol. Neurobiol., 2016, 36(7), 1045-1055.
[http://dx.doi.org/10.1007/s10571-015-0295-2] [PMID: 26886755]
[47]
Logan, T.T.; Villapol, S.; Symes, A.J. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One, 2013, 8(3), e59250.
[http://dx.doi.org/10.1371/journal.pone.0059250] [PMID: 23555640]
[48]
Chan, J.L.; Reeves, T.M.; Phillips, L.L. Osteopontin expression in acute immune response mediates hippocampal synaptogenesis and adaptive outcome following cortical brain injury. Exp. Neurol., 2014, 261, 757-771.
[http://dx.doi.org/10.1016/j.expneurol.2014.08.015] [PMID: 25151457]
[49]
Sun, D.; Daniels, T.E.; Rolfe, A.; Waters, M.; Hamm, R. Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J. Neurotrauma, 2015, 32(7), 495-505.
[http://dx.doi.org/10.1089/neu.2014.3545] [PMID: 25242459]
[50]
Ye, Y.; Zhao, Z.; Xu, H.; Zhang, X.; Su, X.; Yang, Y.; Yu, X.; He, X. Activation of sphingosine 1-phosphate receptor 1 enhances hippocampus neurogenesis in a rat model of traumatic brain injury: An involvement of MEK/Erk signaling pathway. Neural Plast., 2016, 2016, 8072156.
[http://dx.doi.org/10.1155/2016/8072156] [PMID: 28018679]
[51]
Shapiro, L.A. Altered hippocampal neurogenesis during the first 7 days after a fluid percussion traumatic brain Injury. Cell Transplant., 2017, 26(7), 1314-1318.
[http://dx.doi.org/10.1177/0963689717714099] [PMID: 28933222]
[52]
Ekdahl, C.T.; Claasen, J.H.; Bonde, S.; Kokaia, Z.; Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13632-13637.
[http://dx.doi.org/10.1073/pnas.2234031100] [PMID: 14581618]
[53]
Butovsky, O.; Ziv, Y.; Schwartz, A.; Landa, G.; Talpalar, A.E.; Pluchino, S.; Martino, G.; Schwartz, M. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci., 2006, 31(1), 149-160.
[http://dx.doi.org/10.1016/j.mcn.2005.10.006] [PMID: 16297637]
[54]
Kobayashi, A.; Senzaki, K.; Ozaki, S.; Yoshikawa, M.; Shiga, T. Runx1 promotes neuronal differentiation in dorsal root ganglion. Mol. Cell. Neurosci., 2012, 49(1), 23-31.
[http://dx.doi.org/10.1016/j.mcn.2011.08.009] [PMID: 21906677]
[55]
Zheng, W. ZhuGe, Q.; Zhong, M.; Chen, G.; Shao, B.; Wang, H.; Mao, X.; Xie, L.; Jin, K. Neurogenesis in adult human brain after traumatic brain injury. J. Neurotrauma, 2013, 30(22), 1872-1880.
[http://dx.doi.org/10.1089/neu.2010.1579] [PMID: 21275797]
[56]
Taylor, S.R.; Smith, C.; Harris, B.T.; Costine, B.A.; Duhaime, A.C. Maturation-dependent response of neurogenesis after traumatic brain injury in children. J. Neurosurg. Pediatr., 2013, 12(6), 545-554.
[http://dx.doi.org/10.3171/2013.8.PEDS13154] [PMID: 24053630]
[57]
Childers, W.E.; Elokely, K.M.; Abou-Gharbia, M. The resurrection of phenotypic drug discovery. ACS Med. Chem. Lett., 2020, 11(10), 1820-1828.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00006] [PMID: 33062159]
[58]
Zheng, W.; Thorne, N.; McKew, J.C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today, 2013, 18(21-22), 1067-1073.
[http://dx.doi.org/10.1016/j.drudis.2013.07.001] [PMID: 23850704]
[59]
McPherson, P.A. From fungus to pharmaceuticals-the chemistry of statins. Mini Rev. Med. Chem., 2012, 12(12), 1250-1260.
[http://dx.doi.org/10.2174/138955712802762103] [PMID: 22512563]
[60]
Tanzawa, K.; Kuroda, M.; Endo, A. Time-dependent, irreversible inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by the antibiotic citrinin. Biochim. Biophys. Acta, 1977, 488(1), 97-101.
[http://dx.doi.org/10.1016/0005-2760(77)90126-6] [PMID: 889862]
[61]
Endo, A.; Kuroda, M.; Tanzawa, K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett., 1976, 72(2), 323-326.
[http://dx.doi.org/10.1016/0014-5793(76)80996-9] [PMID: 16386050]
[62]
Brown, A.G.; Smale, T.C.; King, T.J.; Hasenkamp, R.; Thompson, R.H. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J. Chem. Soc., Perkin Trans. 1, 1976, (11), 1165-1170.
[http://dx.doi.org/10.1039/p19760001165] [PMID: 945291]
[63]
Singh, S.P.; Sashidhara, K.V. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur. J. Med. Chem., 2017, 140, 331-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.020] [PMID: 28987600]
[64]
Wible, E.F.; Laskowitz, D.T. Statins in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 62-73.
[http://dx.doi.org/10.1016/j.nurt.2009.11.003] [PMID: 20129498]
[65]
Kosowski, M.; Smolarczyk-Kosowska, J.; Hachuła, M.; Maligłówka, M.; Basiak, M.; Machnik, G.; Pudlo, R.; Okopień, B. The effects of statins on neurotransmission and their neuroprotective role in neurological and psychiatric disorders. Molecules, 2021, 26(10), 2838.
[http://dx.doi.org/10.3390/molecules26102838] [PMID: 34064670]
[66]
Lu, D.; Qu, C.; Goussev, A.; Jiang, H.; Lu, C.; Schallert, T.; Mahmood, A.; Chen, J.; Li, Y.; Chopp, M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J. Neurotrauma, 2007, 24(7), 1132-1146.
[http://dx.doi.org/10.1089/neu.2007.0288] [PMID: 17610353]
[67]
Wu, H.; Lu, D.; Jiang, H.; Xiong, Y.; Qu, C.; Li, B.; Mahmood, A.; Zhou, D.; Chopp, M. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J. Neurotrauma, 2008, 25(2), 130-139.
[http://dx.doi.org/10.1089/neu.2007.0369] [PMID: 18260796]
[68]
Kim, H.J.; Kim, W.; Kong, S.Y. Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(11), 1279-1290.
[http://dx.doi.org/10.1007/s12272-013-0238-8] [PMID: 24129616]
[69]
Mandrioli, R.; Protti, M.; Mercolini, L. New-Generation, Non-SSRI antidepressants: therapeutic drug monitoring and pharmacological interactions. part 1: SNRIs, SMSs, SARIs. Curr. Med. Chem., 2018, 25(7), 772-792.
[http://dx.doi.org/10.2174/0929867324666170712165042] [PMID: 28707591]
[70]
Eliwa, H.; Belzung, C.; Surget, A. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem. Pharmacol., 2017, 141, 86-99.
[http://dx.doi.org/10.1016/j.bcp.2017.08.005] [PMID: 28800956]
[71]
Pechnick, R.N.; Zonis, S.; Wawrowsky, K.; Cosgayon, R.; Farrokhi, C.; Lacayo, L.; Chesnokova, V. Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS One, 2011, 6(11), e27290.
[http://dx.doi.org/10.1371/journal.pone.0027290] [PMID: 22076148]
[72]
Brown, W.A.; Rosdolsky, M. The clinical discovery of imipramine. Am. J. Psychiatry, 2015, 172(5), 426-429.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101336] [PMID: 25930134]
[73]
Ban, T.A. Fifty years chlorpromazine: A historical perspective. Neuropsychiatr. Dis. Treat., 2007, 3(4), 495-500.
[PMID: 19300578]
[74]
Zhang, J.; Groff, R.F.; Dayawansa, S. Imipramine treatment increases cell proliferation following fluid percussion brain injury in rats. Neurol. Res., 2013, 35(3), 247-254.
[http://dx.doi.org/10.1179/1743132813Y.0000000164] [PMID: 23485052]
[75]
Shipman, L. Glioma: Repurposed drugs combined to amplify autophagy. Nat. Rev. Cancer, 2015, 15(11), 636.
[http://dx.doi.org/10.1038/nrc4033] [PMID: 26469144]
[76]
Abdelaleem, M.; Ezzat, H.; Osama, M.; Megahed, A.; Alaa, W.; Gaber, A.; Shafei, A.; Refaat, A. Prospects for repurposing CNS drugs for cancer treatment. Oncol. Rev., 2019, 13(1), 411.
[http://dx.doi.org/10.4081/oncol.2019.411] [PMID: 31044029]
[77]
Schildkraut, J.J. The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am. J. Psychiatry, 1965, 122(5), 509-522.
[http://dx.doi.org/10.1176/ajp.122.5.509] [PMID: 5319766]
[78]
Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: A case history of its discovery and preclinical development. Expert Opin. Drug Discov., 2014, 9(5), 567-578.
[http://dx.doi.org/10.1517/17460441.2014.907790] [PMID: 24738878]
[79]
Hyttel, J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int. Clin. Psychopharmacol., 1994, 9(Suppl. 1), 19-26.
[http://dx.doi.org/10.1097/00004850-199403001-00004] [PMID: 8021435]
[80]
Fuller, R.W.; Snoddy, H.D.; Krushinski, J.H.; Robertson, D.W. Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. Neuropharmacology, 1992, 31(10), 997-1000.
[http://dx.doi.org/10.1016/0028-3908(92)90100-4] [PMID: 1279447]
[81]
Wong, D.T.; Bymaster, F.P.; Reid, L.R.; Mayle, D.A.; Krushinski, J.H.; Robertson, D.W. Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology, 1993, 8(4), 337-344.
[http://dx.doi.org/10.1038/npp.1993.33] [PMID: 8512621]
[82]
Micheli, L.; Ceccarelli, M.; D’Andrea, G.; Tirone, F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull., 2018, 143, 181-193.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.002] [PMID: 30236533]
[83]
Wang, Y.; Neumann, M.; Hansen, K.; Hong, S.M.; Kim, S.; Noble-Haeusslein, L.J.; Liu, J. Fluoxetine increases hippocampal neurogenesis and induces epigenetic factors but does not improve functional recovery after traumatic brain injury. J. Neurotrauma, 2011, 28(2), 259-268.
[http://dx.doi.org/10.1089/neu.2010.1648] [PMID: 21175261]
[84]
Chohan, M.O.; Li, B.; Blanchard, J.; Tung, Y.C.; Heaney, A.T.; Rabe, A.; Iqbal, K.; Grundke-Iqbal, I. Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by a neurotrophic peptide. Neurobiol. Aging, 2011, 32(8), 1420-1434.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.08.008] [PMID: 19767127]
[85]
Chohan, M.O.; Bragina, O.; Kazim, S.F.; Statom, G.; Baazaoui, N.; Bragin, D.; Iqbal, K.; Nemoto, E.; Yonas, H. Enhancement of neurogenesis and memory by a neurotrophic peptide in mild to moderate traumatic brain injury. Neurosurgery, 2015, 76(2), 201-214.
[http://dx.doi.org/10.1227/NEU.0000000000000577] [PMID: 25255260]
[86]
Bolognin, S.; Blanchard, J.; Wang, X.; Basurto-Islas, G.; Tung, Y.C.; Kohlbrenner, E.; Grundke-Iqbal, I.; Iqbal, K. An experimental rat model of sporadic Alzheimer’s disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol., 2012, 123(1), 133-151.
[http://dx.doi.org/10.1007/s00401-011-0908-x] [PMID: 22083255]
[87]
Lenfant, M.; Wdzieczak-Bakala, J.; Guittet, E.; Prome, J.C.; Sotty, D.; Frindel, E. Inhibitor of hematopoietic pluripotent stem cell proliferation: Purification and determination of its structure. Proc. Natl. Acad. Sci. USA, 1989, 86(3), 779-782.
[http://dx.doi.org/10.1073/pnas.86.3.779] [PMID: 2915977]
[88]
Grillon, C.; Rieger, K.; Bakala, J.; Schott, D.; Morgat, J.L.; Hannappel, E.; Voelter, W.; Lenfant, M. Involvement of thymosin beta 4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett., 1990, 274(1-2), 30-34.
[http://dx.doi.org/10.1016/0014-5793(90)81322-F] [PMID: 2253778]
[89]
Kumar, N.; Nakagawa, P.; Janic, B.; Romero, C.A.; Worou, M.E.; Monu, S.R.; Peterson, E.L.; Shaw, J.; Valeriote, F.; Ongeri, E.M.; Niyitegeka, J.M.; Rhaleb, N.E.; Carretero, O.A. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am. J. Physiol. Renal Physiol., 2016, 310(10), F1026-F1034.
[http://dx.doi.org/10.1152/ajprenal.00562.2015] [PMID: 26962108]
[90]
Rousseau, A.; Michaud, A.; Chauvet, M.T.; Lenfant, M.; Corvol, P. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J. Biol. Chem., 1995, 270(8), 3656-3661.
[http://dx.doi.org/10.1074/jbc.270.8.3656] [PMID: 7876104]
[91]
Rieger, K.J.; Saez-Servent, N.; Papet, M.P.; Wdzieczak-Bakala, J.; Morgat, J.L.; Thierry, J.; Voelter, W.; Lenfant, M. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem. J., 1993, 296(Pt 2), 373-378.
[http://dx.doi.org/10.1042/bj2960373] [PMID: 8257427]
[92]
Kumar, N.; Yin, C. The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol. Res., 2018, 134, 268-279.
[http://dx.doi.org/10.1016/j.phrs.2018.07.006] [PMID: 29990624]
[93]
Azizi, M.; Rousseau, A.; Ezan, E.; Guyene, T.T.; Michelet, S.; Grognet, J.M.; Lenfant, M.; Corvol, P.; Ménard, J. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J. Clin. Invest., 1996, 97(3), 839-844.
[http://dx.doi.org/10.1172/JCI118484] [PMID: 8609242]
[94]
Junot, C.; Nicolet, L.; Ezan, E.; Gonzales, M.F.; Menard, J.; Azizi, M. Effect of angiotensin-converting enzyme inhibition on plasma, urine, and tissue concentrations of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro in rats. J. Pharmacol. Exp. Ther., 1999, 291(3), 982-987.
[PMID: 10565814]
[95]
Pradelles, P.; Frobert, Y.; Créminon, C.; Ivonine, H.; Frindel, E. Distribution of a negative regulator of haematopoietic stem cell proliferation (AcSDKP) and thymosin beta 4 in mouse tissues. FEBS Lett., 1991, 289(2), 171-175.
[http://dx.doi.org/10.1016/0014-5793(91)81062-D] [PMID: 1915845]
[96]
Kim, D.H.; Moon, E.Y.; Yi, J.H.; Lee, H.E.; Park, S.J.; Ryu, Y.K.; Kim, H.C.; Lee, S.; Ryu, J.H. Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience, 2015, 310, 51-62.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.017] [PMID: 26363149]
[97]
Zhang, Y.; Zhang, Z.G.; Chopp, M.; Meng, Y.; Zhang, L.; Mahmood, A.; Xiong, Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J. Neurosurg., 2017, 126(3), 782-795.
[http://dx.doi.org/10.3171/2016.3.JNS152699] [PMID: 28245754]
[98]
Brechler, V.; Jones, P.W.; Levens, N.R.; de Gasparo, M.; Bottari, S.P. Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul. Pept., 1993, 44(2), 207-213.
[http://dx.doi.org/10.1016/0167-0115(93)90244-3] [PMID: 8385791]
[99]
Hallberg, M.; Sävmarker, J.; Hallberg, A. Angiotensin peptides as AT2 receptor agonists. Curr. Protein Pept. Sci., 2017, 18(8), 809-818.
[http://dx.doi.org/10.2174/1389203718666170203150344] [PMID: 28164758]
[100]
Jones, E.S.; Wang, Y.; Del Borgo, M.P.; Denton, K.M.; Aguilar, M-I.I.; Widdop, R.E. Angiotensis-based peptides as AT2R agonists. In: The Protective Arm of the Renin-Angiotensin System, 1st ed.; Thomas Unger and Steckelings, U. M. a. d. S.; Robson, A. S., Eds.; Elsevier, 2015; pp. 141-147.
[101]
Umschweif, G.; Liraz-Zaltsman, S.; Shabashov, D.; Alexandrovich, A.; Trembovler, V.; Horowitz, M.; Shohami, E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics, 2014, 11(3), 665-678.
[http://dx.doi.org/10.1007/s13311-014-0286-x] [PMID: 24957202]
[102]
Wan, Y.; Wallinder, C.; Plouffe, B.; Beaudry, H.; Mahalingam, A.K.; Wu, X.; Johansson, B.; Holm, M.; Botoros, M.; Karlén, A.; Pettersson, A.; Nyberg, F.; Fändriks, L.; Gallo-Payet, N.; Hallberg, A.; Alterman, M. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J. Med. Chem., 2004, 47(24), 5995-6008.
[http://dx.doi.org/10.1021/jm049715t] [PMID: 15537354]
[103]
Ahmed, H.A.; Ishrat, T.; Pillai, B.; Bunting, K.M.; Vazdarjanova, A.; Waller, J.L.; Ergul, A.; Fagan, S.C. Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals-A randomized double- blind pre-clinical study. Behav. Brain Res., 2019, 359, 560-569.
[http://dx.doi.org/10.1016/j.bbr.2018.10.010] [PMID: 30296528]
[104]
Fouda, A.Y.; Pillai, B.; Dhandapani, K.M.; Ergul, A.; Fagan, S.C. Role of interleukin-10 in the neuroprotective effect of the angiotensin type 2 receptor agonist, compound 21, after ischemia/reperfusion injury. Eur. J. Pharmacol., 2017, 799, 128-134.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.016] [PMID: 28192099]
[105]
Massa, S.M.; Xie, Y.; Yang, T.; Harrington, A.W.; Kim, M.L.; Yoon, S.O.; Kraemer, R.; Moore, L.A.; Hempstead, B.L.; Longo, F.M. Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J. Neurosci., 2006, 26(20), 5288-5300.
[http://dx.doi.org/10.1523/JNEUROSCI.3547-05.2006] [PMID: 16707781]
[106]
Shi, J.; Longo, F.M.; Massa, S.M. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells, 2013, 31(11), 2561-2574.
[http://dx.doi.org/10.1002/stem.1516] [PMID: 23940017]
[107]
Tosini, G.; Ye, K.; Iuvone, P.M. N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist, 2012, 18(6), 645-653.
[http://dx.doi.org/10.1177/1073858412446634] [PMID: 22585341]
[108]
Paul, S.M.; Hsu, L.L.; Mandell, A.J. Extrapineal N-acetyltransferase activity in rat brain. Life Sci., 1974, 15(12), 2135-2143.
[http://dx.doi.org/10.1016/0024-3205(74)90030-7] [PMID: 4621010]
[109]
Psarakis, S.; Pulido, O.M.; Brown, G.M.; Grota, L.J.; Smith, G.K. Identification and quantification of n-acetylserotonin (NAS) in the developing hippocampus of the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1982, 6(4-6), 439-442.
[http://dx.doi.org/10.1016/S0278-5846(82)80124-3] [PMID: 6761764]
[110]
Gaudet, S.; Palkovits, M.; Namboodiri, M.A. Regional distribution of arylamine and arylalkylamine N-acetyltransferase activities in the rat brain. Brain Res., 1991, 539(2), 355-357.
[http://dx.doi.org/10.1016/0006-8993(91)91645-H] [PMID: 2054604]
[111]
Prakhie, I.V.; Oxenkrug, G.F. The effect of nifedipine, Ca(2+) antagonist, on activity of MAO inhibitors, N-acetylserotonin and melatonin in the mouse tail suspension test. Int. J. Neuropsychopharmacol., 1998, 1(1), 35-40.
[http://dx.doi.org/10.1017/S1461145798001096] [PMID: 11281943]
[112]
Danias, J.; Lee, K.C.; Zamora, M.F.; Chen, B.; Shen, F.; Filippopoulos, T.; Su, Y.; Goldblum, D.; Podos, S.M.; Mittag, T. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: Comparison with RGC loss in aging C57/BL6 mice. Invest. Ophthalmol. Vis. Sci., 2003, 44(12), 5151-5162.
[http://dx.doi.org/10.1167/iovs.02-1101] [PMID: 14638711]
[113]
Li, Q.; Wang, P.; Huang, C.; Chen, B.; Liu, J.; Zhao, M.; Zhao, J. N-acetyl serotonin protects neural progenitor cells against oxidative stress-induced apoptosis and improves neurogenesis in adult mouse hippocampus following traumatic brain injury. J. Mol. Neurosci., 2019, 67(4), 574-588.
[http://dx.doi.org/10.1007/s12031-019-01263-6] [PMID: 30684239]
[114]
Sompol, P.; Liu, X.; Baba, K.; Paul, K.N.; Tosini, G.; Iuvone, P.M.; Ye, K. N-acetylserotonin promotes hippocampal neuroprogenitor cell proliferation in sleep-deprived mice. Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8844-8849.
[http://dx.doi.org/10.1073/pnas.1105114108] [PMID: 21555574]
[115]
Dutta, S.; Kumari, N.; Dubbu, S.; Jang, S.W.; Kumar, A.; Ohtsu, H.; Kim, J.; Cho, S.H.; Kawano, M.; Lee, I.S. Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions. Angew. Chem. Int. Ed. Engl., 2020, 59(9), 3416-3422.
[http://dx.doi.org/10.1002/anie.201916578] [PMID: 31880381]
[116]
Shen, J.; Ghai, K.; Sompol, P.; Liu, X.; Cao, X.; Iuvone, P.M.; Ye, K. N-acetyl serotonin derivatives as potent neuroprotectants for retinas. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3540-3545.
[http://dx.doi.org/10.1073/pnas.1119201109] [PMID: 22331903]
[117]
Luo, X.; Zeng, H.; Fang, C.; Zhang, B.H. N-acetylserotonin derivative exerts a neuroprotective effect by inhibiting the NLRP3 inflammasome and activating the PI3K/Akt/Nrf2 pathway in the model of hypoxic-ischemic brain damage. Neurochem. Res., 2021, 46(2), 337-348.
[http://dx.doi.org/10.1007/s11064-020-03169-x] [PMID: 33222058]
[118]
Tang, J.; Hu, Q.; Chen, Y.; Liu, F.; Zheng, Y.; Tang, J.; Zhang, J.; Zhang, J.H. Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model. Neurobiol. Dis., 2015, 78, 126-133.
[http://dx.doi.org/10.1016/j.nbd.2015.01.009] [PMID: 25862938]
[119]
Pieper, A.A.; Xie, S.; Capota, E.; Estill, S.J.; Zhong, J.; Long, J.M.; Becker, G.L.; Huntington, P.; Goldman, S.E.; Shen, C.H.; Capota, M.; Britt, J.K.; Kotti, T.; Ure, K.; Brat, D.J.; Williams, N.S.; MacMillan, K.S.; Naidoo, J.; Melito, L.; Hsieh, J.; De Brabander, J.; Ready, J.M.; McKnight, S.L. Discovery of a proneurogenic, neuroprotective chemical. Cell, 2010, 142(1), 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.06.018] [PMID: 20603013]
[120]
Naidoo, J.; De Jesus-Cortes, H.; Huntington, P.; Estill, S.; Morlock, L.K.; Starwalt, R.; Mangano, T.J.; Williams, N.S.; Pieper, A.A.; Ready, J.M. Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(-)-P7C3-S243], with improved druglike properties. J. Med. Chem., 2014, 57(9), 3746-3754.
[http://dx.doi.org/10.1021/jm401919s] [PMID: 24697290]
[121]
Blaya, M. O.; Wasserman, J. M.; Pieper, A. A.; Sick, T. J.; Bramlett, H. M.; Dietrich, W. D. Neurotherapeutic capacity of P7C3 agents for the treatment of Traumatic Brain Injury. Neuropharmacology, 2019, 145(Pt B), 268-282.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.024]
[122]
Yin, T.C.; Britt, J.K.; De Jesús-Cortés, H.; Lu, Y.; Genova, R.M.; Khan, M.Z.; Voorhees, J.R.; Shao, J.; Katzman, A.C.; Huntington, P.J.; Wassink, C.; McDaniel, L.; Newell, E.A.; Dutca, L.M.; Naidoo, J.; Cui, H.; Bassuk, A.G.; Harper, M.M.; McKnight, S.L.; Ready, J.M.; Pieper, A.A. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Rep., 2014, 8(6), 1731-1740.
[http://dx.doi.org/10.1016/j.celrep.2014.08.030] [PMID: 25220467]
[123]
Blaya, M.O.; Bramlett, H.M.; Naidoo, J.; Pieper, A.A.; Dietrich, W.D. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J. Neurotrauma, 2014, 31(5), 476-486.
[http://dx.doi.org/10.1089/neu.2013.3135] [PMID: 24070637]
[124]
Wang, G.; Han, T.; Nijhawan, D.; Theodoropoulos, P.; Naidoo, J.; Yadavalli, S.; Mirzaei, H.; Pieper, A.A.; Ready, J.M.; McKnight, S.L. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell, 2014, 158(6), 1324-1334.
[http://dx.doi.org/10.1016/j.cell.2014.07.040] [PMID: 25215490]
[125]
Wang, S.N.; Xu, T.Y.; Li, W.L.; Miao, C.Y. Targeting nicotinamide phosphoribosyltransferase as a potential therapeutic strategy to restore adult neurogenesis. CNS Neurosci. Ther., 2016, 22(6), 431-439.
[http://dx.doi.org/10.1111/cns.12539] [PMID: 27018006]
[126]
Machado, C.A.; Simoes e Silva, A.C.; de Miranda, A.S.; Cordeiro, T.M.E.; Ferreira, R.N.; de Souza, L.C.; Teixeira, A.L.; de Miranda, A.S. Immune-based therapies for traumatic brain injury: Insights from pre-clinical studies. Curr. Med. Chem., 2020, 27(32), 5374-5402.
[PMID: 31291871]
[127]
Woodbury, M.E.; Ikezu, T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J. Neuroimmune Pharmacol., 2014, 9(2), 92-101.
[http://dx.doi.org/10.1007/s11481-013-9501-5] [PMID: 24057103]
[128]
Yoshimura, S.; Teramoto, T.; Whalen, M.J.; Irizarry, M.C.; Takagi, Y.; Qiu, J.; Harada, J.; Waeber, C.; Breakefield, X.O.; Moskowitz, M.A. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J. Clin. Invest., 2003, 112(8), 1202-1210.
[http://dx.doi.org/10.1172/JCI16618] [PMID: 14561705]
[129]
Tang, C.; Shan, Y.; Hu, Y.; Fang, Z.; Tong, Y.; Chen, M.; Wei, X.; Fu, X.; Xu, X. FGF2 attenuates neural cell death via suppressing autophagy after rat mild traumatic brain injury. Stem Cells Int., 2017, 2017, 2923182.
[http://dx.doi.org/10.1155/2017/2923182] [PMID: 29181034]
[130]
Sullivan, A.M.; O’Keeffe, G.W. The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson’s disease treatment. J. Anat., 2005, 207(3), 219-226.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00447.x] [PMID: 16185246]
[131]
Wu, H.; Li, J.; Xu, D.; Zhang, Q.; Cui, T. Growth differentiation factor 5 improves neurogenesis and functional recovery in adult mouse hippocampus following traumatic brain injury. Front. Neurol., 2018, 9, 592.
[http://dx.doi.org/10.3389/fneur.2018.00592] [PMID: 30083129]
[132]
Nieto-Estévez, V.; Defterali, Ç.; Vicario-Abejón, C. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front. Neurosci., 2016, 10, 52.
[http://dx.doi.org/10.3389/fnins.2016.00052] [PMID: 26941597]
[133]
Yang, D.Y.; Chen, Y.J.; Wang, M.F.; Pan, H.C.; Chen, S.Y.; Cheng, F.C. Granulocyte colony-stimulating factor enhances cellular proliferation and motor function recovery on rats subjected to traumatic brain injury. Neurol. Res., 2010, 32(10), 1041-1049.
[http://dx.doi.org/10.1179/016164110X12807570510013] [PMID: 20810026]
[134]
Song, S.; Kong, X.; Acosta, S.; Sava, V.; Borlongan, C.V.; Sanchez-Ramos, J. Effects of an inhibitor of monocyte recruitment on recovery from traumatic brain injury in mice treated with granulocyte colony-stimulating factor. Int. J. Mol. Sci., 2017, 18(7), E1418.
[http://dx.doi.org/10.3390/ijms18071418] [PMID: 28671601]
[135]
Zhang, H.; Fang, X.; Huang, D.; Luo, Q.; Zheng, M.; Wang, K.; Cao, L.; Yin, Z. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol. Med. Rep., 2018, 17(1), 264-272.
[PMID: 29115443]
[136]
Zhang, Y.; Xiong, Y.; Mahmood, A.; Meng, Y.; Qu, C.; Schallert, T.; Chopp, M. Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res., 2009, 1294, 153-164.
[http://dx.doi.org/10.1016/j.brainres.2009.07.077] [PMID: 19646970]
[137]
Xiong, Y.; Mahmood, A.; Meng, Y.; Zhang, Y.; Qu, C.; Schallert, T.; Chopp, M. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: Comparison of treatment with single and triple dose. J. Neurosurg., 2010, 113(3), 598-608.
[http://dx.doi.org/10.3171/2009.9.JNS09844] [PMID: 19817538]
[138]
Xiong, Y.; Mahmood, A.; Zhang, Y.; Meng, Y.; Zhang, Z.G.; Qu, C.; Sager, T.N.; Chopp, M. Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J. Neurosurg., 2011, 114(2), 549-559.
[http://dx.doi.org/10.3171/2010.10.JNS10925] [PMID: 21073254]
[139]
Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302), 964-967.
[http://dx.doi.org/10.1126/science.275.5302.964] [PMID: 9020076]
[140]
Alphonse, R.S.; Vadivel, A.; Zhong, S.; McConaghy, S.; Ohls, R.; Yoder, M.C.; Thébaud, B. The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nat. Protoc., 2015, 10(11), 1697-1708.
[http://dx.doi.org/10.1038/nprot.2015.107] [PMID: 26448359]
[141]
Bennis, Y.; Sarlon-Bartoli, G.; Guillet, B.; Lucas, L.; Pellegrini, L.; Velly, L.; Blot-Chabaud, M.; Dignat-Georges, F.; Sabatier, F.; Pisano, P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J. Thromb. Haemost., 2012, 10(9), 1914-1928.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04835.x] [PMID: 22738133]
[142]
Leistner, D.M.; Fischer-Rasokat, U.; Honold, J.; Seeger, F.H.; Schächinger, V.; Lehmann, R.; Martin, H.; Burck, I.; Urbich, C.; Dimmeler, S.; Zeiher, A.M.; Assmus, B. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin. Res. Cardiol., 2011, 100(10), 925-934.
[http://dx.doi.org/10.1007/s00392-011-0327-y] [PMID: 21633921]
[143]
Guo, X-B.; Deng, X.; Wei, Y. Homing of cultured endothelial progenitor cells and their effect on traumatic brain injury in rat model. Sci. Rep., 2017, 7(1), 4164.
[http://dx.doi.org/10.1038/s41598-017-04153-2] [PMID: 28646184]
[144]
Blaya, M.O.; Tsoulfas, P.; Bramlett, H.M.; Dietrich, W.D. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp. Neurol., 2015, 264, 67-81.
[http://dx.doi.org/10.1016/j.expneurol.2014.11.014] [PMID: 25483396]
[145]
Kopan, R.; Ilagan, M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 2009, 137(2), 216-233.
[http://dx.doi.org/10.1016/j.cell.2009.03.045] [PMID: 19379690]
[146]
Tu, M.; Zhu, P.; Hu, S.; Wang, W.; Su, Z.; Guan, J.; Sun, C.; Zheng, W. Notch1 signaling activation contributes to adult hippocampal neurogenesis following traumatic brain injury. Med. Sci. Monit., 2017, 23, 5480-5487.
[http://dx.doi.org/10.12659/MSM.907160] [PMID: 29150595]
[147]
Menge, T.; Zhao, Y.; Zhao, J.; Wataha, K.; Gerber, M.; Zhang, J.; Letourneau, P.; Redell, J.; Shen, L.; Wang, J.; Peng, Z.; Xue, H.; Kozar, R.; Cox, C.S., Jr; Khakoo, A.Y.; Holcomb, J.B.; Dash, P.K.; Pati, S. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci. Transl. Med., 2012, 4(161), 161ra150.
[http://dx.doi.org/10.1126/scitranslmed.3004660] [PMID: 23175708]
[148]
Grigorian, A.S.; Gilerovich, E.G.; Pavlichenko, N.N.; Kruglyakov, P.V.; Sokolova, I.B.; Polyntsev, D.G. Effect of transplantation of mesenchymal stem cells on neuronal survival and formation of a glial scar in the brain of rats with severe traumatic brain injury. Bull. Exp. Biol. Med., 2011, 150(4), 551-555.
[http://dx.doi.org/10.1007/s10517-011-1187-1] [PMID: 22268062]
[149]
Tajiri, N.; Kaneko, Y.; Shinozuka, K.; Ishikawa, H.; Yankee, E.; McGrogan, M.; Case, C.; Borlongan, C.V. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One, 2013, 8(9), e74857.
[http://dx.doi.org/10.1371/journal.pone.0074857] [PMID: 24023965]
[150]
Bao, X.; Wei, J.; Feng, M.; Lu, S.; Li, G.; Dou, W.; Ma, W.; Ma, S.; An, Y.; Qin, C.; Zhao, R.C.; Wang, R. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res., 2011, 1367, 103-113.
[http://dx.doi.org/10.1016/j.brainres.2010.10.063] [PMID: 20977892]
[151]
Yan, Y.; Ma, T.; Gong, K.; Ao, Q.; Zhang, X.; Gong, Y. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen. Res., 2014, 9(8), 798-805.
[http://dx.doi.org/10.4103/1673-5374.131596] [PMID: 25206892]
[152]
Tfilin, M.; Sudai, E.; Merenlender, A.; Gispan, I.; Yadid, G.; Turgeman, G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol. Psychiatry, 2010, 15(12), 1164-1175.
[http://dx.doi.org/10.1038/mp.2009.110] [PMID: 19859069]
[153]
Nichols, J.E.; Niles, J.A.; DeWitt, D.; Prough, D.; Parsley, M.; Vega, S.; Cantu, A.; Lee, E.; Cortiella, J. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res. Ther., 2013, 4(1), 3.
[http://dx.doi.org/10.1186/scrt151] [PMID: 23290300]
[154]
Zhao, Y.; Gibb, S.L.; Zhao, J.; Moore, A.N.; Hylin, M.J.; Menge, T.; Xue, H.; Baimukanova, G.; Potter, D.; Johnson, E.M.; Holcomb, J.B.; Cox, C.S., Jr; Dash, P.K.; Pati, S. Wnt3a, a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury. Stem Cells, 2016, 34(5), 1263-1272.
[http://dx.doi.org/10.1002/stem.2310] [PMID: 26840479]
[155]
Shahror, R.A.; Linares, G.R.; Wang, Y.; Hsueh, S.C.; Wu, C.C.; Chuang, D.M.; Chiang, Y.H.; Chen, K.Y. Transplantation of mesenchymal stem cells overexpressing fibroblast growth factor 21 facilitates cognitive recovery and enhances neurogenesis in a mouse model of traumatic brain injury. J. Neurotrauma, 2020, 37(1), 14-26.
[http://dx.doi.org/10.1089/neu.2019.6422] [PMID: 31298621]
[156]
Cheong, C.U.; Chang, C.P.; Chao, C.M.; Cheng, B.C.; Yang, C.Z.; Chio, C.C. Etanercept attenuates traumatic brain injury in rats by reducing brain TNF- α contents and by stimulating newly formed neurogenesis. Mediators Inflamm., 2013, 2013, 620837.
[http://dx.doi.org/10.1155/2013/620837] [PMID: 23710117]
[157]
Ulett, G.A.; Han, S.; Han, J.S. Electroacupuncture: mechanisms and clinical application. Biol. Psychiatry, 1998, 44(2), 129-138.
[http://dx.doi.org/10.1016/S0006-3223(97)00394-6] [PMID: 9646895]
[158]
Ye, Y.; Yang, Y.; Chen, C.; Li, Z.; Jia, Y.; Su, X.; Wang, C.; He, X. Electroacupuncture improved hippocampal neurogenesis following traumatic brain injury in mice through inhibition of TLR4 signaling pathway. Stem Cells Int., 2017, 2017, 5841814.
[http://dx.doi.org/10.1155/2017/5841814] [PMID: 28848607]
[159]
Numakawa, T.; Odaka, H.; Adachi, N. Actions of brain-derived neurotrophic factor and glucocorticoid stress in neurogenesis. Int. J. Mol. Sci., 2017, 18(11), E2312.
[http://dx.doi.org/10.3390/ijms18112312] [PMID: 29099059]
[160]
Ziganshina, L.E.; Abakumova, T.; Vernay, L. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst. Rev., 2017, 4, CD007026.
[PMID: 28430363]
[161]
Zhang, Y.; Chopp, M.; Zhang, Z.G.; Zhang, Y.; Zhang, L.; Lu, M.; Zhang, T.; Winter, S.; Doppler, E.; Brandstäetter, H.; Mahmood, A.; Xiong, Y. Cerebrolysin reduces astrogliosis and axonal injury and enhances neurogenesis in rats after closed head injury. Neurorehabil. Neural Repair, 2019, 33(1), 15-26.
[http://dx.doi.org/10.1177/1545968318809916] [PMID: 30499355]
[162]
Zhang, Y.; Chopp, M.; Zhang, Y.; Zhang, Z.G.; Lu, M.; Zhang, T.; Wu, K.H.; Zhang, L.; Mahmood, A.; Xiong, Y. Randomized controlled trial of Cerebrolysin’s effects on long-term histological outcomes and functional recovery in rats with moderate closed head injury. J. Neurosurg., 2019, 1-11.
[PMID: 31491768]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy