Review Article

肠道微生物群和自身免疫性疾病:一个伴有益生菌的迷人的真实的世界

卷 29, 期 18, 2022

发表于: 10 January, 2022

页: [3147 - 3159] 页: 13

弟呕挨: 10.2174/0929867328666210922161913

价格: $65

摘要

背景:肠道微生物群在人类疾病中的作用吸引了全球数百名研究人员的研究。许多研究强调,肠道微生物群调节免疫系统,其破坏可触发自身免疫性和炎症性免疫介导的疾病。益生菌能够积极地改变微生物群的组成。 目的:本文综述了关于益生菌在最常见的自身免疫性疾病和炎症性免疫介导疾病中的作用的最重要的发现。 方法:在 PubMed, Google Scholar和 Medline以及特定的期刊网站上,使用关键词“自身免疫”、“微生物群”和“益生菌”进行文献研究。文章的选择由三位作者独立进行,争议由第四位研究者解决。只纳入了英文文章,并优先考虑临床试验、荟萃分析和病例系列。经过审查过程后,已经考虑了68篇文章。 结果:基于这一证据,许多研究探讨了益生菌在恢复肠道生态化方面的潜力,从而影响这些病理的发病机制、临床表现和过程。即使鉴于很少且有时相互矛盾的研究,医生在接触自身免疫性疾病患者时也应该开始考虑这些初步发现。在对潜在的候选药物进行准确的个案评估后,除了标准的治疗计划外,还可以引入益生菌作为支持措施。

关键词: 益生菌、微生物群、生态失调、生态失调、自身免疫、免疫介导的疾病。

[1]
Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1), 121-141.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[2]
Mu, Q.; Kirby, J.; Reilly, C.M.; Luo, X.M. Leaky gut as a danger signal for autoimmune diseases. Front. Immunol., 2017, 8, 598.
[http://dx.doi.org/10.3389/fimmu.2017.00598] [PMID: 28588585]
[3]
Weinstock, J.V.; Summers, R.; Elliott, D.E. Helminths and harmony. Gut, 2004, 53(1), 7-9.
[http://dx.doi.org/10.1136/gut.53.1.7] [PMID: 14684567]
[4]
Blaser, M.J.; Falkow, S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol., 2009, 7(12), 887-894.
[http://dx.doi.org/10.1038/nrmicro2245] [PMID: 19898491]
[5]
Johnston, C.J.; McSorley, H.J.; Anderton, S.M.; Wigmore, S.J.; Maizels, R.M. Helminths and immunological tolerance. Transplantation, 2014, 97(2), 127-132. Erratum in. Transplantation, 2014, 98(6), e67.
[6]
Zhang, X.; Borbet, T.C.; Fallegger, A.; Wipperman, M.F.; Blaser, M.J.; Müller, A. An antibiotic-impacted microbiota compromises the development of colonic regulatory t cells and predisposes to dysregulated immune responses. MBio, 2021, 12(1), e03335-e20.
[http://dx.doi.org/10.1128/mBio.03335-20] [PMID: 33531385]
[7]
Macpherson, A.J.; Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 2004, 303(5664), 1662-1665.
[http://dx.doi.org/10.1126/science.1091334] [PMID: 15016999]
[8]
Ivanov, I.I. Frutos, Rde.L.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4), 337-349.
[http://dx.doi.org/10.1016/j.chom.2008.09.009] [PMID: 18854238]
[9]
Gaboriau-Routhiau, V.; Rakotobe, S.; Lécuyer, E.; Mulder, I.; Lan, A.; Bridonneau, C.; Rochet, V.; Pisi, A.; De Paepe, M.; Brandi, G.; Eberl, G.; Snel, J.; Kelly, D.; Cerf-Bensussan, N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity, 2009, 31(4), 677-689.
[http://dx.doi.org/10.1016/j.immuni.2009.08.020] [PMID: 19833089]
[10]
Fagarasan, S.; Kawamoto, S.; Kanagawa, O.; Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol., 2010, 28, 243-273.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101314] [PMID: 20192805]
[11]
Geuking, M.B.; Cahenzli, J.; Lawson, M.A.; Ng, D.C.; Slack, E.; Hapfelmeier, S.; McCoy, K.D.; Macpherson, A.J. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity, 2011, 34(5), 794-806.
[http://dx.doi.org/10.1016/j.immuni.2011.03.021] [PMID: 21596591]
[12]
Shaw, M.H.; Kamada, N.; Kim, Y.G.; Núñez, G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med., 2012, 209(2), 251-258.
[http://dx.doi.org/10.1084/jem.20111703] [PMID: 22291094]
[13]
Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3(1), 4-14.
[http://dx.doi.org/10.4161/gmic.19320] [PMID: 22356853]
[14]
Rosser, E.C.; Mauri, C. A clinical update on the significance of the gut microbiota in systemic autoimmunity. J. Autoimmun., 2016, 74, 85-93.
[http://dx.doi.org/10.1016/j.jaut.2016.06.009] [PMID: 27481556]
[15]
Lerner, A.; Aminov, R.; Matthias, T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front. Microbiol., 2016, 7, 84.
[http://dx.doi.org/10.3389/fmicb.2016.00084] [PMID: 26903965]
[16]
Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(9), 503-514.
[http://dx.doi.org/10.1038/nrgastro.2010.117] [PMID: 20664519]
[17]
de Oliveira, G.L.V.; Leite, A.Z.; Higuchi, B.S.; Gonzaga, M.I.; Mariano, V.S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology, 2017, 152(1), 1-12.
[http://dx.doi.org/10.1111/imm.12765] [PMID: 28556916]
[18]
Bron, P.A.; Kleerebezem, M.; Brummer, R.J.; Cani, P.D.; Mercenier, A.; MacDonald, T.T.; Garcia-Ródenas, C.L.; Wells, J.M. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr., 2017, 117(1), 93-107.
[http://dx.doi.org/10.1017/S0007114516004037] [PMID: 28102115]
[19]
Saez-Lara, M.J.; Gomez-Llorente, C.; Plaza-Diaz, J.; Gil, A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res. Int., 2015, 2015, 505878.
[http://dx.doi.org/10.1155/2015/505878] [PMID: 25793197]
[20]
de Kivit, S.; Tobin, M.C.; Forsyth, C.B.; Keshavarzian, A.; Landay, A.L. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics. Front. Immunol., 2014, 5, 60.
[http://dx.doi.org/10.3389/fimmu.2014.00060] [PMID: 24600450]
[21]
Kim, N.; Kunisawa, J.; Kweon, M.N.; Eog Ji, G.; Kiyono, H. Oral feeding of Bifidobacterium bifidum (BGN4) prevents CD4(+) CD45RB(high) T cell-mediated inflammatory bowel disease by inhibition of disordered T cell activation. Clin. Immunol., 2007, 123(1), 30-39.
[http://dx.doi.org/10.1016/j.clim.2006.11.005] [PMID: 17218154]
[22]
Zeuthen, L.H.; Fink, L.N.; Frøkiaer, H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived Lactobacilli and Bifidobacteria in dendritic cells. Immunology, 2008, 124(4), 489-502.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02800.x] [PMID: 18217947]
[23]
Ishikawa, H.; Akedo, I.; Umesaki, Y.; Tanaka, R.; Imaoka, A.; Otani, T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J. Am. Coll. Nutr., 2003, 22(1), 56-63.
[http://dx.doi.org/10.1080/07315724.2003.10719276] [PMID: 12569115]
[24]
Kato, K.; Mizuno, S.; Umesaki, Y.; Ishii, Y.; Sugitani, M.; Imaoka, A.; Otsuka, M.; Hasunuma, O.; Kurihara, R.; Iwasaki, A.; Arakawa, Y. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment. Pharmacol. Ther., 2004, 20(10), 1133-1141.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02268.x] [PMID: 15569116]
[25]
Tursi, A.; Brandimarte, G.; Papa, A.; Giglio, A.; Elisei, W.; Giorgetti, G.M.; Forti, G.; Morini, S.; Hassan, C.; Pistoia, M.A.; Modeo, M.E.; Rodino’, S.; D’Amico, T.; Sebkova, L.; Sacca’, N.; Di Giulio, E.; Luzza, F.; Imeneo, M.; Larussa, T.; Di Rosa, S.; Annese, V.; Danese, S.; Gasbarrini, A. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol., 2010, 105(10), 2218-2227.
[http://dx.doi.org/10.1038/ajg.2010.218] [PMID: 20517305]
[26]
Wang, F.; Yin, Q.; Chen, L.; Davis, M.M. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc. Natl. Acad. Sci. USA, 2018, 115(1), 157-161.
[http://dx.doi.org/10.1073/pnas.1712901115] [PMID: 29255057]
[27]
Wang, T.; Zheng, N.; Luo, Q.; Jiang, L.; He, B.; Yuan, X.; Shen, L. Probiotics Lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front. Immunol., 2019, 10, 1235.
[http://dx.doi.org/10.3389/fimmu.2019.01235] [PMID: 31214189]
[28]
Olivares, M.; Neef, A.; Castillejo, G.; Palma, G.D.; Varea, V.; Capilla, A.; Palau, F.; Nova, E.; Marcos, A.; Polanco, I.; Ribes-Koninckx, C.; Ortigosa, L.; Izquierdo, L.; Sanz, Y. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut, 2015, 64(3), 406-417.
[http://dx.doi.org/10.1136/gutjnl-2014-306931] [PMID: 24939571]
[29]
Pozo-Rubio, T.; de Palma, G.; Mujico, J.R.; Olivares, M.; Marcos, A.; Acuña, M.D.; Polanco, I.; Sanz, Y.; Nova, E. Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the PROFICEL study. Nutr. Hosp., 2013, 28(2), 464-473.
[PMID: 23822699]
[30]
Canova, C.; Zabeo, V.; Pitter, G.; Romor, P.; Baldovin, T.; Zanotti, R.; Simonato, L. Association of maternal education, early infections, and antibiotic use with celiac disease: a population-based birth cohort study in northeastern Italy. Am. J. Epidemiol., 2014, 180(1), 76-85.
[http://dx.doi.org/10.1093/aje/kwu101] [PMID: 24853109]
[31]
Cinova, J.; De Palma, G.; Stepankova, R.; Kofronova, O.; Kverka, M.; Sanz, Y.; Tuckova, L. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One, 2011, 6(1), e16169.
[http://dx.doi.org/10.1371/journal.pone.0016169] [PMID: 21249146]
[32]
Laparra, J.M.; Sanz, Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J. Cell. Biochem., 2010, 109(4), 801-807.
[PMID: 20052669]
[33]
Laparra, J.M.; Olivares, M.; Gallina, O.; Sanz, Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS One, 2012, 7(2), e30744.
[http://dx.doi.org/10.1371/journal.pone.0030744] [PMID: 22348021]
[34]
Olivares, M.; Laparra, M.; Sanz, Y. Oral administration of Bifidobacterium longum CECT 7347 modulates jejunal proteome in an in vivo gliadin-induced enteropathy animal model. J. Proteomics, 2012, 77, 310-320.
[http://dx.doi.org/10.1016/j.jprot.2012.09.005] [PMID: 23023000]
[35]
Olivares, M.; Castillejo, G.; Varea, V.; Sanz, Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br. J. Nutr., 2014, 112(1), 30-40.
[http://dx.doi.org/10.1017/S0007114514000609] [PMID: 24774670]
[36]
Klemenak, M.; Dolinšek, J.; Langerholc, T.; Di Gioia, D.; Mičetić-Turk, D. Administration of bifidobacterium breve decreases the production of TNF-α in children with celiac disease. Dig. Dis. Sci., 2015, 60(11), 3386-3392.
[http://dx.doi.org/10.1007/s10620-015-3769-7] [PMID: 26134988]
[37]
Smecuol, E.; Hwang, H.J.; Sugai, E.; Corso, L.; Cherñavsky, A.C.; Bellavite, F.P.; González, A.; Vodánovich, F.; Moreno, M.L.; Vázquez, H.; Lozano, G.; Niveloni, S.; Mazure, R.; Meddings, J.; Mauriño, E.; Bai, J.C. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J. Clin. Gastroenterol., 2013, 47(2), 139-147.
[http://dx.doi.org/10.1097/MCG.0b013e31827759ac] [PMID: 23314670]
[38]
D’Arienzo, R.; Maurano, F.; Luongo, D.; Mazzarella, G.; Stefanile, R.; Troncone, R.; Auricchio, S.; Ricca, E.; David, C.; Rossi, M. Adjuvant effect of Lactobacillus casei in a mouse model of gluten sensitivity. Immunol. Lett., 2008, 119(1-2), 78-83.
[http://dx.doi.org/10.1016/j.imlet.2008.04.006] [PMID: 18547649]
[39]
D’Arienzo, R.; Stefanile, R.; Maurano, F.; Mazzarella, G.; Ricca, E.; Troncone, R.; Auricchio, S.; Rossi, M. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand. J. Immunol., 2011, 74(4), 335-341.
[http://dx.doi.org/10.1111/j.1365-3083.2011.02582.x] [PMID: 21615450]
[40]
Papista, C.; Gerakopoulos, V.; Kourelis, A.; Sounidaki, M.; Kontana, A.; Berthelot, L.; Moura, I.C.; Monteiro, R.C.; Yiangou, M. Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab. Invest., 2012, 92(4), 625-635.
[http://dx.doi.org/10.1038/labinvest.2012.13] [PMID: 22330344]
[41]
Kasper, L.H.; Shoemaker, J. Multiple sclerosis immunology: The healthy immune system vs the MS immune system. Neurology, 2010, 74(1)(Suppl. 1), S2-S8.
[http://dx.doi.org/10.1212/WNL.0b013e3181c97c8f] [PMID: 20038759]
[42]
Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol., 2009, 9(6), 393-407.
[http://dx.doi.org/10.1038/nri2550] [PMID: 19444307]
[43]
Wekerle, H. Lessons from multiple sclerosis: models, concepts, observations. Ann. Rheum. Dis., 2008, 67(1)(Suppl. 3), iii56-iii60.
[http://dx.doi.org/10.1136/ard.2008.098020] [PMID: 19022815]
[44]
Ochoa-Repáraz, J.; Mielcarz, D.W.; Ditrio, L.E.; Burroughs, A.R.; Begum-Haque, S.; Dasgupta, S.; Kasper, D.L.; Kasper, L.H. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol., 2010, 185(7), 4101-4108.
[http://dx.doi.org/10.4049/jimmunol.1001443] [PMID: 20817872]
[45]
Tzartos, J.S.; Friese, M.A.; Craner, M.J.; Palace, J.; Newcombe, J.; Esiri, M.M.; Fugger, L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol., 2008, 172(1), 146-155.
[http://dx.doi.org/10.2353/ajpath.2008.070690] [PMID: 18156204]
[46]
Lavasani, S.; Dzhambazov, B.; Nouri, M.; Fåk, F.; Buske, S.; Molin, G.; Thorlacius, H.; Alenfall, J.; Jeppsson, B.; Weström, B. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One, 2010, 5(2), e9009.
[http://dx.doi.org/10.1371/journal.pone.0009009] [PMID: 20126401]
[47]
Ochoa-Repáraz, J.; Mielcarz, D.W.; Wang, Y.; Begum-Haque, S.; Dasgupta, S.; Kasper, D.L.; Kasper, L.H. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol., 2010, 3(5), 487-495.
[http://dx.doi.org/10.1038/mi.2010.29] [PMID: 20531465]
[48]
Takata, K.; Kinoshita, M.; Okuno, T.; Moriya, M.; Kohda, T.; Honorat, J.A.; Sugimoto, T.; Kumanogoh, A.; Kayama, H.; Takeda, K.; Sakoda, S.; Nakatsuji, Y. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS One, 2011, 6(11), e27644.
[http://dx.doi.org/10.1371/journal.pone.0027644] [PMID: 22110705]
[49]
Kouchaki, E.; Tamtaji, O.R.; Salami, M.; Bahmani, F.; Daneshvar Kakhaki, R.; Akbari, E.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2017, 36(5), 1245-1249.
[http://dx.doi.org/10.1016/j.clnu.2016.08.015] [PMID: 27669638]
[50]
Kieseier, B.C.; Lehmann, H.C.; Meyer Zu Hörste, G. Autoimmune diseases of the peripheral nervous system. Autoimmun. Rev., 2012, 11(3), 191-195.
[http://dx.doi.org/10.1016/j.autrev.2011.05.011] [PMID: 21621007]
[51]
Kaldor, J.; Speed, B.R. Guillain-Barré syndrome and Campylobacter jejuni: a serological study. Br. Med. J. (Clin. Res. Ed.), 1984, 288(6434), 1867-1870.
[http://dx.doi.org/10.1136/bmj.288.6434.1867] [PMID: 6428580]
[52]
Allos, B.M. Association between Campylobacter infection and Guillain-Barré syndrome. J. Infect. Dis., 1997, 176(2)(Suppl. 2), S125-S128.
[http://dx.doi.org/10.1086/513783] [PMID: 9396695]
[53]
Goldschmidt, B.; Menonna, J.; Fortunato, J.; Dowling, P.; Cook, S. Mycoplasma antibody in Guillain-Barré syndrome and other neurological disorders. Ann. Neurol., 1980, 7(2), 108-112.
[http://dx.doi.org/10.1002/ana.410070203] [PMID: 7369715]
[54]
Jacobs, B.C.; Rothbarth, P.H.; van der Meché, F.G.; Herbrink, P.; Schmitz, P.I.; de Klerk, M.A.; van Doorn, P.A. The spectrum of antecedent infections in Guillain-Barré syndrome: a case-control study. Neurology, 1998, 51(4), 1110-1115.
[http://dx.doi.org/10.1212/WNL.51.4.1110] [PMID: 9781538]
[55]
Pontali, E.; Feasi, M.; Crisalli, M.P.; Cassola, G. Guillain-Barré Syndrome with fatal outcome during HIV-1-Seroconversion: a case report. Case Rep. Infect. Dis., 2011, 2011, 972096.
[http://dx.doi.org/10.1155/2011/972096] [PMID: 22567484]
[56]
Sivadon-Tardy, V.; Orlikowski, D.; Porcher, R.; Sharshar, T.; Durand, M.C.; Enouf, V.; Rozenberg, F.; Caudie, C.; Annane, D.; van der Werf, S.; Lebon, P.; Raphaël, J.C.; Gaillard, J.L.; Gault, E. Guillain-Barré syndrome and influenza virus infection. Clin. Infect. Dis., 2009, 48(1), 48-56.
[http://dx.doi.org/10.1086/594124] [PMID: 19025491]
[57]
Saxena, A. Probiotics as a potential alternative for relieving peripheral neuropathies: a case for guillain-barré syndrome. Front. Microbiol., 2016, 6, 1497.
[http://dx.doi.org/10.3389/fmicb.2015.01497] [PMID: 26779152]
[58]
Gold, R.; Hartung, H.P.; Toyka, K.V. Animal models for autoimmune demyelinating disorders of the nervous system. Mol. Med. Today, 2000, 6(2), 88-91.
[http://dx.doi.org/10.1016/S1357-4310(99)01639-1] [PMID: 10652482]
[59]
Brooks, P.T.; Bell, J.A.; Bejcek, C.E.; Malik, A.; Mansfield, L.S. An antibiotic depleted microbiome drives severe Campylobacter jejuni-mediated Type 1/17 colitis, Type 2 autoimmunity and neurologic sequelae in a mouse model. J. Neuroimmunol., 2019, 337, 577048.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577048] [PMID: 31678855]
[60]
Wine, E.; Gareau, M.G.; Johnson-Henry, K.; Sherman, P.M. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol. Lett., 2009, 300(1), 146-152.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01781.x] [PMID: 19765084]
[61]
Sandhya, P.; Danda, D.; Sharma, D.; Scaria, V. Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis. Int. J. Rheum. Dis., 2016, 19(1), 8-20.
[http://dx.doi.org/10.1111/1756-185X.12728] [PMID: 26385261]
[62]
Abhari, K.; Shekarforoush, S.S.; Hosseinzadeh, S.; Nazifi, S.; Sajedianfard, J.; Eskandari, M.H. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food Nutr. Res., 2016, 60, 30876.
[http://dx.doi.org/10.3402/fnr.v60.30876] [PMID: 27427194]
[63]
Mena-Vázquez, N.; Ruiz-Limón, P.; Moreno-Indias, I.; Manrique-Arija, S.; Tinahones, F.J.; Fernández-Nebro, A. Expansion of rare and harmful lineages is associated with established rheumatoid arthritis. J. Clin. Med., 2020, 9(4), 1044.
[http://dx.doi.org/10.3390/jcm9041044] [PMID: 32272752]
[64]
Paccou, J.; Brazier, M.; Mentaverri, R.; Kamel, S.; Fardellone, P.; Massy, Z.A. Vascular calcification in rheumatoid arthritis: prevalence, pathophysiological aspects and potential targets. Atherosclerosis, 2012, 224(2), 283-290.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.04.008] [PMID: 22703866]
[65]
Wasko, M.C.; Kay, J.; Hsia, E.C.; Rahman, M.U. Diabetes mellitus and insulin resistance in patients with rheumatoid arthritis: risk reduction in a chronic inflammatory disease. Arthritis Care Res. (Hoboken), 2011, 63(4), 512-521.
[http://dx.doi.org/10.1002/acr.20414] [PMID: 21452264]
[66]
Boers, M.; Nurmohamed, M.T.; Doelman, C.J.; Lard, L.R.; Verhoeven, A.C.; Voskuyl, A.E.; Huizinga, T.W.; van de Stadt, R.J.; Dijkmans, B.A.; van der Linden, S. Influence of glucocorticoids and disease activity on total and high density lipoprotein cholesterol in patients with rheumatoid arthritis. Ann. Rheum. Dis., 2003, 62(9), 842-845.
[http://dx.doi.org/10.1136/ard.62.9.842] [PMID: 12922956]
[67]
Giles, J.T.; Danielides, S.; Szklo, M.; Post, W.S.; Blumenthal, R.S.; Petri, M.; Schreiner, P.J.; Budoff, M.; Detrano, R.; Bathon, J.M. Insulin resistance in rheumatoid arthritis: disease-related indicators and associations with the presence and progression of subclinical atherosclerosis. Arthritis Rheumatol., 2015, 67(3), 626-636.
[http://dx.doi.org/10.1002/art.38986] [PMID: 25504899]
[68]
Vaghef-Mehrabany, E.; Alipour, B.; Homayouni-Rad, A.; Sharif, S.K.; Asghari-Jafarabadi, M.; Zavvari, S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition, 2014, 30(4), 430-435.
[http://dx.doi.org/10.1016/j.nut.2013.09.007] [PMID: 24355439]
[69]
Zamani, B.; Golkar, H.R.; Farshbaf, S.; Emadi-Baygi, M.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akhavan, R.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Int. J. Rheum. Dis., 2016, 19(9), 869-879.
[http://dx.doi.org/10.1111/1756-185X.12888] [PMID: 27135916]
[70]
Pineda, M. L.; Thompson, S.F.; Summers, K.; de Leon, F.; Pope, J.; Reid, G. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med. Sci. Monit., 2011, 17(6), CR347-CR354.
[PMID: 21629190]
[71]
So, J.S.; Kwon, H.K.; Lee, C.G.; Yi, H.J.; Park, J.A.; Lim, S.Y.; Hwang, K.C.; Jeon, Y.H.; Im, S.H. Lactobacillus casei suppresses experimental arthritis by down-regulating T helper 1 effector functions. Mol. Immunol., 2008, 45(9), 2690-2699.
[http://dx.doi.org/10.1016/j.molimm.2007.12.010] [PMID: 18243320]
[72]
Hevia, A.; Milani, C.; López, P.; Cuervo, A.; Arboleya, S.; Duranti, S.; Turroni, F.; González, S.; Suárez, A.; Gueimonde, M.; Ventura, M.; Sánchez, B.; Margolles, A. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio, 2014, 5(5), e01548-e14.
[http://dx.doi.org/10.1128/mBio.01548-14] [PMID: 25271284]
[73]
de la Visitación, N.; Robles-Vera, I.; Toral, M.; Duarte, J. Protective effects of probiotic consumption in cardiovascular disease in systemic lupus erythematosus. Nutrients, 2019, 11(11), 2676.
[http://dx.doi.org/10.3390/nu11112676] [PMID: 31694260]
[74]
Luo, X.M.; Edwards, M.R.; Mu, Q.; Yu, Y.; Vieson, M.D.; Reilly, C.M.; Ahmed, S.A.; Bankole, A.A. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl. Environ. Microbiol., 2018, 84(4), 84.
[http://dx.doi.org/10.1128/AEM.02288-17] [PMID: 29196292]
[75]
Li, Y.; Wang, H.F.; Li, X.; Li, H.X.; Zhang, Q.; Zhou, H.W.; He, Y.; Li, P.; Fu, C.; Zhang, X.H.; Qiu, Y.R.; Li, J.L. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin. Sci. (Lond.), 2019, 133(7), 821-838.
[http://dx.doi.org/10.1042/CS20180841] [PMID: 30872359]
[76]
Mu, Q.; Zhang, H.; Liao, X.; Lin, K.; Liu, H.; Edwards, M.R.; Ahmed, S.A.; Yuan, R.; Li, L.; Cecere, T.E.; Branson, D.B.; Kirby, J.L.; Goswami, P.; Leeth, C.M.; Read, K.A.; Oestreich, K.J.; Vieson, M.D.; Reilly, C.M.; Luo, X.M. Control of lupus nephritis by changes of gut microbiota. Microbiome, 2017, 5(1), 73.
[http://dx.doi.org/10.1186/s40168-017-0300-8] [PMID: 28697806]
[77]
Alard, P.; Parnell, S. A.; Manirarora, J. N.; Kosiewicz, MM. Probiotics control lupus progression via induction of regulatory cells and IL-10 production. J. Immunol., 2009, 182(1), 50.30.
[78]
Gomes, A.C.; Bueno, A.A.; de Souza, R.G.; Mota, J.F. Gut microbiota, probiotics and diabetes. Nutr. J., 2014, 13, 60.
[http://dx.doi.org/10.1186/1475-2891-13-60] [PMID: 24939063]
[79]
Calcinaro, F.; Dionisi, S.; Marinaro, M.; Candeloro, P.; Bonato, V.; Marzotti, S.; Corneli, R.B.; Ferretti, E.; Gulino, A.; Grasso, F.; De Simone, C.; Di Mario, U.; Falorni, A.; Boirivant, M.; Dotta, F. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia, 2005, 48(8), 1565-1575.
[http://dx.doi.org/10.1007/s00125-005-1831-2] [PMID: 15986236]
[80]
Dolpady, J.; Sorini, C.; Di Pietro, C.; Cosorich, I.; Ferrarese, R.; Saita, D.; Clementi, M.; Canducci, F.; Falcone, M. Oral probiotic VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2,3-dioxygenase-enriched tolerogenic intestinal environment. J. Diabetes Res., 2016, 2016, 7569431.
[http://dx.doi.org/10.1155/2016/7569431] [PMID: 26779542]
[81]
Uusitalo, U.; Liu, X.; Yang, J.; Aronsson, C.A.; Hummel, S.; Butterworth, M.; Lernmark, Å.; Rewers, M.; Hagopian, W.; She, J.X.; Simell, O.; Toppari, J.; Ziegler, A.G.; Akolkar, B.; Krischer, J.; Norris, J.M.; Virtanen, S.M. TEDDY Study group. association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr., 2016, 170(1), 20-28.
[http://dx.doi.org/10.1001/jamapediatrics.2015.2757] [PMID: 26552054]
[82]
Kim, J.; Choi, S.H.; Kim, Y.J.; Jeong, H.J.; Ryu, J.S.; Lee, H.J.; Kim, T.W. Im, S.H.; Oh, J.Y.; Kim, M.K. Clinical Effect of IRT-5 probiotics on immune modulation of autoimmunity or alloimmunity in the eye. Nutrients, 2017, 9(11), 1166.
[http://dx.doi.org/10.3390/nu9111166]
[83]
Choi, S.H.; Oh, J.W.; Ryu, J.S.; Kim, H.M. IRT5 Probiotics changes immune modulatory protein expression in the extraorbital lacrimal glands of an autoimmune dry eye mouse model. Investig. Opthalmology Vis. Sci., 2020, 61, 42.
[84]
Xie, W.R.; Yang, X.Y.; Xia, H.H.; Wu, L.H.; He, X.X. Hair regrowth following fecal microbiota transplantation in an elderly patient with alopecia areata: A case report and review of the literature. World J. Clin. Cases, 2019, 7(19), 3074-3081.
[http://dx.doi.org/10.12998/wjcc.v7.i19.3074] [PMID: 31624757]
[85]
Kalliomäki, M.; Salminen, S.; Arvilommi, H.; Kero, P.; Koskinen, P.; Isolauri, E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet, 2001, 357(9262), 1076-1079.
[http://dx.doi.org/10.1016/S0140-6736(00)04259-8] [PMID: 11297958]
[86]
Kalliomäki, M.; Salminen, S.; Poussa, T.; Arvilommi, H.; Isolauri, E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet, 2003, 361(9372), 1869-1871.
[http://dx.doi.org/10.1016/S0140-6736(03)13490-3] [PMID: 12788576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy