Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Cytotoxic and Antibacterial Properties of Resveratrol Oligomers from the Stem Bark of Dryobalanops rappa

Author(s): Agustono Wibowo*, Norizan Ahmat*, Foo Jhi Biau, Jian Sheng Loh and Ahmad Sazali Hamzah

Volume 12, Issue 4, 2022

Published on: 13 January, 2022

Article ID: e170921196624 Pages: 8

DOI: 10.2174/2210315511666210917164558

Price: $65

conference banner
Abstract

Background: Dryobalanops rappa is a plant species belonging to the family of Dipterocarpaceae. Nevertheless, the active compounds present in D. rappa have never been investigated.

Objective: The aim of this research is to isolate and characterize compounds from Dryobalanops rappa and to study its bioactivity against human MCF-7 breast cancer and A549 lung cancer cell lines and several bacterial strains.

Methods: The isolation step was carried out using a combination of chromatographic techniques. The structure of the isolated compounds was elucidated mainly using NMR spectroscopy. The cytotoxic activity of isolated compounds was determined with MTT assay, and the antimicrobial was screened using a modified resazurin microtiter-plate assay.

Results: Isolation and purification of methanolic extract of D. rappa stem bark yielded 14 known oligomeric resveratrol types of compounds (1-14). Results showed that isolated ampelopsin E (5) and vaticanol C (14) displayed moderate activity against human MCF-7 breast cancer and A549 lung cancer cell lines with IC50 values 14.3 and 10.7 μg/mL, respectively. Interestingly, acetate derivative of isolated laevifonol (2) and ampelopsin F (3) was found to possess potent activities towards MCF-7 cancer cell line with IC50 values 2.8 and 3.3 μg/mL, respectively, in comparison to the parental compounds that demonstrated weak activities (IC50 > 50 μg/mL). For the antibacterial assay, compounds 10 and 12 showed moderate activities towards Gram-positive bacterial strains (MIC ≤ 50 μM).

Conclusion: 14 known oligomeric resveratrol types of compounds have been isolated. The activity of 14 against A549 cell line, 5 against MCF-7 cell line, and 10 and 12 against Gram-positive bacterial strains were the most promising results of this study. While the strong cytotoxicity of acetate derivative (2 and 3) against MCF-7 cell line has revealed the potential of resveratrol oligomers to be used as a template for designing new anticancer drugs.

Keywords: Dipterocarpaceae, Dryobalanops rappa, resveratrol oligomers, cytotoxicity, antibacterial, Gram-positive bacterial.

Graphical Abstract

[1]
Seo, E.K.; Kinghorn, A.D. Bioactive constituents of the family Dipterocarpaceae. Studies Nat Prod Chem, 2000, 23(Part D), 531-561.
[http://dx.doi.org/10.1016/S1572-5995(00)80137-4]
[2]
Lin, M.; Yao, C.S. Natural oligostilbenes. In: Studies in Natural Products Chemistry Elsevier; Atta-ur, Rehman, Ed.; , 2006; Volume 33, pp. 601-644.
[http://dx.doi.org/10.1016/S1572-5995(06)80035-9]
[3]
Cichewicz, R.H.; Kouzi, S.A. Resveratrol oligomers: Structure, chemistry, and biological activity. In: Studies in Natural Products Chemistry Elsevier; Atta-ur, Rehman, Ed.; , 2002; Volume 26, pp. 507-579.
[4]
Xiao, K.; Zhang, H-J.; Xuan, L-J.; Zhang, J.; Xu, Y-M.; Bai, D-L. Stilbenoids: Chemistry and bioactivities. Studies in Natural Products Chemistry Elsevier, 2008, Volume 34, 453-646.
[5]
Sáez, V.; Pastene, E.; Vergara, C.; Mardones, C.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Gómez, M.V.; Theoduloz, C.; Riquelme, S.; von Baer, D. Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chem., 2018, 265, 101-110.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.050] [PMID: 29884360]
[6]
Ha, D.T.; Long, P.T.; Hien, T.T.; Tuan, D.T.; An, N.T.T.; Khoi, N.M.; Van Oanh, H.; Hung, T.M. Anti-inflammatory effect of oligostilbenoids from Vitis heyneana in LPS-stimulated RAW 264.7 macrophages via suppressing the NF-κB activation. Chem. Cent. J., 2018, 12(1), 14.
[http://dx.doi.org/10.1186/s13065-018-0386-5] [PMID: 29442202]
[7]
Tieng, F.Y.F.; Latifah, S.Y.; Md Hashim, N.F.; Khaza’ai, H.; Ahmat, N.; Gopalsamy, B.; Wibowo, A.; Ampelopsin, E. Ampelopsin e reduces the invasiveness of the triple negative breast cancer cell line, MDA-MB-231. Molecules, 2019, 24(14), 2619.
[http://dx.doi.org/10.3390/molecules24142619] [PMID: 31323836]
[8]
Saroyobudiono, H.; Juliawaty, L.D.; Syah, Y.M.; Achmad, S.A.; Hakim, E.H.; Latip, J.; Said, I.M. Oligostilbenoids from Shorea gibbosa and their cytotoxic properties against P-388 cells. J. Nat. Med., 2008, 62(2), 195-198.
[http://dx.doi.org/10.1007/s11418-007-0205-0] [PMID: 18404322]
[9]
Ha, T.; Chen, Q.C.; Hung, T.M.; Youn, U.J.; Ngoc, T.M.; Thuong, P.T.; Kim, H.J.; Seong, Y.H.; Min, B.S.; Bae, K. Stilbenes and oligostilbenes from leaf and stem of Vitis amurensis and their cytotoxic activity. Arch. Pharm. Res., 2009, 32(2), 177-183.
[http://dx.doi.org/10.1007/s12272-009-1132-2] [PMID: 19280145]
[10]
Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents, 2019, 53(6), 716-723.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.02.015] [PMID: 30825504]
[11]
Uriho, A.; Tang, X.; Le, G.; Yang, S.; Harimana, Y.; Ishimwe, S.P.; Yiping, L.; Zhang, K.; Ma, S.; Muhoza, B. Effects of resveratrol on mitochondrial biogenesis and physiological diseases. Adv. Tradit. Med., 2021, 21(1), 1-14.
[http://dx.doi.org/10.1007/s13596-020-00492-0]
[12]
Yang, Y.; Tian, W.; Yang, L.; Zhang, Q.; Zhu, M.; Liu, Y.; Li, J.; Yang, L.; Liu, J.; Shen, Y.; Qi, Z. Gemcitabine potentiates anti-tumor effect of resveratrol on pancreatic cancer via down-regulation of VEGF-B. J. Cancer Res. Clin. Oncol., 2021, 147(1), 93-103.
[http://dx.doi.org/10.1007/s00432-020-03384-7] [PMID: 32897433]
[13]
Yang, R.; Lv, Y.; Miao, L.; Zhang, H.; Qu, X.; Chen, J.; Xu, B.; Yang, B.; Fu, J.; Tan, C.; Chen, H.; Wang, X. resveratrol attenuates meningitic Escherichia coli-mediated blood-brain barrier disruption. ACS Infect. Dis., 2021, 7(4), 777-789.
[http://dx.doi.org/10.1021/acsinfecdis.0c00564] [PMID: 33723986]
[14]
Eungsuwan, N.; Chayjarung, P.; Pankam, J.; Pilaisangsuree, V.; Wongshaya, P.; Kongbangkerd, A.; Sriphannam, C.; Limmongkon, A. Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. J. Biotechnol., 2021, 326, 28-36.
[http://dx.doi.org/10.1016/j.jbiotec.2020.12.006] [PMID: 33359213]
[15]
Mattio, L.M.; Catinella, G.; Dallavalle, S.; Pinto, A. Stilbenoids: a natural arsenal against bacterial pathogens. Antibiotics (Basel), 2020, 9(6), 336.
[http://dx.doi.org/10.3390/antibiotics9060336] [PMID: 32570824]
[16]
Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Sci. Rep., 2019, 9(1), 19525.
[http://dx.doi.org/10.1038/s41598-019-55975-1] [PMID: 31862939]
[17]
Catinella, G.; Mattio, L.M.; Musso, L.; Arioli, S.; Mora, D.; Beretta, G.L.; Zaffaroni, N.; Pinto, A.; Dallavalle, S. Structural requirements of benzofuran derivatives dehydro-δ- and dehydro-ε-viniferin for antimicrobial activity against the foodborne pathogen Listeria monocytogenes. Int. J. Mol. Sci., 2020, 21(6), E2168.
[http://dx.doi.org/10.3390/ijms21062168] [PMID: 32245220]
[18]
Kang, J.E.; Jeon, B.J.; Park, M.Y.; Yang, H.J.; Kwon, J.; Lee, D.H.; Kim, B.S. Inhibition of the type III secretion system of Pseudomonas syringae pv. tomato DC3000 by resveratrol oligomers identified in Vitis vinifera L. Pest Manag. Sci., 2020, 76(7), 2294-2303.
[http://dx.doi.org/10.1002/ps.5764] [PMID: 31994325]
[19]
Wibowo, A.; Ahmat, N.; Hamzah, A.S.; Sufian, A.S.; Ismail, N.H.; Ahmad, R.; Jaafar, F.M.; Takayama, H. Malaysianol A, a new trimer resveratrol oligomer from the stem bark of Dryobalanops aromatica. Fitoterapia, 2011, 82(4), 676-681.
[http://dx.doi.org/10.1016/j.fitote.2011.02.006] [PMID: 21338657]
[20]
Wibowo, A.; Ahmat, N.; Hamzah, A.S. Oligostilbenoids from the stem bark of Dryobalanops aromatica. Planta Med., 2011, 77(12), 9-10.
[http://dx.doi.org/10.1055/s-0031-1282493]
[21]
Wibowo, A.; Ahmat, N.; Hamzah, A.S.; Ismail, N.H.; Ahmad, R.; Jaafar, F.M. Resveratrol oligomers from the stem bark of Dryobalanops aromatica. Biochem. Syst. Ecol., 2012, 40(0), 62-64.
[http://dx.doi.org/10.1016/j.bse.2011.09.013]
[22]
Wibowo, A.; Ahmat, N.; Hamzah, A.S.; Low, A.L.M.; Mohamad, S.A.S.; Khong, H.Y.; Sufian, A.S.; Manshoor, N.; Takayama, H. Malaysianol B, an oligostilbenoid derivative from Dryobalanops lanceolata. Fitoterapia, 2012, 83(8), 1569-1575.
[http://dx.doi.org/10.1016/j.fitote.2012.09.004] [PMID: 22982329]
[23]
Wibowo, A.; Ahmat, N.; Hamzah, A.S.; Latif, F.A.; Norrizah, J.S.; Khong, H.Y.; Takayama, H. Identification and biological activity of secondary metabolites from Dryobalanops beccarii. Phytochem. Lett., 2014, 9(0), 117-122.
[http://dx.doi.org/10.1016/j.phytol.2014.05.001]
[24]
Ahmat, N.; Wibowo, A.; Mohamad, S.A.S.; Low, A.L.M.; Sufian, A.S.; Yusof, M.I.M.; Latip, J. A new symmetrical tetramer oligostilbenoid containing tetrahydrofuran ring from the stem bark of Dryobalanops lanceolata. J. Asian Nat. Prod. Res., 2014, 16(11), 1099-1107.
[http://dx.doi.org/10.1080/10286020.2014.938059] [PMID: 25034352]
[25]
Wibowo, A.; Ahmat, N. Chemotaxonomic significance of oligostilbenoids isolated from Dryobalanops in the taxonomic of Dipterocarpaceae. Biochem. Syst. Ecol., 2015, 59(0), 31-35.
[http://dx.doi.org/10.1016/j.bse.2014.12.024]
[26]
Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007, 42(4), 321-324.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.006] [PMID: 17560319]
[27]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[28]
Oshima, Y.; Kamijou, A.; Moritani, H.; Namao, K.I.; Ohizumi, Y. Vitisin A and cis-vitisin A, strongly hepatotoxic plant oligostilbenes from Vitis coignetiae (Vitaceae). J. Org. Chem., 1993, 58(4), 850-853.
[http://dx.doi.org/10.1021/jo00056a016]
[29]
Hirano, Y.; Kondo, R.; Sakai, K. Novel stilbenoids isolated from the heartwood of Shorea laeviforia. J. Wood Sci., 2003, 49(1), 53-58.
[http://dx.doi.org/10.1007/s100860300009]
[30]
Takaya, Y.; Yan, K.X.; Terashima, K.; Ito, J.; Niwa, M. Chemical determination of the absolute structures of resveratrol dimers, ampelopsins A, B, D and F. Tetrahedron, 2002, 58(36), 7259-7265.
[http://dx.doi.org/10.1016/S0040-4020(02)00785-8]
[31]
Luo, H.F.; Zhang, L.P.; Hu, C.Q. Five novel oligostilbenes from the roots of Caragana sinica. Tetrahedron, 2001, 57(23), 4849-4854.
[http://dx.doi.org/10.1016/S0040-4020(01)00427-6]
[32]
Oshima, Y.; Ueno, Y.; Ampelopsins, D. E, H and cis-ampelopsin E, oligostilbenes from Ampelopsis brevipedunculata var. Hancei roots. Phytochemistry, 1993, 33(1), 179-182.
[http://dx.doi.org/10.1016/0031-9422(93)85418-Q]
[33]
Yamada, M.; Hayashi, K.; Hayashi, H.; Ikeda, S.; Hoshino, T.; Tsutsui, K.; Tsutsui, K.; Iinuma, M.; Nozaki, H. Stilbenoids of Kobresia nepalensis (Cyperaceae) exhibiting DNA topoisomerase II inhibition. Phytochemistry, 2006, 67(3), 307-313.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.001] [PMID: 16376391]
[34]
Ito, J.; Niwa, M.; Oshima, Y. A new hydroxystilbene tetramer named isohopeaphenol from Vitis vinifera ‘Kyohou’. Heterocycles, 1997, 45(9), 1809-1813.
[http://dx.doi.org/10.3987/COM-97-7870]
[35]
Li, W.W.; Li, B.G.; Chen, Y.Z. Flexuosol A, a new tetrastilbene from vitis flexuosa. J. Nat. Prod., 1998, 61(5), 646-647.
[http://dx.doi.org/10.1021/np970457v] [PMID: 9599267]
[36]
Yamada, M.; Hayashi, K.; Hayashi, H.; Tsuji, R.; Kakumoto, K.; Ikeda, S.; Hoshino, T.; Tsutsui, K.; Tsutsui, K.; Ito, T.; Iinuma, M.; Nozaki, H.; Nepalensinols, D. Nepalensinols D-G, new resveratrol oligomers from Kobresia nepalensis (Cyperaceae) as potent inhibitors of DNA topoisomerase II. Chem. Pharm. Bull. (Tokyo), 2006, 54(3), 354-358.
[http://dx.doi.org/10.1248/cpb.54.354] [PMID: 16508191]
[37]
Ito, T.; Furusawa, M.; Tanaka, T.; Ali, Z.; Iliya, I.; Nakaya, K.; Murata, J.; Darnaedi, D.; Iinuma, M. Resveratrol derivatives from Upuna borneensis. Chem. Pharm. Bull. (Tokyo), 2005, 53(2), 219-224.
[http://dx.doi.org/10.1248/cpb.53.219] [PMID: 15684522]
[38]
Tanaka, T.; Ito, T.; Nakaya, K.; Iinuma, M.; Riswan, S. Oligostilbenoids in stem bark of Vatica rassak. Phytochemistry, 2000, 54(1), 63-69.
[http://dx.doi.org/10.1016/S0031-9422(00)00026-1] [PMID: 10846749]
[39]
Kuc, J. Phytoalexins, stress metabolism, and disease resistance in plants. Annu. Rev. Phytopathol., 1995, 33(1), 275-297.
[http://dx.doi.org/10.1146/annurev.py.33.090195.001423] [PMID: 18999962]
[40]
Yim, N.; Ha, T.; Trung, T.N.; Kim, J.P.; Lee, S.; Na, M.; Jung, H.; Kim, H.S.; Kim, Y.H.; Bae, K. The antimicrobial activity of compounds from the leaf and stem of Vitis amurensis against two oral pathogens. Bioorg. Med. Chem. Lett., 2010, 20(3), 1165-1168.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.020] [PMID: 20022753]
[41]
Ito, T.; Akao, Y.; Yi, H.; Ohguchi, K.; Matsumoto, K.; Tanaka, T.; Iinuma, M.; Nozawa, Y. Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C. Carcinogenesis, 2003, 24(9), 1489-1497.
[http://dx.doi.org/10.1093/carcin/bgg105] [PMID: 12844481]
[42]
Muhtadi, ; Hakim, E.H.; Juliawaty, L.D.; Syah, Y.M.; Achmad, S.A.; Latip, J.; Ghisalberti, E.L. Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii. Fitoterapia, 2006, 77(7-8), 550-555.
[http://dx.doi.org/10.1016/j.fitote.2006.07.004] [PMID: 17071016]
[43]
Sri-in, P.; Sichaem, J.; Siripong, P.; Tip-pyang, S. Macrostachyols A-D, new oligostilbenoids from the roots of Gnetum macrostachyum. Fitoterapia, 2011, 82(3), 460-465.
[http://dx.doi.org/10.1016/j.fitote.2010.12.008] [PMID: 21185923]
[44]
Iliya, I.; Akao, Y.; Matsumoto, K.; Nakagawa, Y.; Zulfiqar, A.; Ito, T.; Oyama, M.; Murata, H.; Tanaka, T.; Nozawa, Y.; Iinuma, M. Growth inhibition of stilbenoids in Welwitschiaceae and Gnetaceae through induction of apoptosis in human leukemia HL60 cells. Biol. Pharm. Bull., 2006, 29(7), 1490-1492.
[http://dx.doi.org/10.1248/bpb.29.1490] [PMID: 16819196]
[45]
Fang, J.Y.; Lu, Y.Y. Effects of histone acetylation and DNA methylation on p21( WAF1) regulation. World J. Gastroenterol., 2002, 8(3), 400-405.
[http://dx.doi.org/10.3748/wjg.v8.i3.400] [PMID: 12046058]
[46]
Verma, A.; Venkateswaran, K.; Farooque, A.; Bhatt, A.N.; Kalra, N.; Arya, A.; Dhawan, A.; Arya, M.B.; Raj, H.G.; Prasad, A.K.; Parmar, V.S.; Dwarakanath, B.S. Cytotoxic and radio-sensitizing effects of polyphenolic acetates in a human glioma cell line (BMG-1). Curr. Pharm. Des., 2014, 20(7), 1161-1169.
[http://dx.doi.org/10.2174/1381612820666140220112720] [PMID: 24552186]
[47]
Shier, W.T. Mammalian cell culture on $5 a day. A laboratory manual of low cost methods. Nat. Inst. Of Biotech and Appl. Micro; BIOTECH: Philipines, 1991.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy