Abstract
Background & Objective: We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects.
Methods: Resting-state functional MRI was performed on a sample of 101 participants, of which 26 patients with schizophrenia (current psychotic episodes), 24 subjects with Bipolar Disorder (BD), 33 with Major Depressive Disorder (MDD) (both BD and MDD patients were in a current depressive episode), and 21 healthy controls. Spectral Dynamic Causal Modeling was used to calculate the coupling values between eight regions of interest, including the anterior precuneus (PRC), anterior hippocampus, anterior insula, angular gyrus, lateral Orbitofrontal Cortex (OFC), middle frontal gyrus, planum temporale, and anterior thalamus.
Results & Conclusion: We identified disturbed effective connectivity from the left lateral orbitofrontal cortex to the left anterior precuneus that differed significantly between unipolar depression, where the influence was inhibitory, and bipolar depression, where the effect was excitatory. A logistic regression analysis correctly classified 75% of patients with unipolar and bipolar depression based solely on the coupling values of this connection. In addition, patients with schizophrenia demonstrated negative effective connectivity from the anterior PRC to the lateral OFC, which distinguished them from healthy controls and patients with major depression. Future studies with unmedicated patients will be needed to establish the replicability of our findings.
Keywords: Effective connectivity, transdiagnostic, schizophrenia, bipolar disorder, major depression, resting state MRI, spectral Dynamic Causal Modeling, precuneus, orbitofrontal cortex.
[http://dx.doi.org/10.1186/s13643-020-1274-3] [PMID: 31948489]
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[http://dx.doi.org/10.1192/bjp.bp.112.123463] [PMID: 23661768]
[http://dx.doi.org/10.1016/j.jad.2013.05.060] [PMID: 23806588]
[http://dx.doi.org/10.3389/fpsyt.2020.00432] [PMID: 32499729]
[http://dx.doi.org/10.1176/ps.2008.59.5.500] [PMID: 18451005]
[http://dx.doi.org/10.1177/070674371005500303] [PMID: 20370962]
[PMID: 16633444]
[http://dx.doi.org/10.1093/schbul/sbn135] [PMID: 19011234]
[http://dx.doi.org/10.4274/balkanmedj.2017.6.0002] [PMID: 29215334]
[http://dx.doi.org/10.2147/NDT.S170989] [PMID: 30425491]
[http://dx.doi.org/10.1016/j.tics.2011.08.003] [PMID: 21908230]
[http://dx.doi.org/10.1016/j.euroneuro.2014.02.011] [PMID: 24726580]
[http://dx.doi.org/10.1016/j.biopsych.2018.07.020] [PMID: 30177256]
[http://dx.doi.org/10.1089/brain.2011.0008] [PMID: 22432952]
[http://dx.doi.org/10.1016/j.neuroimage.2013.12.009] [PMID: 24345387]
[http://dx.doi.org/10.1016/S1053-8119(03)00202-7] [PMID: 12948688]
[http://dx.doi.org/10.1016/j.neuroimage.2014.11.027] [PMID: 25463471]
[http://dx.doi.org/10.1002/hbm.23070] [PMID: 26611711]
[http://dx.doi.org/10.1016/j.pscychresns.2019.01.004] [PMID: 30684896]
[http://dx.doi.org/10.1016/j.jad.2018.04.069] [PMID: 29751242]
[PMID: 9881538]
[http://dx.doi.org/10.1192/bjp.134.4.382] [PMID: 444788]
[http://dx.doi.org/10.1093/schbul/13.2.261] [PMID: 3616518]
[http://dx.doi.org/10.1590/S1516-44462012000200014] [PMID: 22729418]
[http://dx.doi.org/10.3389/fpsyt.2018.00333] [PMID: 30083111]
[http://dx.doi.org/10.1016/j.schres.2010.05.006] [PMID: 20605415]
[http://dx.doi.org/10.1016/j.pscychresns.2005.07.004] [PMID: 16253482]
[PMID: 18592043]
[http://dx.doi.org/10.1016/j.euroneuro.2011.05.003] [PMID: 21723712]
[http://dx.doi.org/10.1111/j.1399-5618.2009.00662.x] [PMID: 19267697]
[http://dx.doi.org/10.1016/j.pneurobio.2004.03.006] [PMID: 15157726]
[http://dx.doi.org/10.1093/brain/aww255] [PMID: 27742666]
[http://dx.doi.org/10.3389/fpsyt.2018.00767] [PMID: 30733690]
[http://dx.doi.org/10.1111/j.1399-5618.2012.01033.x] [PMID: 22834460]
[http://dx.doi.org/10.1016/j.euroneuro.2013.07.007] [PMID: 23968965]
[http://dx.doi.org/10.1016/j.euroneuro.2015.04.016] [PMID: 26028038]
[http://dx.doi.org/10.1093/brain/awl004] [PMID: 16399806]
[http://dx.doi.org/10.1192/bjp.163.6.755] [PMID: 8306117]
[http://dx.doi.org/10.1111/j.1399-5618.2007.00457.x] [PMID: 17680919]
[http://dx.doi.org/10.1016/j.neuroimage.2008.05.059] [PMID: 18598773]
[http://dx.doi.org/10.1196/annals.1440.011]
[http://dx.doi.org/10.1146/annurev-clinpsy-032511-143049] [PMID: 22224834]
[http://dx.doi.org/10.1016/j.nicl.2015.11.021] [PMID: 26904405]
[http://dx.doi.org/10.1093/schbul/sbu080] [PMID: 24939881]
[http://dx.doi.org/10.1002/hbm.22560] [PMID: 24909300]
[http://dx.doi.org/10.1093/schbul/sbn176] [PMID: 19155345]
[http://dx.doi.org/10.1016/j.biopsych.2005.10.005] [PMID: 16427028]
[http://dx.doi.org/10.1093/schbul/sbq131] [PMID: 21123853]
[http://dx.doi.org/10.1111/j.1440-1819.2011.02293.x] [PMID: 22250608]
[http://dx.doi.org/10.1016/j.pscychresns.2012.06.003] [PMID: 23146249]
[http://dx.doi.org/10.1016/j.neuroimage.2009.12.031] [PMID: 20006717]
[http://dx.doi.org/10.1093/brain/awm173] [PMID: 17690132]
[http://dx.doi.org/10.1093/schbul/sbm043] [PMID: 17493957]
[http://dx.doi.org/10.1016/S0074-7742(06)78003-5] [PMID: 17349858]
[PMID: 34163013]
[http://dx.doi.org/10.1109/EMBC.2019.8856453]
[http://dx.doi.org/10.1111/acps.12752] [PMID: 28504840]
[http://dx.doi.org/10.1002/hbm.22663] [PMID: 25332057]