Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Research Article

In Silico Based Approach to Investigate Plant Lignans as Inhibitor Candidates for Estrogen Receptor in Breast Cancer

Author(s): Farzaneh Mohamadyar-Toupkanlou*, Mina Esfandiari, Mahshid Sadat Kashef-Saberi, Mahboubeh Kabiri and Zahra Bazi

Volume 8, Issue 1, 2021

Published on: 23 September, 2021

Article ID: e230921196749 Pages: 10

DOI: 10.2174/2212697X08666210923123117

Price: $65

Abstract

Background: In the last decades, growing evidence demonstrates interest in phytoestrogen intake to modulate targets in different types of cancer. Plant lignans have proven efficacious in blocking estrogen receptors of breast cancer cells. Among them, four phytoestrogen lignans: pinoresinol, matairesinol, lariciresinol, and secoisolariciresinol have been most studied. However, available studies have mostly dealt with the anti-cancer effects of groups of lignans in certain foods or plants and the effects of specific lignans, especially from a molecular interaction viewpoint, have been rarely addressed in the literature.

Objective: We aimed to in silico predict pharmacological properties, binding ability and binding strength of pinoresinol, matairesinol, lariciresinol and secoisolariciresinol as possible inhibitors of estrogen receptor alpha which is the most important biomarker in breast cancer.

Methods: Firstly, we evaluated the pharmacological properties of four lignans using SwissADME. Then we investigated the ligand-receptor interactions of these molecules as positively appraised ligands for ER-positive breast cancer targeted therapy using docking method. We finally compared the inhibitory effect possibility of the lignans against endoxifen which is the active metabolite of tamoxifen.

Results: The best binding affinity of endoxifen, matairesinol, pinoresinol, lariciresinol and secoisolariciresinol were respectively -9.2, -7.5, -6.7, -6.7, -5.8 kcal/mol. In the meantime, matairesinol showed a minimum binding energy than other studied lignans in addition to the most similar interactions to endoxifen with conserved domain residues of the active site pocket in Leu:391, Ala:350, Met:421, and Phe:404.

Conclusion: Among the studied lignans, matairesinol showed favorable pharmacokinetics and drug-likeliness properties, the least binding energy as well as the most common interactions in conserved residues of the active site pocket with estrogens. This makes it a molecule with low number of nonspecific interactions, better target selectivity, and hence fewer side effects. Thus, our results introduce matairesinol as a possibly effective anti-estrogen receptor inhibitor candidate.

Keywords: Biophenolic lignan, in silico, matairesinol, docking, breast cancer, estrogen receptor, matairesinol.

Graphical Abstract

[1]
Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB. Bitter melon enhances natural killer–mediated toxicity against head and neck cancer cells. Cancer Prev Res (Phila) 2017; 10(6): 337-44.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0046] [PMID: 28465362]
[2]
Muhammad N, Steele R, Isbell TS, Philips N, Ray RB. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 2017; 8(39): 66226-36.
[http://dx.doi.org/10.18632/oncotarget.19887] [PMID: 29029506]
[3]
Bhattacharya S, Muhammad N, Steele R, Peng G, Ray RB. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget 2016; 7(22): 33202-9.
[http://dx.doi.org/10.18632/oncotarget.8898] [PMID: 27120805]
[4]
Buck K, Zaineddin AK, Vrieling A, et al. Estimated enterolignans, lignan-rich foods, and fibre in relation to survival after postmenopausal breast cancer. Br J Cancer 2011; 105(8): 1151-7.
[http://dx.doi.org/10.1038/bjc.2011.374] [PMID: 21915130]
[5]
Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: Occurrence and significance. J Mammary Gland Biol Neoplasia 2000; 5(3): 271-81.
[http://dx.doi.org/10.1023/A:1009594727358] [PMID: 14973389]
[6]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[7]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[8]
Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13(8): 2329-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1109] [PMID: 17438091]
[9]
Kumar B, Chand V, Ram A, Usmani D, Muhammad N. Oncogenic mutations in tumorigenesis and targeted therapy in breast cancer. Curr Mol Biol Rep 2020; 6: 116-25.
[http://dx.doi.org/10.1007/s40610-020-00136-x]
[10]
Moo T-A, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET Clin 2018; 13(3): 339-54.
[http://dx.doi.org/10.1016/j.cpet.2018.02.006] [PMID: 30100074]
[11]
Muhammad N, Bhattacharya S, Steele R, Ray RB. Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget 2016; 7(36): 58595-605.
[http://dx.doi.org/10.18632/oncotarget.11193] [PMID: 27517632]
[12]
Mohammad N, Singh SV, Malvi P, et al. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci Rep 2015; 5(1): 11853.
[http://dx.doi.org/10.1038/srep11853] [PMID: 26149967]
[13]
Caffa I, Spagnolo V, Vernieri C, et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020; 583(7817): 620-4.
[http://dx.doi.org/10.1038/s41586-020-2502-7] [PMID: 32669709]
[14]
Lecomte S, Demay F, Ferrière F, Pakdel F. Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? Int J Mol Sci 2017; 18(7): 1381.
[http://dx.doi.org/10.3390/ijms18071381] [PMID: 28657580]
[15]
Touillaud MS, Thiébaut AC, Fournier A, Niravong M, Boutron-Ruault M-C, Clavel-Chapelon F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 2007; 99(6): 475-86.
[http://dx.doi.org/10.1093/jnci/djk096] [PMID: 17374837]
[16]
Tanwar AK, Dhiman N, Kumar A, Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem 2021; 213: 113037.
[http://dx.doi.org/10.1016/j.ejmech.2020.113037] [PMID: 33257172]
[17]
Saarinen NM, Wärri A, Dings RP, Airio M, Smeds AI, Mäkelä S. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer 2008; 123(5): 1196-204.
[http://dx.doi.org/10.1002/ijc.23614] [PMID: 18528864]
[18]
Mali AV, Padhye SB, Anant S, Hegde MV, Kadam SS. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur J Pharmacol 2019; 852: 107-24.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.022] [PMID: 30771348]
[19]
Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant cell cancer: May natural phenolic compounds prevent onset and development of plant cell malignancy? a literature review. Molecules 2016; 21(9): 1104.
[http://dx.doi.org/10.3390/molecules21091104] [PMID: 27563858]
[20]
Esfandiari M, Sharifi M, Mohamadyar-Toupkanlou F, Hanaee-Ahwaz H, Yousefzadi M, Jafari A. Optimization of cell/tissue culture of Linum persicum for production of lignans derivatives including Podophyllotoxin. Plant Cell Tissue Organ Cult [PCTOC] 2018; 133(1): 51-61. [PCTOC].
[http://dx.doi.org/10.1007/s11240-017-1360-y]
[21]
Willför SM, Smeds AI, Holmbom BR. Chromatographic analysis of lignans. J Chromatogr A 2006; 1112(1-2): 64-77.
[http://dx.doi.org/10.1016/j.chroma.2005.11.054] [PMID: 16356507]
[22]
Patel D, Vaghasiya J, Pancholi S, Paul A. Therapeutic potential of secoisolariciresinol diglucoside: A plant lignan. Int J Pharm Sci Drug Res 2012; 4(1): 15-8.
[23]
Hu C, Yuan YV, Kitts DD. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol 2007; 45(11): 2219-27.
[http://dx.doi.org/10.1016/j.fct.2007.05.017] [PMID: 17624649]
[24]
Mathew CY. Pinoresinol: A potential Biological warrior in edible foods. IOSR J Environ Sci Toxicol Food Technol 2015; 1(1): 44-7.
[25]
Zhang Y, Shi J, Liu L, et al. Correction: Bioconversion of Pinoresinol Diglucoside and Pinoresinol from Substrates in the Phenylpropanoid Pathway by Resting Cells of Phomopsis sp.XP-8. PLoS One 2016; 11(2): e0150129.
[http://dx.doi.org/10.1371/journal.pone.0150129] [PMID: 26901286]
[26]
Choi S-W, Park K-I, Yeon J-T, Ryu BJ, Kim K-J, Kim SH. Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis. BMC Complement Altern Med 2014; 14(1): 35.
[http://dx.doi.org/10.1186/1472-6882-14-35] [PMID: 24444335]
[27]
Peuhu E, Rivero-Müller A, Stykki H, et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 2010; 29(6): 898-908.
[http://dx.doi.org/10.1038/onc.2009.386] [PMID: 19935713]
[28]
Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. Editorial: In silico methods for drug design and discovery. Front Chem 2020; 8: 612.
[http://dx.doi.org/10.3389/fchem.2020.00612] [PMID: 32850641]
[29]
Khatal TK, Chaturbhuj GU. Computational analysis of the binding site (s) of tnf β-tnfr1 complex: Implications for designing novel anticancer agents. Clin Cancer Drugs 2018; 5(2): 94-104.
[http://dx.doi.org/10.2174/2212697X06666181126111445]
[30]
Sethi A, Joshi K, Sasikala K, Alvala M. Molecular docking in modern drug discovery: Principles and recent applications.Drug Discovery and Development-New Advances. Intech Open 2019.
[http://dx.doi.org/10.5772/intechopen.85991]
[31]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[32]
Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 1998; 95(11): 5998-6003.
[http://dx.doi.org/10.1073/pnas.95.11.5998] [PMID: 9600906]
[33]
Morris GM, Huey R, Olson AJ. Using autodock for ligand-receptor docking. Curr Proto Bioinformatics 2008; 8: 14.
[http://dx.doi.org/10.5772/intechopen.58991]
[34]
Pollio A, Zarrelli A, Romanucci V, et al. Polyphenolic profile and targeted bioactivity of methanolic extracts from mediterranean ethnomedicinal plants on human cancer cell lines. Molecules 2016; 21(4): 395.
[http://dx.doi.org/10.3390/molecules21040395] [PMID: 27023497]
[35]
Ji HF, Li XJ, Zhang HY. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 2009; 10(3): 194-200.
[http://dx.doi.org/10.1038/embor.2009.12] [PMID: 19229284]
[36]
Chen Y, Kirchmair J. Cheminformatics in natural product-based drug discovery. Mol Inform 2020; 39(12): e2000171.
[http://dx.doi.org/10.1002/minf.202000171] [PMID: 32725781]
[37]
Mondal S, Bandyopadhyay S. Natural products: Promising resources for cancer drug discovery. Anti-cancer agents in medicinal chemistry (formerly current medicinal chemistry-anti- cancer agents) 2012; 12(1): 49-75.
[38]
Hedelin M, Löf M, Sandin S, Adami H-O, Weiderpass E. Prospective study of dietary phytoestrogen intake and the risk of colorectal cancer. Nutr Cancer 2016; 68(3): 388-95.
[http://dx.doi.org/10.1080/01635581.2016.1152380] [PMID: 27010988]
[39]
Shi X, Liu D, Zhang J, et al. Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti- tumor in vitro. BMC Complement Altern Med 2016; 16(1): 245.
[http://dx.doi.org/10.1186/s12906-016-1249-z] [PMID: 27461104]
[40]
Fenga C, Costa C, Caruso E, Raffa L, Alibrando C, Gangemi S. Current evidence on the protective effect of dietary polyphenols on breast cancer. cancer 2016; 64: 1.
[41]
Muhit MA, Umehara K, Noguchi H. Five furofuranone lignan glucosides from Terminalia citrina inhibit in vitro E2-enhanced breast cancer cell proliferation. Fitoterapia 2016; 113: 74-9.
[http://dx.doi.org/10.1016/j.fitote.2016.07.004] [PMID: 27425446]
[42]
López-Biedma A, Sánchez-Quesada C, Beltrán G, Delgado-Rodríguez M, Gaforio JJ. Phytoestrogen (+)-pinoresinol exerts antitumor activity in breast cancer cells with different oestrogen receptor statuses. BMC Complement Altern Med 2016; 16(1): 350.
[http://dx.doi.org/10.1186/s12906-016-1233-7] [PMID: 27604292]
[43]
De Marchi T, Foekens JA, Umar A, Martens JW. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21(7): 1181-8.
[http://dx.doi.org/10.1016/j.drudis.2016.05.012] [PMID: 27233379]
[44]
Presciuttini R, Danesi R, Bocci G. May endocrine therapy be associated with cognitive impairment in breast cancer patients? Clin Cancer Drugs 2018; 5(2): 75-86.
[http://dx.doi.org/10.2174/2212697X06666181219095936]
[45]
Björnström L, Sjöberg M. Mechanisms of estrogen receptor signaling: Convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 2005; 19(4): 833-42.
[http://dx.doi.org/10.1210/me.2004-0486] [PMID: 15695368]
[46]
Alphonse P, Aluko R. A review on the anti-carcinogenic and anti-metastatic effects of flax seed lignan secolariciresinol diglucoside (SDG). Discov Phytomed 2015; 2(2): 12-7.
[http://dx.doi.org/10.15562/phytomedicine.2015.24]
[47]
Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 2010; 5(8): e12029.
[http://dx.doi.org/10.1371/journal.pone.0012029] [PMID: 20808434]
[48]
Sheridan RP, Kearsley SK. Why do we need so many chemical similarity search methods? Drug Discov Today 2002; 7(17): 903-11.
[http://dx.doi.org/10.1016/S1359-6446(02)02411-X] [PMID: 12546933]
[49]
Zhu L, Lu L, Wang S, Wu J, Shi J, Yan T. Oral absorption basics: Pathways and physicochemical and biological factors affecting absorption.Developing solid oral dosage forms. Elsevier 2017; pp. 297-329.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00011-X]
[50]
Whitty A, Zhong M, Viarengo L, Beglov D, Hall DR, Vajda S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov Today 2016; 21(5): 712-7.
[http://dx.doi.org/10.1016/j.drudis.2016.02.005] [PMID: 26891978]
[51]
Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr 2014; 37(4): 137-9.
[http://dx.doi.org/10.18773/austprescr.2014.050]
[52]
Lu Y, Wang Y, Xu Z, et al. C-X...H contacts in biomolecular systems: How they contribute to protein-ligand binding affinity. J Phys Chem B 2009; 113(37): 12615-21.
[http://dx.doi.org/10.1021/jp906352e] [PMID: 19708644]
[53]
Ohlson S. Designing transient binding drugs: A new concept for drug discovery. Drug Discov Today 2008; 13(9-10): 433-9.
[http://dx.doi.org/10.1016/j.drudis.2008.02.001] [PMID: 18468561]
[54]
Limban C, Nuţă DC, Chiriţă C, et al. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol Rep 2018; 5: 943-53.
[http://dx.doi.org/10.1016/j.toxrep.2018.08.017] [PMID: 30258789]
[55]
Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Mohamadyar-Toupkanlou F, Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res A 2017; 105(10): 2851-64.
[http://dx.doi.org/10.1002/jbm.a.36145] [PMID: 28639394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy