Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation

Author(s): Amina Hamed Alobaidi*, Abdulghani Mohamed Alsamarai and Mohamed Almoustafa Alsamarai

Volume 20, Issue 4, 2021

Published on: 08 December, 2021

Page: [317 - 332] Pages: 16

DOI: 10.2174/1871523020666210920100707

Price: $65

Abstract

Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiates by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is a T-helper 2 (Th2)-cell-mediated disease. Recent studies indicate that asthma is not a single disease entity, but it occurs with multiple phenotypes and endotypes. The pathophysiological changes in asthma include a series of continuous vicious circles of cellular activation contributing to the induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influences the treatment response. The asthma pathogenesis is driven by varied sets of cells, such as eosinophils, basophils, neutrophils, macrophages, epithelial cells, and T cells. Macrophages induce a set of mediators that are involved in asthma pathogenesis and include MIF, Prostaglandin, CXCR3L, IL-12, IL-1ß, TSLP, IL-18, IL-33, LTC4, MMP-2, TNF-α, IL-17, IL-10, TGF-ß and IL-27. While, T-cells mediators effect in asthma is induced via TNF-α, IL-17, IL-10, TGF-ß, IL-27, Tim, GM-CSF, IL-2, IL-4, IL-13, INF- γ, and PPAR γ. However, the epithelial cells induced mediators potentiate proinflammatory effects, increase the number of Th2 cells, activate dendritic cells, increase the number of mast cells, and recruit eosinophils, basophils, neutrophils, T-cells, monocytes and dendritic cells. In this review, the role of T cells, macrophages, and epithelial cells is discussed.

Keywords: Asthma, epithelial cell, macrophage, T cell, Type 2 inflammation, cytokines, pathogenesis

Next »
Graphical Abstract

[1]
Alo baidi, R.H.; Alo baidi, A.H.; Als amarai, A.G.M. Allergic diseases -new insights. In: Risk factors for allergy in secondary school girls; Celso, P., Ed. IntechOpen, 2015, pp. 99-124. https://www.intechopen.com/books/allergic-diseases-new-insights/risk-factors-for-allergy-in-secondary-school-girls
[http://dx.doi.org/10.5772/59376]
[2]
Al Obaidi, A.H.; Al Samarai, A.G.M.; Al-Janabi, J.; Yahia, A. The predictive value of eosinophil cationic protein and lactate dehydrogenase in asthma: a comparative study of serum versus sputum. World Allergy Organ. J., 2009, 2(7), 144-149.
[http://dx.doi.org/10.1097/WOX.0b013e3181b2fe64] [PMID: 23283064]
[3]
Froidure, A.; Mouthuy, J.; Durham, S.R.; Chanez, P.; Sibille, Y.; Pilette, C. Asthma phenotypes and IgE responses. Eur. Respir. J., 2016, 47(1), 304-319.
[http://dx.doi.org/10.1183/13993003.01824-2014] [PMID: 26677936]
[4]
Al-Obaidy, A.H.; Al-Samarai, A.G.M. Exhaled breath condensate pH and hydrogen peroxide as non-invasive markers for asthma. Saudi Med. J., 2007, 28(12), 1860-1863.
[PMID: 18060217]
[5]
Alobaidi, A.H.A.; Alsamarai, A.G.M. The predictive value of Eosinophilic cationic protein in asthma as marker of poorly controlled disease and response guide to treatment. Pak J Chest Med, 2008, 14(2), 11-17.
[6]
Al Obaidi, A.H.; Al Samarai, A.M. Biochemical markers as a response guide for steroid therapy in asthma. J. Asthma, 2008, 45(5), 425-428.
[http://dx.doi.org/10.1080/02770900801956389] [PMID: 18569238]
[7]
Ishmael, FT The inflammatory response in the pathogenesis of asthma. JAOA Supplement 7, 2011, 111(11), S11-S17.
[8]
Medoff, B.D.; Thomas, S.Y.; Luster, A.D. T cell trafficking in allergic asthma: the ins and outs. Annu. Rev. Immunol., 2008, 26(1), 205-232.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090312] [PMID: 18304002]
[9]
Miadonna, A.; Tedeschi, A.; Brasca, C.; Folco, G.; Sala, A.; Murphy, R.C. Mediator release after endobronchial antigen challenge in patients with respiratory allergy. J. Allergy Clin. Immunol., 1990, 85(5), 906-913.
[http://dx.doi.org/10.1016/0091-6749(90)90076-G] [PMID: 1692050]
[10]
Säfholm, J.; Manson, M.L.; Bood, J.; Delin, I.; Orre, A-C.; Bergman, P.; Al-Ameri, M.; Dahlén, S.E.; Adner, M. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. J. Allergy Clin. Immunol., 2015, 136(5), 1232-9.e1.
[http://dx.doi.org/10.1016/j.jaci.2015.04.002] [PMID: 25962903]
[11]
Zhu, X; Cui, J; Yi, L; Qin, J; Tulake, W; Teng, F; Tang, W; Wei, Y; Dong, J. The role of T cells and macrophages in asthma pathogenesis: A new perspective on mutual crosstalk. Mediators Inflamm., 2020. 19;2020:7835284.
[12]
Barton, S.J.; Ngo, S.; Costello, P.; Garratt, E.; El-Heis, S.; Antoun, E.; Clarke-Harris, R.; Murray, R.; Bhatt, T.; Burdge, G.; Cooper, C.; Inskip, H.; van der Beek, E.M.; Sheppard, A.; Godfrey, K.M.; Lillycrop, K.A. DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin. Exp. Allergy, 2017, 47(12), 1599-1608.
[http://dx.doi.org/10.1111/cea.12988] [PMID: 28756630]
[13]
Szabo, S.J.; Sullivan, B.M.; Peng, S.L.; Glimcher, L.H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol., 2003, 21(1), 713-758.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.140942] [PMID: 12500979]
[14]
Raundhal, M.; Morse, C.; Khare, A.; Oriss, T.B.; Milosevic, J.; Trudeau, J.; Huff, R.; Pilewski, J.; Holguin, F.; Kolls, J.; Wenzel, S.; Ray, P.; Ray, A. High IFN-γ and low SLPI mark severe asthma in mice and humans. J. Clin. Invest., 2015, 125(8), 3037-3050.
[http://dx.doi.org/10.1172/JCI80911] [PMID: 26121748]
[15]
Gauthier, M.; Chakraborty, K.; Oriss, T.B.; Raundhal, M.; Das, S.; Chen, J.; Huff, R.; Sinha, A.; Fajt, M.; Ray, P.; Wenzel, S.E.; Ray, A. Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight, 2017, 2(13), e94580.
[http://dx.doi.org/10.1172/jci.insight.94580] [PMID: 28679952]
[16]
Wang, W.; Li, Y.; Lv, Z.; Chen, Y.; Li, Y.; Huang, K.; Corrigan, C.J.; Ying, S. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J. Immunol., 2018, 201(8), 2221-2231.
[http://dx.doi.org/10.4049/jimmunol.1800709] [PMID: 30185520]
[17]
Akdis, C.A.; Arkwright, P.D.; Brüggen, M.C.; Busse, W.; Gadina, M.; Guttman-Yassky, E.; Kabashima, K.; Mitamura, Y.; Vian, L.; Wu, J.; Palomares, O. Type 2 immunity in the skin and lungs. Allergy, 2020, 75(7), 1582-1605.
[http://dx.doi.org/10.1111/all.14318] [PMID: 32319104]
[18]
Foster, P.S.; Maltby, S.; Rosenberg, H.F.; Tay, H.L.; Hogan, S.P.; Collison, A.M.; Yang, M.; Kaiko, G.E.; Hansbro, P.M.; Kumar, R.K.; Mattes, J. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol. Rev., 2017, 278(1), 20-40.
[http://dx.doi.org/10.1111/imr.12549] [PMID: 28658543]
[19]
Junttila, I.S. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol., 2018, 9(1), 888.
[http://dx.doi.org/10.3389/fimmu.2018.00888] [PMID: 29930549]
[20]
Kuperman, D.A.; Huang, X.; Koth, L.L.; Chang, G.H.; Dolganov, G.M.; Zhu, Z.; Elias, J.A.; Sheppard, D.; Erle, D.J. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med., 2002, 8(8), 885-889.
[http://dx.doi.org/10.1038/nm734] [PMID: 12091879]
[21]
Gandhi, N.A.; Bennett, B.L.; Graham, N.M.H.; Pirozzi, G.; Stahl, N.; Yancopoulos, G.D. Targeting key proximal drivers of type 2 inflammation in disease. Nat. Rev. Drug Discov., 2016, 15(1), 35-50.
[http://dx.doi.org/10.1038/nrd4624] [PMID: 26471366]
[22]
Morgan, AJ; Symon, FA; Berry, MA; Pavord, ID; Corrigan, CJ; Wardlaw, AJ IL-4–expressing bronchoalveolar T cells from asthmatic and healthy subjects preferentially express CCR3 and CCR4. J Allergy Clin Immunol, 2005, 116, 594-600.
[23]
Garcia, G.; Godot, V.; Humbert, M. New chemokine targets for asthma therapy. Curr. Allergy Asthma Rep., 2005, 5(2), 155-160.
[http://dx.doi.org/10.1007/s11882-005-0090-0] [PMID: 15683617]
[24]
Hirata, H.; Yukawa, T.; Tanaka, A.; Miyao, T.; Fukuda, T.; Fukushima, Y.; Kurasawa, K.; Arima, M. Th2 cell differentiation from naive CD4+ T cells is enhanced by autocrine CC chemokines in atopic diseases. Clin. Exp. Allergy, 2019, 49(4), 474-483.
[http://dx.doi.org/10.1111/cea.13313] [PMID: 30431203]
[25]
Tumes, D.J.; Papadopoulos, M.; Endo, Y.; Onodera, A.; Hirahara, K.; Nakayama, T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol. Rev., 2017, 278(1), 8-19.
[http://dx.doi.org/10.1111/imr.12560] [PMID: 28658556]
[26]
Alcorn, J.F.; Crowe, C.R.; Kolls, J.K. TH17 cells in asthma and COPD. Annu. Rev. Physiol., 2010, 72(1), 495-516.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135926] [PMID: 20148686]
[27]
Schnyder-Candrian, S.; Togbe, D.; Couillin, I.; Mercier, I.; Brombacher, F.; Quesniaux, V.; Fossiez, F.; Ryffel, B.; Schnyder, B. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med., 2006, 203(12), 2715-2725.
[http://dx.doi.org/10.1084/jem.20061401] [PMID: 17101734]
[28]
Chesné, J.; Braza, F.; Mahay, G.; Brouard, S.; Aronica, M.; Magnan, A. IL-17 in severe asthma. Where do we stand? Am. J. Respir. Crit. Care Med., 2014, 190(10), 1094-1101.
[http://dx.doi.org/10.1164/rccm.201405-0859PP] [PMID: 25162311]
[29]
Rahman, M.S.; Yamasaki, A.; Yang, J.; Shan, L.; Halayko, A.J.; Gounni, A.S. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways. J. Immunol., 2006, 177(6), 4064-4071.
[http://dx.doi.org/10.4049/jimmunol.177.6.4064] [PMID: 16951370]
[30]
Louten, J.; Boniface, K.; de Waal Malefyt, R. Development and function of TH17 cells in health and disease. J. Allergy Clin. Immunol., 2009, 123(5), 1004-1011.
[http://dx.doi.org/10.1016/j.jaci.2009.04.003] [PMID: 19410689]
[31]
Strickland, D.H.; Holt, P.G. T regulatory cells in childhood asthma. Trends Immunol., 2011, 32(9), 420-427.
[http://dx.doi.org/10.1016/j.it.2011.06.010] [PMID: 21798806]
[32]
Afshar, R.; Strassner, J.P.; Seung, E.; Causton, B.; Cho, J.L.; Harris, R.S.; Hamilos, D.L.; Medoff, B.D.; Luster, A.D. Compartmentalized chemokine-dependent regulatory T-cell inhibition of allergic pulmonary inflammation. J. Allergy Clin. Immunol., 2013, 131(6), 1644-1652.
[http://dx.doi.org/10.1016/j.jaci.2013.03.002] [PMID: 23632297]
[33]
Collison, L.W.; Chaturvedi, V.; Henderson, A.L.; Giacomin, P.R.; Guy, C.; Bankoti, J.; Finkelstein, D.; Forbes, K.; Workman, C.J.; Brown, S.A.; Rehg, J.E.; Jones, M.L.; Ni, H.T.; Artis, D.; Turk, M.J.; Vignali, D.A. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol., 2010, 11(12), 1093-1101.
[http://dx.doi.org/10.1038/ni.1952] [PMID: 20953201]
[34]
Wilson, R.H.; Whitehead, G.S.; Nakano, H.; Free, M.E.; Kolls, J.K.; Cook, D.N. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med., 2009, 180(8), 720-730.
[http://dx.doi.org/10.1164/rccm.200904-0573OC] [PMID: 19661246]
[35]
Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M.; Butler, C.A.; Hargadon, B.; Sciurba, J.C.; Gieseck, R.L.; Thompson, R.W.; White, S.; Abbas, A.R.; Jackman, J.; Wu, L.C.; Egen, J.G.; Heaney, L.G.; Ramalingam, T.R.; Arron, J.R.; Wynn, T.A.; Bradding, P. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med., 2015, 7(301), 301ra129.
[http://dx.doi.org/10.1126/scitranslmed.aab3142] [PMID: 26290411]
[36]
Barnes, P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol., 2018, 18(7), 454-466.
[http://dx.doi.org/10.1038/s41577-018-0006-6] [PMID: 29626211]
[37]
Akdis, M.; Palomares, O.; van de Veen, W.; van Splunter, M.; Akdis, C.A. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J. Allergy Clin. Immunol., 2012, 129(6), 1438-1449, quiz1450-1.
[http://dx.doi.org/10.1016/j.jaci.2012.05.003] [PMID: 22657405]
[38]
Besnard, A.G.; Sabat, R.; Dumoutier, L.; Renauld, J.C.; Willart, M.; Lambrecht, B.; Teixeira, M.M.; Charron, S.; Fick, L.; Erard, F.; Warszawska, K.; Wolk, K.; Quesniaux, V.; Ryffel, B.; Togbe, D. Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am. J. Respir. Crit. Care Med., 2011, 183(9), 1153-1163.
[http://dx.doi.org/10.1164/rccm.201008-1383OC] [PMID: 21297073]
[39]
Nakagome, K.; Imamura, M.; Kawahata, K.; Harada, H.; Okunishi, K.; Matsumoto, T.; Sasaki, O.; Tanaka, R.; Kano, M.R.; Chang, H.; Hanawa, H.; Miyazaki, J.; Yamamoto, K.; Dohi, M. High expression of IL-22 suppresses antigen-induced immune responses and eosinophilic airway inflammation via an IL-10-associated mechanism. J. Immunol., 2011, 187(10), 5077-5089.
[http://dx.doi.org/10.4049/jimmunol.1001560] [PMID: 21998459]
[40]
Duhen, T.; Geiger, R.; Jarrossay, D.; Lanzavecchia, A.; Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol., 2009, 10(8), 857-863.
[http://dx.doi.org/10.1038/ni.1767] [PMID: 19578369]
[41]
Lloyd, C.M.; Harker, J.A. Epigenetic control of interleukin-9 in asthma. N. Engl. J. Med., 2018, 379(1), 87-89.
[http://dx.doi.org/10.1056/NEJMcibr1803610] [PMID: 29972761]
[42]
Chang, H.C.; Sehra, S.; Goswami, R.; Yao, W.; Yu, Q.; Stritesky, G.L.; Jabeen, R.; McKinley, C.; Ahyi, A.N.; Han, L.; Nguyen, E.T.; Robertson, M.J.; Perumal, N.B.; Tepper, R.S.; Nutt, S.L.; Kaplan, M.H. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol., 2010, 11(6), 527-534.
[http://dx.doi.org/10.1038/ni.1867] [PMID: 20431622]
[43]
Staudt, V.; Bothur, E.; Klein, M; Lingnau, K.; Reuter, S.; Grebe, N. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity, 2010, 33(2), 192-202.
[44]
Benevides, L.; Costa, R.S.; Tavares, L.A.; Russo, M.; Martins, G.A.; da Silva, L.L.P.; Arruda, L.K.; Cunha, F.Q.; Carregaro, V.; Silva, J.S. B lymphocyte-induced maturation protein 1 controls TH9 cell development, IL-9 production, and allergic inflammation. J. Allergy Clin. Immunol., 2019, 143(3), 1119-1130.e3.
[http://dx.doi.org/10.1016/j.jaci.2018.06.046] [PMID: 30096391]
[45]
Jones, C.P.; Gregory, L.G.; Causton, B.; Campbell, G.A.; Lloyd, C.M. Activin A and TGF-β promote T(H)9 cell-mediated pulmonary allergic pathology. J. Allergy Clin. Immunol., 2012, 129(4), 1000-10.e3.
[http://dx.doi.org/10.1016/j.jaci.2011.12.965] [PMID: 22277204]
[46]
Saeki, M.; Kaminuma, O.; Nishimura, T.; Kitamura, N.; Mori, A.; Hiroi, T. Th9 cells induce steroid-resistant bronchial hyperresponsiveness in mice. Allergol. Int., 2017, 66S, S35-S40.
[http://dx.doi.org/10.1016/j.alit.2017.07.001] [PMID: 28755856]
[47]
Swaidani, S.; Bulek, K.; Kang, Z.; Gulen, M.F.; Liu, C.; Yin, W.; Abbadi, A.; Aronica, M.; Li, X. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation. J. Immunol., 2011, 187(6), 3155-3164.
[http://dx.doi.org/10.4049/jimmunol.1002790] [PMID: 21856933]
[48]
Moldaver, D.M.; Larché, M.; Rudulier, C.D. An update on lymphocyte subtypes in asthma and airway disease. Chest, 2017, 151(5), 1122-1130.
[http://dx.doi.org/10.1016/j.chest.2016.10.038] [PMID: 27818326]
[49]
Varricchi, G.; Harker, J.; Borriello, F.; Marone, G.; Durham, S.R.; Shamji, M.H. T follicular helper (Tfh ) cells in normal immune responses and in allergic disorders. Allergy, 2016, 71(8), 1086-1094.
[http://dx.doi.org/10.1111/all.12878] [PMID: 26970097]
[50]
Dell’Aringa, M.; Reinhardt, R.L. Notch signaling represents an important checkpoint between follicular T-helper and canonical T-helper 2 cell fate. Mucosal Immunol., 2018, 11(4), 1079-1091.
[http://dx.doi.org/10.1038/s41385-018-0012-9] [PMID: 29467447]
[51]
Ballesteros-Tato, A.; Randall, T.D.; Lund, F.E.; Spolski, R.; Leonard, W.J.; León, B. T follicular helper cell plasticity shapes pathogenic T helper 2 cell-mediated immunity to inhaled house dust mite. Immunity, 2016, 44(2), 259-273.
[http://dx.doi.org/10.1016/j.immuni.2015.11.017] [PMID: 26825674]
[52]
Chávez-Galán, L.; Arenas-Del Angel, M.C.; Zenteno, E.; Chávez, R.; Lascurain, R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell. Mol. Immunol., 2009, 6(1), 15-25.
[http://dx.doi.org/10.1038/cmi.2009.3] [PMID: 19254476]
[53]
Pluangnooch, P.; Timalsena, S.; Wongkajornsilp, A.; Soontrapa, K. Cytokine-induced killer cells: A novel treatment for allergic airway inflammation. PLoS One, 2017, 12(10), e0186971.
[http://dx.doi.org/10.1371/journal.pone.0186971] [PMID: 29073213]
[54]
Akbari, O.; Stock, P.; Meyer, E.; Kronenberg, M.; Sidobre, S.; Nakayama, T.; Taniguchi, M.; Grusby, M.J.; DeKruyff, R.H.; Umetsu, D.T. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med., 2003, 9(5), 582-588.
[http://dx.doi.org/10.1038/nm851] [PMID: 12669034]
[55]
Nakagome, K.; Dohi, M.; Okunishi, K.; To, Y.; Sato, A.; Komagata, Y.; Nagatani, K.; Tanaka, R.; Yamamoto, K. Antigen-sensitized CD4+CD62Llow memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting. Respir. Res., 2005, 6(1), 46.
[http://dx.doi.org/10.1186/1465-9921-6-46] [PMID: 15921525]
[56]
Hondowicz, B.D.; An, D.; Schenkel, J.M.; Kim, K.S.; Steach, H.R.; Krishnamurty, A.T.; Keitany, G.J.; Garza, E.N.; Fraser, K.A.; Moon, J.J.; Altemeier, W.A.; Masopust, D.; Pepper, M. Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma. Immunity, 2016, 44(1), 155-166.
[http://dx.doi.org/10.1016/j.immuni.2015.11.004] [PMID: 26750312]
[57]
Endo, Y.; Hirahara, K.; Iinuma, T.; Shinoda, K.; Tumes, D.J.; Asou, H.K.; Matsugae, N.; Obata-Ninomiya, K.; Yamamoto, H.; Motohashi, S.; Oboki, K.; Nakae, S.; Saito, H.; Okamoto, Y.; Nakayama, T. The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity, 2015, 42(2), 294-308.
[http://dx.doi.org/10.1016/j.immuni.2015.01.016] [PMID: 25692703]
[58]
Wang, Y.H.; Voo, K.S.; Liu, B.; Chen, C.Y.; Uygungil, B.; Spoede, W.; Bernstein, J.A.; Huston, D.P.; Liu, Y.J. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med., 2010, 207(11), 2479-2491.
[http://dx.doi.org/10.1084/jem.20101376] [PMID: 20921287]
[59]
Huang, C-H.; Loo, E.X-L.; Kuo, I-C.; Soh, G.H.; Goh, D.L.; Lee, B.W.; Chua, K.Y. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35. J. Immunol., 2011, 187(1), 462-471.
[http://dx.doi.org/10.4049/jimmunol.1100259] [PMID: 21613618]
[60]
Sajti, E.; Link, V.M.; Ouyang, Z.; Spann, N.J.; Westin, E.; Romanoski, C.E.; Fonseca, G.J.; Prince, L.S.; Glass, C.K. Transcriptomic and epigenetic mechanisms underlying myeloid diversity in the lung. Nat. Immunol., 2020, 21(2), 221-231.
[http://dx.doi.org/10.1038/s41590-019-0582-z] [PMID: 31959980]
[61]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[62]
Lee, Y.G.; Jeong, J.J.; Nyenhuis, S.; Berdyshev, E.; Chung, S.; Ranjan, R.; Karpurapu, M.; Deng, J.; Qian, F.; Kelly, E.A.; Jarjour, N.N.; Ackerman, S.J.; Natarajan, V.; Christman, J.W.; Park, G.Y. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma. Am. J. Respir. Cell Mol. Biol., 2015, 52(6), 772-784.
[http://dx.doi.org/10.1165/rcmb.2014-0255OC] [PMID: 25360868]
[63]
Careau, E.; Bissonnette, E.Y. Adoptive transfer of alveolar macrophages abrogates bronchial hyperresponsiveness. Am. J. Respir. Cell Mol. Biol., 2004, 31(1), 22-27.
[http://dx.doi.org/10.1165/rcmb.2003-0229OC] [PMID: 14962974]
[64]
Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; Locati, M.; Mantovani, A.; Martinez, F.O.; Mege, J.L.; Mosser, D.M.; Natoli, G.; Saeij, J.P.; Schultze, J.L.; Shirey, K.A.; Sica, A.; Suttles, J.; Udalova, I.; van Ginderachter, J.A.; Vogel, S.N.; Wynn, T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, 41(1), 14-20.
[http://dx.doi.org/10.1016/j.immuni.2014.06.008] [PMID: 25035950]
[65]
Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol., 2017, 79(1), 541-566.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034339] [PMID: 27813830]
[66]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[67]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[68]
Bosco, M.C. Macrophage polarization: Reaching across the aisle? J. Allergy Clin. Immunol., 2019, 143(4), 1348-1350.
[http://dx.doi.org/10.1016/j.jaci.2018.12.995] [PMID: 30639344]
[69]
Karta, M.R.; Gavala, M.L.; Curran, C.S.; Wickert, L.E.; Keely, P.J.; Gern, J.E.; Bertics, P.J. LPS modulates rhinovirus-induced chemokine secretion in monocytes and macrophages. Am. J. Respir. Cell Mol. Biol., 2014, 51(1), 125-134.
[http://dx.doi.org/10.1165/rcmb.2013-0404OC] [PMID: 24498897]
[70]
Goleva, E.; Hauk, P.J.; Hall, C.F.; Liu, A.H.; Riches, D.W.; Martin, R.J.; Leung, D.Y. Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages. J. Allergy Clin. Immunol., 2008, 122(3), 550-9.e3.
[http://dx.doi.org/10.1016/j.jaci.2008.07.007] [PMID: 18774390]
[71]
Girodet, P.O.; Nguyen, D.; Mancini, J.D.; Hundal, M.; Zhou, X.; Israel, E.; Cernadas, M. Alternative macrophage activation is increased in asthma. Am. J. Respir. Cell. Mol. Biol., 2016, 55(4), 467-475.
[http://dx.doi.org/10.1165/rcmb.2015-0295OC] [PMID: 27248771]
[72]
Abdelaziz, M.H.; Abdelwahab, S.F.; Wan, J.; Cai, W.; Huixuan, W.; Jianjun, C.; Kumar, K.D.; Vasudevan, A.; Sadek, A.; Su, Z.; Wang, S.; Xu, H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J. Transl. Med., 2020, 18(1), 58.
[http://dx.doi.org/10.1186/s12967-020-02251-w] [PMID: 32024540]
[73]
Melgert, B.N.; ten Hacken, N.H.; Rutgers, B.; Timens, W.; Postma, D.S.; Hylkema, M.N. More alternative activation of macrophages in lungs of asthmatic patients. J. Allergy Clin. Immunol., 2011, 127(3), 831-833.
[http://dx.doi.org/10.1016/j.jaci.2010.10.045] [PMID: 21167569]
[74]
Melgert, B.N.; Oriss, T.B.; Qi, Z.; Dixon-McCarthy, B.; Geerlings, M.; Hylkema, M.N.; Ray, A. Macrophages: regulators of sex differences in asthma? Am. J. Respir. Cell Mol. Biol., 2010, 42(5), 595-603.
[http://dx.doi.org/10.1165/rcmb.2009-0016OC] [PMID: 19574533]
[75]
Liu, Y; Gao, X; Miao, Y; Wang, Y; Wang, H; Cheng, Z; Wang, X; Jing, X; Jia, L; Dai, L; Liu, M; An, L. NLRP3 regulates macrophage M2 polarization through up-regulation of IL-4 in asthma. Biochem J., 2018, 475(12), 1995-2008.
[76]
Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 2018, 233(9), 6425-6440.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[77]
Thiriou, D.; Morianos, I.; Xanthou, G.; Samitas, K. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int. Immunopharmacol., 2017, 48, 43-54.
[http://dx.doi.org/10.1016/j.intimp.2017.04.027] [PMID: 28463786]
[78]
Unanue, E.R. Antigen-presenting function of the macrophage. Annu. Rev. Immunol., 1984, 2(1), 395-428.
[http://dx.doi.org/10.1146/annurev.iy.02.040184.002143] [PMID: 6242349]
[79]
Pawankar, R.; Hayashi, M.; Yamanishi, S.; Igarashi, T. The paradigm of cytokine networks in allergic airway inflammation. Curr. Opin. Allergy Clin. Immunol., 2015, 15(1), 41-48.
[http://dx.doi.org/10.1097/ACI.0000000000000129] [PMID: 25479317]
[80]
Hizawa, N.; Yamaguchi, E.; Takahashi, D.; Nishihira, J.; Nishimura, M. Functional polymorphisms in the promoter region of macrophage migration inhibitory factor and atopy. Am. J. Respir. Crit. Care Med., 2004, 169(9), 1014-1018.
[http://dx.doi.org/10.1164/rccm.200307-933OC] [PMID: 14962818]
[81]
Beier, K.C.; Kallinich, T.; Hamelmann, E. T-cell co-stimulatory molecules: novel targets for the treatment of allergic airway disease. Eur. Respir. J., 2007, 30(2), 383-390.
[http://dx.doi.org/10.1183/09031936.00094406] [PMID: 17666561]
[82]
Beier, K.C.; Kallinich, T.; Hamelmann, E. Master switches of T- cell activation and differentiation. Eur. Respir. J., 2007, 29(4), 804-812.
[http://dx.doi.org/10.1183/09031936.00094506] [PMID: 17400879]
[83]
Blumenthal, R.L.; Campbell, D.E.; Hwang, P.; DeKruyff, R.H.; Frankel, L.R.; Umetsu, D.T. Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J. Allergy Clin. Immunol., 2001, 107(2), 258-264.
[http://dx.doi.org/10.1067/mai.2001.112845] [PMID: 11174191]
[84]
Bozza, M.T.; Lintomen, L.; Kitoko, J.Z.; Paiva, C.N.; Olsen, P.C. The role of MIF on eosinophil biology and eosinophilic inflammation. Clin. Rev. Allergy Immunol., 2020, 58(1), 15-24.
[http://dx.doi.org/10.1007/s12016-019-08726-z] [PMID: 30680604]
[85]
Lukic, A.; Larssen, P.; Fauland, A.; Samuelsson, B.; Wheelock, C.E.; Gabrielsson, S.; Radmark, O. GM-CSF- and M-CSF-primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures. FASEB J., 2017, 31(10), 4370-4381.
[http://dx.doi.org/10.1096/fj.201700319R] [PMID: 28637652]
[86]
Branchett, W.J.; Stölting, H.; Oliver, R.A.; Walker, S.A.; Puttur, F.; Gregory, L.G.; Gabryšová, L.; Wilson, M.S.; O’Garra, A.; Lloyd, C.M.A. A T cell-myeloid IL-10 axis regulates pathogenic IFN-γ-dependent immunity in a mouse model of type 2-low asthma. J. Allergy Clin. Immunol., 2020, 145(2), 666-678.e9.
[http://dx.doi.org/10.1016/j.jaci.2019.08.006] [PMID: 31445933]
[87]
Pouliot, P.; Spahr, A.; Careau, E.; Turmel, V.; Bissonnette, E.Y. Alveolar macrophages from allergic lungs are not committed to a pro-allergic response and can reduce airway hyperresponsiveness following ex vivo culture. Clin. Exp. Allergy, 2008, 38(3), 529-538.
[http://dx.doi.org/10.1111/j.1365-2222.2007.02924.x] [PMID: 18201249]
[88]
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3), 450-462.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[89]
Herbert, C.; Scott, M.M.; Scruton, K.H.; Keogh, R.P.; Yuan, K.C.; Hsu, K.; Siegle, J.S.; Tedla, N.; Foster, P.S.; Kumar, R.K. Alveolar macrophages stimulate enhanced cytokine production by pulmonary CD4+ T-lymphocytes in an exacerbation of murine chronic asthma. Am. J. Pathol., 2010, 177(4), 1657-1664.
[http://dx.doi.org/10.2353/ajpath.2010.100019] [PMID: 20724599]
[90]
Lai, J.F.; Thompson, L.J.; Ziegler, S.F. TSLP drives acute TH2- cell differentiation in lungs. J. Allergy Clin. Immunol., 2020, 146(6), 1406-1418.e7.
[http://dx.doi.org/10.1016/j.jaci.2020.03.032] [PMID: 32304753]
[91]
Sawada, M.; Kawayama, T.; Imaoka, H.; Sakazaki, Y.; Oda, H.; Takenaka, S.; Kaku, Y.; Azuma, K.; Tajiri, M.; Edakuni, N.; Okamoto, M.; Kato, S.; Hoshino, T. IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13. PLoS One, 2013, 8(1), e54623.
[http://dx.doi.org/10.1371/journal.pone.0054623] [PMID: 23382928]
[92]
Wills-Karp, M.; Rani, R.; Dienger, K.; Lewkowich, I.; Fox, J.G.; Perkins, C.; Lewis, L.; Finkelman, F.D.; Smith, D.E.; Bryce, P.J.; Kurt-Jones, E.A.; Wang, T.C.; Sivaprasad, U.; Hershey, G.K.; Herbert, D.R. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J. Exp. Med., 2012, 209(3), 607-622.
[http://dx.doi.org/10.1084/jem.20110079] [PMID: 22329990]
[93]
Laidlaw, T.M.; Boyce, J.A. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin. Exp. Allergy, 2012, 42(9), 1313-1320.
[http://dx.doi.org/10.1111/j.1365-2222.2012.03982.x] [PMID: 22925317]
[94]
Takahashi, Y.; Kobayashi, T.; D’Alessandro-Gabazza, C.N.; Toda, M.; Fujiwara, K.; Okano, T.; Fujimoto, H.; Asayama, K.; Takeshita, A.; Yasuma, T.; Nishihama, K.; Inoue, R.; Qin, L.; Takei, Y.; Taguchi, O.; Gabazza, E.C. Protective role of matrix metalloproteinase-2 in allergic bronchial asthma. Front. Immunol., 2019, 10, 1795.
[http://dx.doi.org/10.3389/fimmu.2019.01795] [PMID: 31428095]
[95]
Kim, J.Y.; Sohn, J.H.; Choi, J.M.; Lee, J-H.; Hong, C-S.; Lee, J-S.; Park, J.W. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF-α pathway. PLoS One, 2012, 7(10), e47971.
[http://dx.doi.org/10.1371/journal.pone.0047971] [PMID: 23094102]
[96]
Song, C.; Luo, L.; Lei, Z.; Li, B.; Liang, Z.; Liu, G.; Li, D.; Zhang, G.; Huang, B.; Feng, Z.H. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J. Immunol., 2008, 181(9), 6117-6124.
[http://dx.doi.org/10.4049/jimmunol.181.9.6117] [PMID: 18941201]
[97]
Crapster-Pregont, M.; Yeo, J.; Sanchez, R.L.; Kuperman, D.A. Dendritic cells and alveolar macrophages mediate IL-13-induced airway inflammation and chemokine production. J. Allergy Clin. Immunol., 2012, 129(6), 1621-7.e3.
[http://dx.doi.org/10.1016/j.jaci.2012.01.052] [PMID: 22365581]
[98]
Kawano, H.; Kayama, H.; Nakama, T.; Hashimoto, T.; Umemoto, E.; Takeda, K. IL-10-producing lung interstitial macrophages prevent neutrophilic asthma. Int. Immunol., 2016, 28(10), 489-501.
[http://dx.doi.org/10.1093/intimm/dxw012] [PMID: 26976823]
[99]
Chakarov, S.; Lim, H.Y.; Tan, L.; Lim, S.Y.; See, P.; Lum, J.; Zhang, X.M.; Foo, S.; Nakamizo, S.; Duan, K.; Kong, W.T.; Gentek, R.; Balachander, A.; Carbajo, D.; Bleriot, C.; Malleret, B.; Tam, J.K.C.; Baig, S.; Shabeer, M.; Toh, S.E.S.; Schlitzer, A.; Larbi, A.; Marichal, T.; Malissen, B.; Chen, J.; Poidinger, M.; Kabashima, K.; Bajenoff, M.; Ng, L.G.; Angeli, V.; Ginhoux, F. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 2019, 363(6432), eaau0964.
[http://dx.doi.org/10.1126/science.aau0964] [PMID: 30872492]
[100]
Soroosh, P.; Doherty, T.A.; Duan, W.; Mehta, A.K.; Choi, H.; Adams, Y.F.; Mikulski, Z.; Khorram, N.; Rosenthal, P.; Broide, D.H.; Croft, M. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med., 2013, 210(4), 775-788.
[http://dx.doi.org/10.1084/jem.20121849] [PMID: 23547101]
[101]
Lu, D.; Lu, J.; Ji, X.; Ji, Y.; Zhang, Z.; Peng, H.; Sun, F.; Zhang, C. IL-27 suppresses airway inflammation, hyperresponsiveness and remodeling via the STAT1 and STAT3 pathways in mice with allergic asthma. Int. J. Mol. Med., 2020, 46(2), 641-652.
[http://dx.doi.org/10.3892/ijmm.2020.4622] [PMID: 32626920]
[102]
Kuchroo, V.K.; Umetsu, D.T.; DeKruyff, R.H.; Freeman, G.J. The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol., 2003, 3(6), 454-462.
[http://dx.doi.org/10.1038/nri1111] [PMID: 12776205]
[103]
Bashir, S.; Sharma, Y.; Elahi, A.; Khan, F. Macrophage polarization: the link between inflammation and related diseases. Inflamm. Res., 2016, 65(1), 1-11.
[http://dx.doi.org/10.1007/s00011-015-0874-1] [PMID: 26467935]
[104]
Ma, Q. Polarization of immune cells in the pathologic response to inhaled particulates. Front. Immunol., 2020, 11, 1060.
[http://dx.doi.org/10.3389/fimmu.2020.01060] [PMID: 32625201]
[105]
Mukhopadhyay, S.; Malik, P.; Arora, S.K.; Mukherjee, T.K. Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology, 2014, 19(4), 508-513.
[http://dx.doi.org/10.1111/resp.12285] [PMID: 24689994]
[106]
Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol., 2000, 85(1), 9-18.
[http://dx.doi.org/10.1016/S1081-1206(10)62426-X] [PMID: 10923599]
[107]
Edukulla, R.; Singh, B.; Jegga, A.G.; Sontake, V.; Dillon, S.R.; Madala, S.K. Th2 cytokines augment IL-31/IL-31RA interactions via STAT6-dependent IL-31RA expression. J. Biol. Chem., 2015, 290(21), 13510-13520.
[http://dx.doi.org/10.1074/jbc.M114.622126] [PMID: 25847241]
[108]
Nobs, S.P.; Natali, S.; Pohlmeier, L.; Okreglicka, K.; Schneider, C.; Kurrer, M.; Sallusto, F.; Kopf, M. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J. Exp. Med., 2017, 214(10), 3015-3035.
[http://dx.doi.org/10.1084/jem.20162069] [PMID: 28798029]
[109]
Mizutani, N.; Nabe, T.; Yoshino, S. IL-17A promotes the exacerbation of IL-33-induced airway hyperresponsiveness by enhancing neutrophilic inflammation via CXCR2 signaling in mice. J. Immunol., 2014, 192(4), 1372-1384.
[http://dx.doi.org/10.4049/jimmunol.1301538] [PMID: 24446518]
[110]
Kim, E.Y.; Battaile, J.T.; Patel, A.C.; You, Y.; Agapov, E.; Grayson, M.H.; Benoit, L.A.; Byers, D.E.; Alevy, Y.; Tucker, J.; Swanson, S.; Tidwell, R.; Tyner, J.W.; Morton, J.D.; Castro, M.; Polineni, D.; Patterson, G.A.; Schwendener, R.A.; Allard, J.D.; Peltz, G.; Holtzman, M.J. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med., 2008, 14(6), 633-640.
[http://dx.doi.org/10.1038/nm1770] [PMID: 18488036]
[111]
Chung, F. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-gamma. Mediators Inflamm., 2001, 10(2), 51-59.
[http://dx.doi.org/10.1080/09629350120054518] [PMID: 11405550]
[112]
Lam, J.H.; Smith, F.L.; Baumgarth, N. B cell activation and response regulation during viral infections. Viral Immunol., 2020, 33(4), 294-306.
[http://dx.doi.org/10.1089/vim.2019.0207] [PMID: 32326852]
[113]
Biram, A.; Shulman, Z. T cell help to B cells: Cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol. Rev., 2020, 296(1), 36-47.
[http://dx.doi.org/10.1111/imr.12890] [PMID: 32557712]
[114]
Fitzpatrick, A.M.; Holguin, F.; Teague, W.G.; Brown, L.A.S. Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J. Allergy Clin. Immunol., 2008, 121(6), 1372-1378, 1378.e1-1378.e3.
[http://dx.doi.org/10.1016/j.jaci.2008.03.008] [PMID: 18417198]
[115]
Behrens, E.M.; Koretzky, G.A. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol., 2017, 69(6), 1135-1143.
[http://dx.doi.org/10.1002/art.40071] [PMID: 28217930]
[116]
Jenkins, M.R.; Rudd-Schmidt, J.A.; Lopez, J.A.; Ramsbottom, K.M.; Mannering, S.I.; Andrews, D.M.; Voskoboinik, I.; Trapani, J.A. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J. Exp. Med., 2015, 212(3), 307-317.
[http://dx.doi.org/10.1084/jem.20140964] [PMID: 25732304]
[117]
Tillie-Leblond, I.; Gosset, P.; Tonnel, A.B. Inflammatory events in severe acute asthma. Allergy, 2005, 60(1), 23-29.
[http://dx.doi.org/10.1111/j.1398-9995.2005.00632.x] [PMID: 15575926]
[118]
Kim, R.Y.; Pinkerton, J.W.; Essilfie, A.T.; Robertson, A.A.B.; Baines, K.J.; Brown, A.C.; Mayall, J.R.; Ali, M.K.; Starkey, M.R.; Hansbro, N.G.; Hirota, J.A.; Wood, L.G.; Simpson, J.L.; Knight, D.A.; Wark, P.A.; Gibson, P.G.; O’Neill, L.A.J.; Cooper, M.A.; Horvat, J.C.; Hansbro, P.M. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am. J. Respir. Crit. Care Med., 2017, 196(3), 283-297.
[http://dx.doi.org/10.1164/rccm.201609-1830OC] [PMID: 28252317]
[119]
Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 2016, 8(8), 959-970.
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[120]
Kim, H.Y.; DeKruyff, R.H.; Umetsu, D.T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat. Immunol., 2010, 11(7), 577-584.
[http://dx.doi.org/10.1038/ni.1892] [PMID: 20562844]
[121]
Branchett, W.J.; Lloyd, C.M. Regulatory cytokine function in the respiratory tract. Mucosal Immunol., 2019, 12(3), 589-600.
[http://dx.doi.org/10.1038/s41385-019-0158-0] [PMID: 30874596]
[122]
Mahajan, S.; Decker, C.E.; Yang, Z.; Veis, D.; Mellins, E.D.; Faccio, R. Plcγ2/Tmem178 dependent pathway in myeloid cells modulates the pathogenesis of cytokine storm syndrome. J Auto, 2019, 100, 62-74.
[http://dx.doi.org/10.1016/j.jaut.2019.02.005] [PMID: 30879886]
[123]
Yang, M.; Kumar, R.K.; Hansbro, P.M.; Foster, P.S. Emerging roles of pulmonary macrophages in driving the development of severe asthma. J. Leukoc. Biol., 2012, 91(4), 557-569.
[http://dx.doi.org/10.1189/jlb.0711357] [PMID: 22293472]
[124]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[125]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[126]
Nagano, T.; Katsurada, M.; Dokuni, R.; Hazama, D.; Kiriu, T.; Umezawa, K.; Kobayashi, K.; Nishimura, Y. Crucial Role of Extracellular Vesicles in Bronchial Asthma. Int. J. Mol. Sci., 2019, 20(10), 2589.
[http://dx.doi.org/10.3390/ijms20102589] [PMID: 31137771]
[127]
Sangaphunchai, P.; Todd, I.; Fairclough, L.C. Extracellular vesicles and asthma: A review of the literature. Clin. Exp. Allergy, 2020, 50(3), 291-307.
[http://dx.doi.org/10.1111/cea.13562] [PMID: 31925972]
[128]
van den Berge, M.; Tasena, H. Role of microRNAs and exosomes in asthma. Curr. Opin. Pulm. Med., 2019, 25(1), 87-93.
[http://dx.doi.org/10.1097/MCP.0000000000000532] [PMID: 30394902]
[129]
Fujita, Y.; Yoshioka, Y.; Ito, S.; Araya, J.; Kuwano, K.; Ochiya, T. Intercellular communication by extracellular vesicles and their microRNAs in asthma. Clin. Ther., 2014, 36(6), 873-881.
[http://dx.doi.org/10.1016/j.clinthera.2014.05.006] [PMID: 24909737]
[130]
Chen, J.; Hu, C.; Pan, P. Extracellular vesicle microRNA transfer in lung diseases. Front. Physiol., 2017, 8, 1028.
[http://dx.doi.org/10.3389/fphys.2017.01028] [PMID: 29311962]
[131]
Hough, K.P.; Chanda, D.; Duncan, S.R.; Thannickal, V.J.; Deshane, J.S. Exosomes in immunoregulation of chronic lung diseases. Allergy, 2017, 72(4), 534-544.
[http://dx.doi.org/10.1111/all.13086] [PMID: 27859351]
[132]
Sánchez-Vidaurre, S.; Eldh, M.; Larssen, P.; Daham, K.; Martinez-Bravo, M.J.; Dahlén, S.E.; Dahlén, B.; van Hage, M.; Gabrielsson, S. RNA-containing exosomes in induced sputum of asthmatic patients. J. Allergy Clin. Immunol., 2017, 140(5), 1459-1461.e2.
[http://dx.doi.org/10.1016/j.jaci.2017.05.035] [PMID: 28629752]
[133]
Mohan, A.; Agarwal, S.; Clauss, M.; Britt, N.S.; Dhillon, N.K. Extracellular vesicles: novel communicators in lung diseases. Respir. Res., 2020, 21(1), 175.
[http://dx.doi.org/10.1186/s12931-020-01423-y] [PMID: 32641036]
[134]
Ismail, N.; Wang, Y.; Dakhlallah, D.; Moldovan, L.; Agarwal, K.; Batte, K.; Shah, P.; Wisler, J.; Eubank, T.D.; Tridandapani, S.; Paulaitis, M.E.; Piper, M.G.; Marsh, C.B. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 2013, 121(6), 984-995.
[http://dx.doi.org/10.1182/blood-2011-08-374793] [PMID: 23144169]
[135]
Kulshreshtha, A.; Ahmad, T.; Agrawal, A.; Ghosh, B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J. Allergy Clin. Immunol., 2013, 131(4), 1194-1203, 1203.e1-1203.e14.
[http://dx.doi.org/10.1016/j.jaci.2012.12.1565] [PMID: 23414598]
[136]
Pua, H.H.; Happ, H.C.; Gray, C.J.; Mar, D.J.; Chiou, N.T.; Hesse, L.E.; Ansel, K.M. Increased hematopoietic extracellular RNAs and vesicles in the lung during allergic airway responses. Cell Rep., 2019, 26(4), 933-944.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.01.002] [PMID: 30673615]
[137]
Esser, J; Gehrmann, U; D'Alexandri, FL; Hidalgo-Estévez, AM; Wheelock, CE; Scheynius, A Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J. Allergy Clin. Immunol., 2010, 126(5), 1032-1040. 1040.e1-4.
[138]
Torregrosa Paredes, P.; Esser, J.; Admyre, C.; Nord, M.; Rahman, Q.K.; Lukic, A.; Rådmark, O.; Grönneberg, R.; Grunewald, J.; Eklund, A.; Scheynius, A.; Gabrielsson, S. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy, 2012, 67(7), 911-919.
[http://dx.doi.org/10.1111/j.1398-9995.2012.02835.x] [PMID: 22620679]
[139]
Draijer, C.; Speth, J.M.; Penke, L.R.K.; Zaslona, Z.; Bazzill, J.D.; Lugogo, N.; Huang, Y.J.; Moon, J.J.; Peters-Golden, M. Resident alveolar macrophage-derived vesicular SOCS3 dampens allergic airway inflammation. FASEB J., 2020, 34(3), 4718-4731.
[http://dx.doi.org/10.1096/fj.201903089R] [PMID: 32030817]
[140]
Zhang, X.; Zhao, X.; Sun, H.; Yan, Y.; Huang, L.; Gu, W.; Jiang, W.; Wang, Y.; Zhu, C.; Ji, W.; Hao, C.; Chen, Z. The role of miR-29c/B7-H3 axis in children with allergic asthma. J. Transl. Med., 2018, 16(1), 218.
[http://dx.doi.org/10.1186/s12967-018-1590-8] [PMID: 30075787]
[141]
Admyre, C.; Bohle, B.; Johansson, S.M.; Focke-Tejkl, M.; Valenta, R.; Scheynius, A.; Gabrielsson, S. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J. Allergy Clin. Immunol., 2007, 120(6), 1418-1424.
[http://dx.doi.org/10.1016/j.jaci.2007.06.040] [PMID: 17868797]
[142]
Zhao, M.; Li, Y.P.; Geng, X.R.; Zhao, M.; Ma, S.B.; Yang, Y.H.; Deng, Z.H.; Luo, L.M.; Pan, X.Q. Expression level of MiRNA-126 in serum exosomes of allergic asthma patients and lung tissues of asthmatic mice. Curr. Drug Metab., 2019, 20(10), 799-803.
[http://dx.doi.org/10.2174/1389200220666191011114452] [PMID: 31608839]
[143]
Mendes, F.C.; Paciência, I.; Ferreira, A.C.; Martins, C.; Rufo, J.C.; Silva, D.; Cunha, P.; Farraia, M.; Moreira, P.; Delgado, L.; Soares, M.L.; Moreira, A. Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children. PLoS One, 2019, 14(11), e0224983.
[http://dx.doi.org/10.1371/journal.pone.0224983] [PMID: 31703106]
[144]
Baskara-Yhuellou, I.; Tost, J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. Adv. Protein Chem. Struct. Biol., 2020, 120, 237-312.
[http://dx.doi.org/10.1016/bs.apcsb.2019.11.006] [PMID: 32085883]
[145]
Liang, Z.; Tang, F. The potency of lncRNA MALAT1/miR-155/CTLA4 axis in altering Th1/Th2 balance of asthma. Biosci. Rep., 2020, 40(2), BSR20190397.
[http://dx.doi.org/10.1042/BSR20190397] [PMID: 31909418]
[146]
Zhou, H.; Li, J.; Gao, P.; Wang, Q.; Zhang, J. miR-155: a novel target in allergic asthma. Int. J. Mol. Sci., 2016, 17(10), 1773.
[http://dx.doi.org/10.3390/ijms17101773] [PMID: 27783037]
[147]
Kumar, M; Ahmad, T; Sharma, A; Mabalirajan, U; Kulshreshtha, A; Agrawal, A; Ghosh, B. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol., 2011, 128(5), 1077-1085. e1-10.
[148]
Zhuansun, Y.; Du, Y.; Huang, F.; Lin, L.; Chen, R.; Jiang, S.; Li, J. MSCs exosomal miR-1470 promotes the differentiation of CD4+CD25+FOXP3+ Tregs in asthmatic patients by inducing the expression of P27KIP1. Int. Immunopharmacol., 2019, 77, 105981.
[http://dx.doi.org/10.1016/j.intimp.2019.105981] [PMID: 31685437]
[149]
Du, Y.M.; Zhuansun, Y.X.; Chen, R.; Lin, L.; Lin, Y.; Li, J.G. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp. Cell Res., 2018, 363(1), 114-120.
[http://dx.doi.org/10.1016/j.yexcr.2017.12.021] [PMID: 29277503]
[150]
Oliphant, C.J.; Barlow, J.L.; McKenzie, A.N. Insights into the initiation of type 2 immune responses. Immunology, 2011, 134(4), 378-385.
[http://dx.doi.org/10.1111/j.1365-2567.2011.03499.x] [PMID: 22044021]
[151]
Dougherty, R.H.; Fahy, J.V. Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin. Exp. Allergy, 2009, 39(2), 193-202.
[http://dx.doi.org/10.1111/j.1365-2222.2008.03157.x] [PMID: 19187331]
[152]
Fahy, J.V. Type 2 inflammation in asthma- present in most, absent in many. Nat. Rev. Immunol., 2015, 15(1), 57-65.
[http://dx.doi.org/10.1038/nri3786] [PMID: 25534623]
[153]
Locksley, R.M. Asthma and allergic inflammation. Cell, 2010, 140(6), 777-783.
[http://dx.doi.org/10.1016/j.cell.2010.03.004] [PMID: 20303868]
[154]
Dunican, E.M.; Fahy, J.V. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann. Am. Thorac. Soc., 2015, 12(2), S144-S149.
[155]
Woodruff, P.G.; Boushey, H.A.; Dolganov, G.M.; Barker, C.S.; Yang, Y.H.; Donnelly, S.; Ellwanger, A.; Sidhu, S.S.; Dao-Pick, T.P.; Pantoja, C.; Erle, D.J.; Yamamoto, K.R.; Fahy, J.V. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA, 2007, 104(40), 15858-15863.
[http://dx.doi.org/10.1073/pnas.0707413104] [PMID: 17898169]
[156]
Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Koth, L.L.; Arron, J.R.; Fahy, J.V. T-helper type 2- driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med., 2009, 180(5), 388-395.
[http://dx.doi.org/10.1164/rccm.200903-0392OC] [PMID: 19483109]
[157]
Wenzel, S.E.; Balzar, S.; Ampleford, E.; Hawkins, G.A.; Busse, W.W.; Calhoun, W.J.; Castro, M.; Chung, K.F.; Erzurum, S.; Gaston, B.; Israel, E.; Teague, W.G.; Curran-Everett, D.; Meyers, D.A.; Bleecker, E.R. IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression. Am. J. Respir. Crit. Care Med., 2007, 175(6), 570-576.
[http://dx.doi.org/10.1164/rccm.200607-909OC] [PMID: 17170387]
[158]
Presta, L.; Shields, R.; O’Connell, L.; Lahr, S.; Porter, J.; Gorman, C.; Jardieu, P. The binding site on human immunoglobulin E for its high affinity receptor. J. Biol. Chem., 1994, 269(42), 26368-26373.
[http://dx.doi.org/10.1016/S0021-9258(18)47203-1] [PMID: 7929356]
[159]
Foster, B.; Metcalfe, D.D.; Prussin, C. Human dendritic cell 1 and dendritic cell 2 subsets express FcepsilonRI: correlation with serum IgE and allergic asthma. J. Allergy Clin. Immunol., 2003, 112(6), 1132-1138.
[http://dx.doi.org/10.1016/j.jaci.2003.09.011] [PMID: 14657872]
[160]
Turner, H.; Kinet, J.P. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature, 1999, 402(6760), B24-B30.
[http://dx.doi.org/10.1038/35037021] [PMID: 10586892]
[161]
Busse, W.; Corren, J.; Lanier, B.Q.; McAlary, M.; Fowler-Taylor, A.; Cioppa, G.D.; van As, A.; Gupta, N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol., 2001, 108(2), 184-190.
[http://dx.doi.org/10.1067/mai.2001.117880] [PMID: 11496232]
[162]
Solèr, M.; Matz, J.; Townley, R.; Buhl, R.; O’Brien, J.; Fox, H.; Thirlwell, J.; Gupta, N.; Della Cioppa, G. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J., 2001, 18(2), 254-261.
[http://dx.doi.org/10.1183/09031936.01.00092101] [PMID: 11529281]
[163]
Busse, W.W.; Morgan, W.J.; Gergen, P.J.; Mitchell, H.E.; Gern, J.E.; Liu, A.H.; Gruchalla, R.S.; Kattan, M.; Teach, S.J.; Pongracic, J.A.; Chmiel, J.F.; Steinbach, S.F.; Calatroni, A.; Togias, A.; Thompson, K.M.; Szefler, S.J.; Sorkness, C.A. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med., 2011, 364(11), 1005-1015.
[http://dx.doi.org/10.1056/NEJMoa1009705] [PMID: 21410369]
[164]
Milgrom, H.; Fick, R.B., Jr; Su, J.Q.; Reimann, J.D.; Bush, R.K.; Watrous, M.L.; Metzger, W.J. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N. Engl. J. Med., 1999, 341(26), 1966-1973.
[http://dx.doi.org/10.1056/NEJM199912233412603] [PMID: 10607813]
[165]
Kouro, T.; Takatsu, K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int. Immunol., 2009, 21(12), 1303-1309.
[http://dx.doi.org/10.1093/intimm/dxp102] [PMID: 19819937]
[166]
Belda, J.; Giner, J.; Casan, P.; Sanchis, J. Mild exacerbations and eosinophilic inflammation in patients with stable, well-controlled asthma after 1 year of follow-up. Chest, 2001, 119(4), 1011-1017.
[http://dx.doi.org/10.1378/chest.119.4.1011] [PMID: 11296162]
[167]
Abonia, J.P.; Putnam, P.E. Mepolizumab in eosinophilic disorders. Expert Rev. Clin. Immunol., 2011, 7(4), 411-417.
[http://dx.doi.org/10.1586/eci.11.27] [PMID: 21790283]
[168]
Flood-Page, P.; Swenson, C.; Faiferman, I.; Matthews, J.; Williams, M.; Brannick, L.; Robinson, D.; Wenzel, S.; Busse, W.; Hansel, T.T.; Barnes, N.C. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med., 2007, 176(11), 1062-1071.
[http://dx.doi.org/10.1164/rccm.200701-085OC] [PMID: 17872493]
[169]
Haldar, P.; Brightling, C.E.; Hargadon, B.; Gupta, S.; Monteiro, W.; Sousa, A.; Marshall, R.P.; Bradding, P.; Green, R.H.; Wardlaw, A.J.; Pavord, I.D. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med., 2009, 360(10), 973-984.
[http://dx.doi.org/10.1056/NEJMoa0808991] [PMID: 19264686]
[170]
Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med., 2014, 371(13), 1189-1197.
[http://dx.doi.org/10.1056/NEJMoa1403291] [PMID: 25199060]
[171]
Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; Chanez, P. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med., 2014, 371(13), 1198-1207.
[http://dx.doi.org/10.1056/NEJMoa1403290] [PMID: 25199059]
[172]
Castro, M.; Zangrilli, J.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med., 2015, 3(5), 355-366.
[http://dx.doi.org/10.1016/S2213-2600(15)00042-9] [PMID: 25736990]
[173]
Castro, M.; Wenzel, S.E.; Bleecker, E.R.; Pizzichini, E.; Kuna, P.; Busse, W.W.; Gossage, D.L.; Ward, C.K.; Wu, Y.; Wang, B.; Khatry, D.B.; van der Merwe, R.; Kolbeck, R.; Molfino, N.A.; Raible, D.G. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir. Med., 2014, 2(11), 879-890.
[http://dx.doi.org/10.1016/S2213-2600(14)70201-2] [PMID: 25306557]
[174]
Wills-Karp, M.; Luyimbazi, J.; Xu, X.; Schofield, B.; Neben, T.Y.; Karp, C.L.; Donaldson, D.D. Interleukin-13: central mediator of allergic asthma. Science, 1998, 282(5397), 2258-2261.
[http://dx.doi.org/10.1126/science.282.5397.2258] [PMID: 9856949]
[175]
Sidhu, S.S.; Yuan, S.; Innes, A.L.; Kerr, S.; Woodruff, P.G.; Hou, L.; Muller, S.J.; Fahy, J.V. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14170-14175.
[http://dx.doi.org/10.1073/pnas.1009426107] [PMID: 20660732]
[176]
Tabata, Y.; Khurana Hershey, G.K. IL-13 receptor isoforms: breaking through the complexity. Curr. Allergy Asthma Rep., 2007, 7(5), 338-345.
[http://dx.doi.org/10.1007/s11882-007-0051-x] [PMID: 17697639]
[177]
Corren, J.; Lemanske, R.F.; Hanania, N.A.; Korenblat, P.E.; Parsey, M.V.; Arron, J.R.; Harris, J.M.; Scheerens, H.; Wu, L.C.; Su, Z.; Mosesova, S.; Eisner, M.D.; Bohen, S.P.; Matthews, J.G. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med., 2011, 365(12), 1088-1098.
[http://dx.doi.org/10.1056/NEJMoa1106469] [PMID: 21812663]
[178]
Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; Hamilton, J.; Ming, J.E.; Radin, A.; Stahl, N.; Yancopoulos, G.D.; Graham, N.; Pirozzi, G. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med., 2013, 368(26), 2455-2466.
[http://dx.doi.org/10.1056/NEJMoa1304048] [PMID: 23688323]
[179]
Johnston, N.W.; Sears, M.R. Asthma exacerbations. 1: epidemiology. Thorax, 2006, 61(8), 722-728.
[http://dx.doi.org/10.1136/thx.2005.045161] [PMID: 16877691]
[180]
Gill, M.A.; Palucka, A.K.; Barton, T.; Ghaffar, F.; Jafri, H.; Banchereau, J.; Ramilo, O. Mobilization of plasmacytoid and myeloid dendritic cells to mucosal sites in children with respiratory syncytial virus and other viral respiratory infections. J. Infect. Dis., 2005, 191(7), 1105-1115.
[http://dx.doi.org/10.1086/428589] [PMID: 15747246]
[181]
Colonna, M.; Trinchieri, G.; Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat. Immunol., 2004, 5(12), 1219-1226.
[http://dx.doi.org/10.1038/ni1141] [PMID: 15549123]
[182]
Gill, M.A.; Bajwa, G.; George, T.A.; Dong, C.C.; Dougherty, I.I.; Jiang, N.; Gan, V.N.; Gruchalla, R.S. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J. Immunol., 2010, 184(11), 5999-6006.
[http://dx.doi.org/10.4049/jimmunol.0901194] [PMID: 20410486]
[183]
Schroeder, J.T.; Bieneman, A.P.; Xiao, H.; Chichester, K.L.; Vasagar, K.; Saini, S.; Liu, M.C. TLR9- and FcepsilonRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression. J. Immunol., 2005, 175(9), 5724-5731.
[http://dx.doi.org/10.4049/jimmunol.175.9.5724] [PMID: 16237063]
[184]
Durrani, S.R.; Montville, D.J.; Pratt, A.S.; Sahu, S.; DeVries, M.K.; Rajamanickam, V.; Gangnon, R.E.; Gill, M.A.; Gern, J.E.; Lemanske, R.F., Jr; Jackson, D.J. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J. Allergy Clin. Immunol., 2012, 130(2), 489-495.
[http://dx.doi.org/10.1016/j.jaci.2012.05.023] [PMID: 22766097]
[185]
Holgate, S.T.; Roberts, G.; Arshad, H.S.; Howarth, P.H.; Davies, D.E. The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis. Proc. Am. Thorac. Soc., 2009, 6(8), 655-659.
[http://dx.doi.org/10.1513/pats.200907-072DP] [PMID: 20008870]
[186]
Levine, S.J.; Wenzel, S.E. Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann. Intern. Med., 2010, 152(4), 232-237.
[http://dx.doi.org/10.7326/0003-4819-152-4-201002160-00008] [PMID: 20157138]
[187]
Barnes, P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest., 2008, 118(11), 3546-3556.
[http://dx.doi.org/10.1172/JCI36130] [PMID: 18982161]
[188]
Schleimer, R.P.; Kato, A.; Kern, R.; Kuperman, D.; Avila, P.C. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol., 2007, 120(6), 1279-1284. [review].
[http://dx.doi.org/10.1016/j.jaci.2007.08.046] [PMID: 17949801]
[189]
Schleimer, R.P.; Kato, A.; Peters, A.; Conley, D.; Kim, J.; Liu, M.C.; Harris, K.E.; Kuperman, D.A.; Chandra, R.; Favoreto, S., Jr; Avila, P.C.; Grammer, L.C.; Kern, R.C. Epithelium, inflammation, and immunity in the upper airways of humans: studies in chronic rhinosinusitis. Proc. Am. Thorac. Soc., 2009, 6(3), 288-294.
[http://dx.doi.org/10.1513/pats.200808-088RM] [PMID: 19387032]
[190]
Kato, A.; Schleimer, R.P. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr. Opin. Immunol., 2007, 19(6), 711-720.
[http://dx.doi.org/10.1016/j.coi.2007.08.004] [PMID: 17928212]
[191]
Liu, Y.J. Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. J. Allergy Clin. Immunol., 2007, 120(2), 238-244.
[http://dx.doi.org/10.1016/j.jaci.2007.06.004] [PMID: 17666213]
[192]
Heijink, I.H.; Kuchibhotla, V.N.S.; Roffel, M.P.; Maes, T.; Knight, D.A.; Sayers, I.; Nawijn, M.C. Epithelial cell dysfunction, a major driver of asthma development. Allergy, 2020, 75(8), 1902-1917.
[http://dx.doi.org/10.1111/all.14421] [PMID: 32460363]
[193]
Hackett, T.L.; Singhera, G.K.; Shaheen, F.; Hayden, P.; Jackson, G.R.; Hegele, R.G.; Van Eeden, S.; Bai, T.R.; Dorscheid, D.R.; Knight, D.A. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am. J. Respir. Cell Mol. Biol., 2011, 45(5), 1090-1100.
[http://dx.doi.org/10.1165/rcmb.2011-0031OC] [PMID: 21642587]
[194]
Xiao, C; Puddicombe, SM; Field, S; Haywood, J; Broughton- Head, V; Puxeddu, I Defective epithelial barrier function in asthma. J Allergy Clin Immunol., 2011, 128(3), 549-556. e1-12.
[195]
Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet, 2018, 391(10122), 783-800.
[http://dx.doi.org/10.1016/S0140-6736(17)33311-1] [PMID: 29273246]
[196]
Heijink, I.H.; Nawijn, M.C.; Hackett, T.L. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin. Exp. Allergy, 2014, 44(5), 620-630.
[http://dx.doi.org/10.1111/cea.12296] [PMID: 24612268]
[197]
de Boer, W.I.; Sharma, H.S.; Baelemans, S.M.; Hoogsteden, H.C.; Lambrecht, B.N.; Braunstahl, G.J. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can. J. Physiol. Pharmacol., 2008, 86(3), 105-112.
[http://dx.doi.org/10.1139/Y08-004] [PMID: 18418437]
[198]
Hackett, T.L.; de Bruin, H.G.; Shaheen, F.; van den Berge, M.; van Oosterhout, A.J.M.; Postma, D.S.; Heijink, I.H. Caveolin-1 controls airway epithelial barrier function. Implications for asthma. Am. J. Respir. Cell Mol. Biol., 2013, 49(4), 662-671.
[http://dx.doi.org/10.1165/rcmb.2013-0124OC] [PMID: 23742006]
[199]
Heijink, I.H.; Brandenburg, S.M.; Noordhoek, J.A.; Postma, D.S.; Slebos, D.J.; van Oosterhout, A.J.M. Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing. Eur. Respir. J., 2010, 35(4), 894-903.
[http://dx.doi.org/10.1183/09031936.00065809] [PMID: 19741028]
[200]
Heijink, I.H.; Noordhoek, J.A.; Timens, W.; van Oosterhout, A.J.; Postma, D.S. Abnormalities in airway epithelial junction formation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2014, 189(11), 1439-1442.
[http://dx.doi.org/10.1164/rccm.201311-1982LE] [PMID: 24881942]
[201]
Nawijn, M.C.; Hackett, T.L.; Postma, D.S.; van Oosterhout, A.J.; Heijink, I.H. E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol., 2011, 32(6), 248-255.
[http://dx.doi.org/10.1016/j.it.2011.03.004] [PMID: 21493142]
[202]
Winter, M.C.; Shasby, S.S.; Ries, D.R.; Shasby, D.M. PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: protective effect of beta-agonists. Am. J. Physiol. Lung Cell. Mol. Physiol., 2006, 291(4), L628-L635.
[http://dx.doi.org/10.1152/ajplung.00046.2006] [PMID: 16714334]
[203]
Heijink, I.H.; van Oosterhout, A.; Kapus, A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction. Eur. Respir. J., 2010, 36(5), 1016-1026.
[http://dx.doi.org/10.1183/09031936.00125809] [PMID: 20351035]
[204]
Schmidt, H.; Braubach, P.; Schilpp, C.; Lochbaum, R.; Neuland, K.; Thompson, K.; Jonigk, D.; Frick, M.; Dietl, P.; Wittekindt, O.H. IL-13 Impairs Tight Junctions in Airway Epithelia. Int. J. Mol. Sci., 2019, 20(13), 3222.
[http://dx.doi.org/10.3390/ijms20133222] [PMID: 31262043]
[205]
Sugita, K.; Steer, C.A.; Martinez-Gonzalez, I.; Altunbulakli, C.; Morita, H.; Castro-Giner, F.; Kubo, T.; Wawrzyniak, P.; Rückert, B.; Sudo, K.; Nakae, S.; Matsumoto, K.; O’Mahony, L.; Akdis, M.; Takei, F.; Akdis, C.A. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol., 2018, 141(1), 300-310.e11.
[http://dx.doi.org/10.1016/j.jaci.2017.02.038] [PMID: 28392332]
[206]
Dong, H.; Hu, Y.; Liu, L.; Zou, M.; Huang, C.; Luo, L.; Yu, C.; Wan, X.; Zhao, H.; Chen, J.; Xie, Z.; Le, Y.; Zou, F.; Cai, S. Distinct roles of short and long thymic stromal lymphopoietin isoforms in house dust mite-induced asthmatic airway epithelial barrier disruption. Sci. Rep., 2016, 6, 39559.
[http://dx.doi.org/10.1038/srep39559] [PMID: 27996052]
[207]
Wawrzyniak, P.; Wawrzyniak, M.; Wanke, K.; Sokolowska, M.; Bendelja, K.; Rückert, B.; Globinska, A.; Jakiela, B.; Kast, J.I.; Idzko, M.; Akdis, M.; Sanak, M.; Akdis, C.A. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J. Allergy Clin. Immunol., 2017, 139(1), 93-103.
[http://dx.doi.org/10.1016/j.jaci.2016.03.050] [PMID: 27312821]
[208]
Comstock, A.T.; Ganesan, S.; Chattoraj, A.; Faris, A.N.; Margolis, B.L.; Hershenson, M.B.; Sajjan, U.S. Rhinovirus-induced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH oxidase 1. J. Virol., 2011, 85(13), 6795-6808.
[http://dx.doi.org/10.1128/JVI.02074-10] [PMID: 21507984]
[209]
Sajjan, U.; Wang, Q.; Zhao, Y.; Gruenert, D.C.; Hershenson, M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, 178(12), 1271-1281.
[http://dx.doi.org/10.1164/rccm.200801-136OC] [PMID: 18787220]
[210]
Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol., 2019, 56(2), 219-233.
[http://dx.doi.org/10.1007/s12016-018-8712-1] [PMID: 30206782]
[211]
Kim, N.; Han, D.H.; Suh, M.W.; Lee, J.H.; Oh, S.H.; Park, M.K. Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells. Environ. Pollut., 2019, 248, 736-742.
[http://dx.doi.org/10.1016/j.envpol.2019.02.082] [PMID: 30849591]
[212]
Michaudel, C.; Mackowiak, C.; Maillet, I.; Fauconnier, L.; Akdis, C.A.; Sokolowska, M.; Dreher, A.; Tan, H.T.; Quesniaux, V.F.; Ryffel, B.; Togbe, D. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J. Allergy Clin. Immunol., 2018, 142(3), 942-958.
[http://dx.doi.org/10.1016/j.jaci.2017.11.044] [PMID: 29331644]
[213]
Wang, M.; Tan, G.; Eljaszewicz, A.; Meng, Y.; Wawrzyniak, P.; Acharya, S.; Altunbulakli, C.; Westermann, P.; Dreher, A.; Yan, L.; Wang, C.; Akdis, M.; Zhang, L.; Nadeau, K.C.; Akdis, C.A. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J. Allergy Clin. Immunol., 2019, 143(5), 1892-1903.
[http://dx.doi.org/10.1016/j.jaci.2018.11.016] [PMID: 30500342]
[214]
Barton, S.J.; Koppelman, G.H.; Vonk, J.M.; Browning, C.A.; Nolte, I.M.; Stewart, C.E.; Bainbridge, S.; Mutch, S.; Rose-Zerilli, M.J.; Postma, D.S.; Maniatis, N.; Henry, A.P.; Hall, I.P.; Holgate, S.T.; Tighe, P.; Holloway, J.W.; Sayers, I. PLAUR polymorphisms are associated with asthma, PLAUR levels, and lung function decline. J. Allergy Clin. Immunol., 2009, 123(6), 1391-400.e17.
[http://dx.doi.org/10.1016/j.jaci.2009.03.014] [PMID: 19443020]
[215]
Portelli, M.A.; Hodge, E.; Sayers, I. Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin. Exp. Allergy, 2015, 45(1), 21-31.
[http://dx.doi.org/10.1111/cea.12327] [PMID: 24766371]
[216]
Ierodiakonou, D.; Postma, D.S.; Koppelman, G.H.; Boezen, H.M.; Gerritsen, J.; Ten Hacken, N.; Timens, W.; Vonk, J.M. E-cadherin gene polymorphisms in asthma patients using inhaled corticosteroids. Eur. Respir. J., 2011, 38(5), 1044-1052.
[http://dx.doi.org/10.1183/09031936.00194710] [PMID: 21540309]
[217]
Stewart, C.E.; Nijmeh, H.S.; Brightling, C.E.; Sayers, I. uPAR regulates bronchial epithelial repair in vitro and is elevated in asthmatic epithelium. Thorax, 2012, 67(6), 477-487.
[http://dx.doi.org/10.1136/thoraxjnl-2011-200508] [PMID: 22139533]
[218]
Ferreira, M.A.; McRae, A.F.; Medland, S.E.; Nyholt, D.R.; Gordon, S.D.; Wright, M.J.; Henders, A.K.; Madden, P.A.; Visscher, P.M.; Wray, N.R.; Heath, A.C.; Montgomery, G.W.; Duffy, D.L.; Martin, N.G. Association between ORMDL3, IL1RL1 and a deletion on chromosome 17q21 with asthma risk in Australia. Eur. J. Hum. Genet., 2011, 19(4), 458-464.
[http://dx.doi.org/10.1038/ejhg.2010.191] [PMID: 21150878]
[219]
Bønnelykke, K.; Sleiman, P.; Nielsen, K.; Kreiner-Møller, E.; Mercader, J.M.; Belgrave, D.; den Dekker, H.T.; Husby, A.; Sevelsted, A.; Faura-Tellez, G.; Mortensen, L.J.; Paternoster, L.; Flaaten, R.; Mølgaard, A.; Smart, D.E.; Thomsen, P.F.; Rasmussen, M.A.; Bonàs-Guarch, S.; Holst, C.; Nohr, E.A.; Yadav, R.; March, M.E.; Blicher, T.; Lackie, P.M.; Jaddoe, V.W.; Simpson, A.; Holloway, J.W.; Duijts, L.; Custovic, A.; Davies, D.E.; Torrents, D.; Gupta, R.; Hollegaard, M.V.; Hougaard, D.M.; Hakonarson, H.; Bisgaard, H. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet., 2014, 46(1), 51-55.
[http://dx.doi.org/10.1038/ng.2830] [PMID: 24241537]
[220]
Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med., 2010, 363(13), 1211-1221.
[http://dx.doi.org/10.1056/NEJMoa0906312] [PMID: 20860503]
[221]
Moffatt, M.F.; Kabesch, M.; Liang, L.; Dixon, A.L.; Strachan, D.; Heath, S.; Depner, M.; von Berg, A.; Bufe, A.; Rietschel, E.; Heinzmann, A.; Simma, B.; Frischer, T.; Willis-Owen, S.A.; Wong, K.C.; Illig, T.; Vogelberg, C.; Weiland, S.K.; von Mutius, E.; Abecasis, G.R.; Farrall, M.; Gut, I.G.; Lathrop, G.M.; Cookson, W.O. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature, 2007, 448(7152), 470-473.
[http://dx.doi.org/10.1038/nature06014] [PMID: 17611496]
[222]
Miller, M.; Tam, A.B.; Mueller, J.L.; Rosenthal, P.; Beppu, A.; Gordillo, R.; McGeough, M.D.; Vuong, C.; Doherty, T.A.; Hoffman, H.M.; Niwa, M.; Broide, D.H. Cutting edge: targeting epithelial ORMDL3 increases, rather than reduces, airway responsiveness and is associated with increased sphingosine-1-phosphate. J. Immunol., 2017, 198(8), 3017-3022.
[http://dx.doi.org/10.4049/jimmunol.1601848] [PMID: 28275141]
[223]
Miller, M.; Rosenthal, P.; Beppu, A.; Mueller, J.L.; Hoffman, H.M.; Tam, A.B.; Doherty, T.A.; McGeough, M.D.; Pena, C.A.; Suzukawa, M.; Niwa, M.; Broide, D.H. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J. Immunol., 2014, 192(8), 3475-3487.
[http://dx.doi.org/10.4049/jimmunol.1303047] [PMID: 24623133]
[224]
Ono, J.G.; Kim, B.I.; Zhao, Y.; Christos, P.J.; Tesfaigzi, Y.; Worgall, T.S.; Worgall, S. Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes. J. Clin. Invest., 2020, 130(2), 921-926.
[http://dx.doi.org/10.1172/JCI130860] [PMID: 31929190]
[225]
Wang, H.; Liu, Y.; Shi, J.; Cheng, Z. ORMDL3 knockdown in the lungs alleviates airway inflammation and airway remodeling in asthmatic mice via JNK1/2-MMP-9 pathway. Biochem. Biophys. Res. Commun., 2019, 516(3), 739-746.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.122] [PMID: 31255288]
[226]
Yang, R.; Tan, M.; Xu, J.; Zhao, X. Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models. Int. J. Mol. Med., 2019, 44(2), 535-548.
[http://dx.doi.org/10.3892/ijmm.2019.4233] [PMID: 31173170]
[227]
Das, S.; Miller, M.; Beppu, A.K.; Mueller, J.; McGeough, M.D.; Vuong, C.; Karta, M.R.; Rosenthal, P.; Chouiali, F.; Doherty, T.A.; Kurten, R.C.; Hamid, Q.; Hoffman, H.M.; Broide, D.H. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc. Natl. Acad. Sci. USA, 2016, 113(46), 13132-13137.
[http://dx.doi.org/10.1073/pnas.1610433113] [PMID: 27799535]
[228]
Panganiban, R.A.; Sun, M.; Dahlin, A.; Park, H.R.; Kan, M.; Himes, B.E.; Mitchel, J.A.; Iribarren, C.; Jorgenson, E.; Randell, S.H.; Israel, E.; Tantisira, K.; Shore, S.; Park, J.A.; Weiss, S.T.; Wu, A.C.; Lu, Q. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol., 2018, 142(5), 1469-1478.e2.
[http://dx.doi.org/10.1016/j.jaci.2017.11.040] [PMID: 29330013]
[229]
Ferreira, M.A.; Matheson, M.C.; Tang, C.S.; Granell, R.; Ang, W.; Hui, J.; Kiefer, A.K.; Duffy, D.L.; Baltic, S.; Danoy, P.; Bui, M.; Price, L.; Sly, P.D.; Eriksson, N.; Madden, P.A.; Abramson, M.J.; Holt, P.G.; Heath, A.C.; Hunter, M.; Musk, B.; Robertson, C.F.; Le Souëf, P.; Montgomery, G.W.; Henderson, A.J.; Tung, J.Y.; Dharmage, S.C.; Brown, M.A.; James, A.; Thompson, P.J.; Pennell, C.; Martin, N.G.; Evans, D.M.; Hinds, D.A.; Hopper, J.L. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol., 2014, 133(6), 1564-1571.
[http://dx.doi.org/10.1016/j.jaci.2013.10.030] [PMID: 24388013]
[230]
Shrine, N.; Portelli, M.A.; John, C.; Soler Artigas, M.; Bennett, N.; Hall, R.; Lewis, J.; Henry, A.P.; Billington, C.K.; Ahmad, A.; Packer, R.J.; Shaw, D.; Pogson, Z.E.K.; Fogarty, A.; McKeever, T.M.; Singapuri, A.; Heaney, L.G.; Mansur, A.H.; Chaudhuri, R.; Thomson, N.C.; Holloway, J.W.; Lockett, G.A.; Howarth, P.H.; Djukanovic, R.; Hankinson, J.; Niven, R.; Simpson, A.; Chung, K.F.; Sterk, P.J.; Blakey, J.D.; Adcock, I.M.; Hu, S.; Guo, Y.; Obeidat, M.; Sin, D.D.; van den Berge, M.; Nickle, D.C.; Bossé, Y.; Tobin, M.D.; Hall, I.P.; Brightling, C.E.; Wain, L.V.; Sayers, I. Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respir. Med., 2019, 7(1), 20-34.
[http://dx.doi.org/10.1016/S2213-2600(18)30389-8] [PMID: 30552067]
[231]
Singhania, A.; Rupani, H.; Jayasekera, N.; Lumb, S.; Hales, P.; Gozzard, N.; Davies, D.E.; Woelk, C.H.; Howarth, P.H. Altered epithelial gene expression in peripheral airways of severe asthma. PLoS One, 2017, 12(1), e0168680.
[http://dx.doi.org/10.1371/journal.pone.0168680] [PMID: 28045928]
[232]
Altman, M.C.; Lai, Y.; Nolin, J.D.; Long, S.; Chen, C.C.; Piliponsky, A.M.; Altemeier, W.A.; Larmore, M.; Frevert, C.W.; Mulligan, M.S.; Ziegler, S.F.; Debley, J.S.; Peters, M.C.; Hallstrand, T.S. Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J. Clin. Invest., 2019, 129(11), 4979-4991.
[http://dx.doi.org/10.1172/JCI126402] [PMID: 31437129]
[233]
Jackson, D.J.; Makrinioti, H.; Rana, B.M.; Shamji, B.W.; Trujillo- Torralbo, M.B.; Footitt, J.; Jerico Del-Rosario, ; Telcian, A.G.; Nikonova, A.; Zhu, J.; Aniscenko, J.; Gogsadze, L.; Bakhsoliani, E.; Traub, S.; Dhariwal, J.; Porter, J.; Hunt, D.; Hunt, T.; Hunt, T.; Stanciu, L.A.; Khaitov, M.; Bartlett, N.W.; Edwards, M.R.; Kon, O.M.; Mallia, P.; Papadopoulos, N.G.; Akdis, C.A.; Westwick, J.; Edwards, M.J.; Cousins, D.J.; Walton, R.P.; Johnston, S.L. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am. J. Respir. Crit. Care Med., 2014, 190(12), 1373-1382.
[http://dx.doi.org/10.1164/rccm.201406-1039OC] [PMID: 25350863]
[234]
Everman, J.L.; Sajuthi, S.; Saef, B.; Rios, C.; Stoner, A.M.; Numata, M.; Hu, D.; Eng, C.; Oh, S.; Rodriguez-Santana, J.; Vladar, E.K.; Voelker, D.R.; Burchard, E.G.; Seibold, M.A. Functional genomics of CDHR3 confirms its role in HRV-C infection and childhood asthma exacerbations. J. Allergy Clin. Immunol., 2019, 144(4), 962-971.
[http://dx.doi.org/10.1016/j.jaci.2019.01.052] [PMID: 30930175]
[235]
Basnet, S.; Bochkov, Y.A.; Brockman-Schneider, R.A.; Kuipers, I.; Aesif, S.W.; Jackson, D.J.; Lemanske, R.F., Jr; Ober, C.; Palmenberg, A.C.; Gern, J.E. CDHR3 asthma-risk genotype affects susceptibility of airway epithelium to rhinovirus c infections. Am. J. Respir. Cell Mol. Biol., 2019, 61(4), 450-458.
[http://dx.doi.org/10.1165/rcmb.2018-0220OC] [PMID: 30916989]
[236]
Marenholz, I.; Esparza-Gordillo, J.; Rüschendorf, F.; Bauerfeind, A.; Strachan, D.P.; Spycher, B.D.; Baurecht, H.; Margaritte-Jeannin, P.; Sääf, A.; Kerkhof, M.; Ege, M.; Baltic, S.; Matheson, M.C.; Li, J.; Michel, S.; Ang, W.Q.; McArdle, W.; Arnold, A.; Homuth, G.; Demenais, F.; Bouzigon, E.; Söderhäll, C.; Pershagen, G.; de Jongste, J.C.; Postma, D.S.; Braun-Fahrländer, C.; Horak, E.; Ogorodova, L.M.; Puzyrev, V.P.; Bragina, E.Y.; Hudson, T.J.; Morin, C.; Duffy, D.L.; Marks, G.B.; Robertson, C.F.; Montgomery, G.W.; Musk, B.; Thompson, P.J.; Martin, N.G.; James, A.; Sleiman, P.; Toskala, E.; Rodriguez, E.; Fölster-Holst, R.; Franke, A.; Lieb, W.; Gieger, C.; Heinzmann, A.; Rietschel, E.; Keil, T.; Cichon, S.; Nöthen, M.M.; Pennell, C.E.; Sly, P.D.; Schmidt, C.O.; Matanovic, A.; Schneider, V.; Heinig, M.; Hübner, N.; Holt, P.G.; Lau, S.; Kabesch, M.; Weidinger, S.; Hakonarson, H.; Ferreira, M.A.R.; Laprise, C.; Freidin, M.B.; Genuneit, J.; Koppelman, G.H.; Melén, E.; Dizier, M.H.; Henderson, A.J.; Lee, Y.A. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat. Commun., 2015, 6, 8804.
[http://dx.doi.org/10.1038/ncomms9804] [PMID: 26542096]
[237]
Annesi, F.; Gambardella, A.; Michelucci, R.; Bianchi, A.; Marini, C.; Canevini, M.P.; Capovilla, G.; Elia, M.; Buti, D.; Chifari, R.; Striano, P.; Rocca, F.E.; Castellotti, B.; Cali, F.; Labate, A.; LePiane, E.; Besana, D.; Sofia, V.; Tabiadon, G.; Tortorella, G.; Vigliano, P.; Vignoli, A.; Beccaria, F.; Annesi, G.; Striano, S.; Aguglia, U.; Guerrini, R.; Quattrone, A. Mutational analysis of EFHC1 gene in Italian families with juvenile myoclonic epilepsy. Epilepsia, 2007, 48(9), 1686-1690.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01173.x] [PMID: 17634063]
[238]
Ikeda, T.; Ikeda, K.; Enomoto, M.; Park, M.K.; Hirono, M.; Kamiya, R. The mouse ortholog of EFHC1 implicated in juvenile myoclonic epilepsy is an axonemal protein widely conserved among organisms with motile cilia and flagella. FEBS Lett., 2005, 579(3), 819-822.
[http://dx.doi.org/10.1016/j.febslet.2004.12.070] [PMID: 15670853]
[239]
Koning, H.; Sayers, I.; Stewart, C.E.; de Jong, D.; Ten Hacken, N.H.; Postma, D.S.; van Oosterhout, A.J.; Nawijn, M.C.; Koppelman, G.H. Characterization of protocadherin-1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation. FASEB J., 2012, 26(1), 439-448.
[http://dx.doi.org/10.1096/fj.11-185207] [PMID: 21982948]
[240]
Faura Tellez, G.; Willemse, B.W.; Brouwer, U.; Nijboer-Brinksma, S.; Vandepoele, K.; Noordhoek, J.A.; Heijink, I.; de Vries, M.; Smithers, N.P.; Postma, D.S.; Timens, W.; Wiffen, L.; van Roy, F.; Holloway, J.W.; Lackie, P.M.; Nawijn, M.C.; Koppelman, G.H. Protocadherin-1 localization and cell-adhesion function in airway epithelial cells in asthma. PLoS One, 2016, 11(10), e0163967.
[http://dx.doi.org/10.1371/journal.pone.0163967] [PMID: 27701444]
[241]
Koppelman, G.H.; Meyers, D.A.; Howard, T.D.; Zheng, S.L.; Hawkins, G.A.; Ampleford, E.J.; Xu, J.; Koning, H.; Bruinenberg, M.; Nolte, I.M.; van Diemen, C.C.; Boezen, H.M.; Timens, W.; Whittaker, P.A.; Stine, O.C.; Barton, S.J.; Holloway, J.W.; Holgate, S.T.; Graves, P.E.; Martinez, F.D.; van Oosterhout, A.J.; Bleecker, E.R.; Postma, D.S. Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med., 2009, 180(10), 929-935.
[http://dx.doi.org/10.1164/rccm.200810-1621OC] [PMID: 19729670]
[242]
Geng, G.; Du, Y.; Dai, J.; Tian, D.; Xia, Y.; Fu, Z. KIF3A knockdown sensitizes bronchial epithelia to apoptosis and aggravates airway inflammation in asthma. Biomed. Pharmacother., 2018, 97, 1349-1355.
[http://dx.doi.org/10.1016/j.biopha.2017.10.160] [PMID: 29156524]
[243]
Kovacic, M.B.; Myers, J.M.; Wang, N.; Martin, L.J.; Lindsey, M.; Ericksen, M.B.; He, H.; Patterson, T.L.; Baye, T.M.; Torgerson, D.; Roth, L.A.; Gupta, J.; Sivaprasad, U.; Gibson, A.M.; Tsoras, A.M.; Hu, D.; Eng, C.; Chapela, R.; Rodríguez-Santana, J.R.; Rodríguez-Cintrón, W.; Avila, P.C.; Beckman, K.; Seibold, M.A.; Gignoux, C.; Musaad, S.M.; Chen, W.; Burchard, E.G.; Hershey, G.K. Identification of KIF3A as a novel candidate gene for childhood asthma using RNA expression and population allelic frequencies differences. PLoS One, 2011, 6(8), e23714.
[http://dx.doi.org/10.1371/journal.pone.0023714] [PMID: 21912604]
[244]
Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; Smith, K.; Gorman, D.; Zurawski, S.; Abrams, J.; Menon, S.; McClanahan, T.; de Waal-Malefyt Rd, R.; Bazan, F.; Kastelein, R.A.; Liu, Y.J. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol., 2002, 3(7), 673-680.
[http://dx.doi.org/10.1038/ni805] [PMID: 12055625]
[245]
Gras, D.; Martinez-Anton, A.; Bourdin, A.; Garulli, C.; de Senneville, L.; Vachier, I.; Vitte, J.; Chanez, P. Human bronchial epithelium orchestrates dendritic cell activation in severe asthma. Eur. Respir. J., 2017, 49(3), 1602399.
[http://dx.doi.org/10.1183/13993003.02399-2016] [PMID: 28275176]
[246]
Hui, C.C.; Yu, A.; Heroux, D.; Akhabir, L.; Sandford, A.J.; Neighbour, H.; Denburg, J.A. Thymic stromal lymphopoietin (TSLP) secretion from human nasal epithelium is a function of TSLP genotype. Mucosal Immunol., 2015, 8(5), 993-999.
[http://dx.doi.org/10.1038/mi.2014.126] [PMID: 25515628]
[247]
Gordon, E.D.; Palandra, J.; Wesolowska-Andersen, A.; Ringel, L.; Rios, C.L.; Lachowicz-Scroggins, M.E.; Sharp, L.Z.; Everman, J.L.; MacLeod, H.J.; Lee, J.W.; Mason, R.J.; Matthay, M.A.; Sheldon, R.T.; Peters, M.C.; Nocka, K.H.; Fahy, J.V.; Seibold, M.A. IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight, 2016, 1(14), e87871.
[http://dx.doi.org/10.1172/jci.insight.87871] [PMID: 27699235]
[248]
Brook, P.O.; Perry, M.M.; Adcock, I.M.; Durham, A.L. Epigenome-modifying tools in asthma. Epigenomics, 2015, 7(6), 1017-1032.
[http://dx.doi.org/10.2217/epi.15.53] [PMID: 26479310]
[249]
Yang, I.V.; Lozupone, C.A.; Schwartz, D.A. The environment, epigenome, and asthma. J. Allergy Clin. Immunol., 2017, 140(1), 14-23.
[http://dx.doi.org/10.1016/j.jaci.2017.05.011] [PMID: 28673400]
[250]
Hudon Thibeault, A.A.; Laprise, C. Cell-specific DNA methylation signatures in asthma. Genes (Basel), 2019, 10(11), 932.
[http://dx.doi.org/10.3390/genes10110932] [PMID: 31731604]
[251]
Qi, C.; Jiang, Y.; Yang, I.V.; Forno, E.; Wang, T.; Vonk, J.M.; Gehring, U.; Smit, H.A.; Milanzi, E.B.; Carpaij, O.A.; Berg, M.; Hesse, L.; Brouwer, S.; Cardwell, J.; Vermeulen, C.J.; Acosta-Pérez, E.; Canino, G.; Boutaoui, N.; van den Berge, M.; Teichmann, S.A.; Nawijn, M.C.; Chen, W.; Celedón, J.C.; Xu, C.J.; Koppelman, G.H. Nasal DNA methylation profiling of asthma and rhinitis. J. Allergy Clin. Immunol., 2020, 145(6), 1655-1663.
[http://dx.doi.org/10.1016/j.jaci.2019.12.911] [PMID: 31953105]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy