Review Article

为什么使用营养保健策略治疗肠易激综合征?

卷 29, 期 12, 2022

发表于: 07 January, 2022

页: [2075 - 2092] 页: 18

弟呕挨: 10.2174/0929867328666210917115255

价格: $65

摘要

肠易激综合征(IBS)是一种慢性功能性肠道疾病,通常与压力相关,由许多腹部症状确定,其中最重要的是慢性内脏腹痛。因此,IBS通常会损害患者的生活质量,而且,它经常与抑郁和焦虑症状有关。IBS的治疗主要集中在症状缓解上。不幸的是,到目前为止,还没有发现有效的治疗方法。因此,制定新的抗IBS干预措施非常重要。本简要综述的目的是总结目前在IBS治疗中补充营养保健品的证据,包括益生菌,益生元,合生元,丁酸盐,棕榈酰乙醇酰胺和初乳。由于营养保健品是非处方产品,该评价的目的是更好地告知药物化学家和从业者可能的有益机制以及这些疗法提供的许多优点。所有这些化合物都呈现出多种作用机制,例如恢复生理微生物群,增强胃肠道屏障的功能,免疫调节,抗炎和抗伤害感受活性。从文献数据中可以看出,这些化合物不仅能够改善IBS症状,而且主要表现出最佳的安全性和耐受性。虽然必须进行广泛的研究以加强迄今为止有限的临床试验的证据,但考虑到处方药对特殊人群患者的警告,如老年人,年轻人或需要联合治疗的患者,补充这些化合物可能是有用的。最后,营养保健方法可以提高对治疗的依从性,因为与药物治疗相比,营养保健方法更容易被患者接受。

关键词: IBS,营养保健品,益生菌,益生元,合生元,丁酸盐,棕榈酰乙醇酰胺和初乳。

[1]
Lovell, R.M.; Ford, A.C. Global prevalence of and risk factors for irritable bowel syndrome: A meta-analysis. Clin. Gastroenterol. Hepatol., 2012, 10(7), 712-721.e4.
[http://dx.doi.org/10.1016/j.cgh.2012.02.029] [PMID: 22426087]
[2]
Moloney, R.D.; Johnson, A.C.; O’Mahony, S.M.; Dinan, T.G.; Greenwood-Van Meerveld, B.; Cryan, J.F. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci. Ther., 2016, 22(2), 102-117.
[http://dx.doi.org/10.1111/cns.12490] [PMID: 26662472]
[3]
Bhattarai, Y.; Muniz Pedrogo, D.A.; Kashyap, P.C. Irritable bowel syndrome: A gut microbiota-related disorder? Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(1), G52-G62.
[http://dx.doi.org/10.1152/ajpgi.00338.2016] [PMID: 27881403]
[4]
Moalem, G.; Tracey, D.J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Brain Res. Rev., 2006, 51(2), 240-264.
[http://dx.doi.org/10.1016/j.brainresrev.2005.11.004] [PMID: 16388853]
[5]
Greenwood-Van Meerveld, B.; Johnson, A.C. Stress-induced chronic visceral pain of gastrointestinal origin. Front. Syst. Neurosci., 2017, 11, 86.
[http://dx.doi.org/10.3389/fnsys.2017.00086] [PMID: 29213232]
[6]
Späth, M. Current experience with 5-HT3 receptor antagonists in fibromyalgia. Rheum. Dis. Clin. North Am., 2002, 28(2), 319-328.
[http://dx.doi.org/10.1016/S0889-857X(01)00014-X] [PMID: 12122920]
[7]
Jenkins, T.A.; Nguyen, J.C.; Polglaze, K.E.; Bertrand, P.P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain Axis. Nutrients, 2016, 8(1), 877-884.
[http://dx.doi.org/10.3390/nu8010056] [PMID: 26805875]
[8]
Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci., 2014, 264(8), 651-660.
[http://dx.doi.org/10.1007/s00406-014-0502-z] [PMID: 24705634]
[9]
Marger, F.; Gelot, A.; Alloui, A.; Matricon, J.; Ferrer, J.F.; Barrère, C.; Pizzoccaro, A.; Muller, E.; Nargeot, J.; Snutch, T.P.; Eschalier, A.; Bourinet, E.; Ardid, D. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 11268-11273.
[http://dx.doi.org/10.1073/pnas.1100869108] [PMID: 21690417]
[10]
Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. Genes Brain Behav., 2014, 13(1), 69-86.
[http://dx.doi.org/10.1111/gbb.12109] [PMID: 24286462]
[11]
Sun, M.F.; Shen, Y.Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Res. Rev., 2018, 45, 53-61.
[http://dx.doi.org/10.1016/j.arr.2018.04.004] [PMID: 29705121]
[12]
Ford, A.C.; Brandt, L.J.; Young, C.; Chey, W.D.; Foxx-Orenstein, A.E.; Moayyedi, P. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol., 2009, 104(7), 1831-1843.
[http://dx.doi.org/10.1038/ajg.2009.223] [PMID: 19471254]
[13]
Binienda, A.; Storr, M.; Fichna, J.; Salaga, M. Efficacy and safety of serotonin receptor ligands in the treatment of irritable bowel syndrome: a review. Curr. Drug Targets, 2018, 19(15), 1774-1781.
[http://dx.doi.org/10.2174/1389450119666171227225408] [PMID: 29284389]
[14]
Sikander, A.; Rana, S.V.; Prasad, K.K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin. Chim. Acta, 2009, 403(1-2), 47-55.
[http://dx.doi.org/10.1016/j.cca.2009.01.028] [PMID: 19361459]
[15]
Gershon, M.D. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J. Clin. Gastroenterol., 2005, 39(5)(Suppl. 3), S184-S193.
[http://dx.doi.org/10.1097/01.mcg.0000156403.37240.30] [PMID: 15798484]
[16]
Friedrich, M.; Grady, S.E.; Wall, G.C. Effects of antidepressants in patients with irritable bowel syndrome and comorbid depression. Clin. Ther., 2010, 32(7), 1221-1233.
[http://dx.doi.org/10.1016/j.clinthera.2010.07.002] [PMID: 20678672]
[17]
Jembrek, M.J.; Auteri, M.; Serio, R.; Vlainic, J. GABAergic system in action: connection to gastrointestinal stress-related disorders. Curr. Pharm. Des., 2017, 23(27), 4003-4011.
[http://dx.doi.org/10.2174/1381612823666170209155753] [PMID: 28190395]
[18]
Chen, L.; Ilham, S.J.; Feng, B. Pharmacological approach for managing pain in irritable bowel syndrome: a review article. Anesth. Pain Med., 2017, 7(2) ,e42747
[http://dx.doi.org/10.5812/aapm.42747]
[19]
Videlock, E.J.; Shih, W.; Adeyemo, M.; Mahurkar-Joshi, S.; Presson, A.P.; Polytarchou, C.; Alberto, M.; Iliopoulos, D.; Mayer, E.A.; Chang, L. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression. Psychoneuroendocrinol, 2016, 69, 67-76.
[http://dx.doi.org/10.1016/j.psyneuen.2016.03.016] [PMID: 27038676]
[20]
Ford, A.C.; Harris, L.A.; Lacy, B.E.; Quigley, E.M.M.; Moayyedi, P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther., 2018, 48(10), 1044-1060.
[http://dx.doi.org/10.1111/apt.15001] [PMID: 30294792]
[21]
Grundmann, O.; Yoon, S.L. Complementary and alternative medicines in irritable bowel syndrome: An integrative view. World J. Gastroenterol., 2014, 20(2), 346-362.
[http://dx.doi.org/10.3748/wjg.v20.i2.346] [PMID: 24574705]
[22]
Sears, C.L. A dynamic partnership: celebrating our gut flora. Anaerobe, 2005, 11(5), 247-251.
[http://dx.doi.org/10.1016/j.anaerobe.2005.05.001] [PMID: 16701579]
[23]
Beaugerie, L.; Petit, J.C. Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Pract. Res. Clin. Gastroenterol., 2004, 18(2), 337-352.
[http://dx.doi.org/10.1016/j.bpg.2003.10.002] [PMID: 15123074]
[24]
Dusko Ehrlich, S. MetaHIT consortium. Metagenomics of the intestinal microbiota: potential applications. Gastroenterol. Clin. Biol., 2010, 34(Suppl. 1), S23-S28.
[http://dx.doi.org/10.1016/S0399-8320(10)70017-8] [PMID: 20889001]
[25]
Tuddenham, S.; Sears, C.L. The intestinal microbiome and health. Curr. Opin. Infect. Dis., 2015, 28(5), 464-470.
[http://dx.doi.org/10.1097/QCO.0000000000000196] [PMID: 26237547]
[26]
Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res., 2017, 4, 14.
[http://dx.doi.org/10.1186/s40779-017-0122-9] [PMID: 28465831]
[27]
Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.; Mittal, J.; Yan, D.; Eshraghi, A.A.; Deo, S.K.; Daunert, S.; Liu, X.Z. Neurotransmitters: the critical modulators regulating gut-brain axis. J. Cell. Physiol., 2017, 232(9), 2359-2372.
[http://dx.doi.org/10.1002/jcp.25518] [PMID: 27512962]
[28]
Collins, S.M. A role for the gut microbiota in IBS. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 497-505.
[http://dx.doi.org/10.1038/nrgastro.2014.40] [PMID: 24751910]
[29]
Ishaque, S.M.; Khosruzzaman, S.M.; Ahmed, D.S.; Sah, M.P. A randomized placebo-controlled clinical trial of a multi-strain probiotic formulation (Bio-Kult®) in the management of diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol., 2018, 18(1), 71.
[http://dx.doi.org/10.1186/s12876-018-0788-9] [PMID: 29801486]
[30]
Verna, E.C.; Lucak, S. Use of probiotics in gastrointestinal disorders: what to recommend? Therap. Adv. Gastroenterol., 2010, 3(5), 307-319.
[http://dx.doi.org/10.1177/1756283X10373814] [PMID: 21180611]
[31]
Ghoshal, U.C.; Shukla, R.; Ghoshal, U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver, 2017, 11(2), 196-208.
[http://dx.doi.org/10.5009/gnl16126] [PMID: 28274108]
[32]
Didari, T.; Mozaffari, S.; Nikfar, S.; Abdollahi, M. Effectiveness of probiotics in irritable bowel syndrome: Updated systematic review with meta-analysis. World J. Gastroenterol., 2015, 21(10), 3072-3084.
[http://dx.doi.org/10.3748/wjg.v21.i10.3072] [PMID: 25780308]
[33]
Halpern, G.M.; Prindiville, T.; Blankenburg, M.; Hsia, T.; Gershwin, M.E. Treatment of irritable bowel syndrome with Lacteol Fort: A randomized, double-blind, cross-over trial. Am. J. Gastroenterol., 1996, 91(8), 1579-1585.
[PMID: 8759665]
[34]
Niedzielin, K.; Kordecki, H.; Birkenfeld, B. A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol., 2001, 13(10), 1143-1147.
[http://dx.doi.org/10.1097/00042737-200110000-00004] [PMID: 11711768]
[35]
Nobaek, S.; Johansson, M.L.; Molin, G.; Ahrné, S.; Jeppsson, B. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am. J. Gastroenterol., 2000, 95(5), 1231-1238.
[http://dx.doi.org/10.1111/j.1572-0241.2000.02015.x] [PMID: 10811333]
[36]
Ducrotté, P.; Sawant, P.; Jayanthi, V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J. Gastroenterol., 2012, 18(30), 4012-4018.
[http://dx.doi.org/10.3748/wjg.v18.i30.4012] [PMID: 22912552]
[37]
O’Sullivan, M.A.; O’Morain, C.A. Bacterial supplementation in the irritable bowel syndrome. A randomised double-blind placebo-controlled crossover study. Dig. Liver Dis., 2000, 32(4), 294-301.
[http://dx.doi.org/10.1016/S1590-8658(00)80021-3] [PMID: 11515626]
[38]
Pena, J.A.; Versalovic, J. Lactobacillus Rhamnosus GG decreases TNFa production in macrophages by contact independent mechanisms. Cell. Microbiol., 2003, 5, 277-285.
[http://dx.doi.org/10.1046/j.1462-5822.2003.t01-1-00275.x] [PMID: 12675685]
[39]
Kankainen, M.; Paulin, L.; Tynkkynen, S.; von Ossowski, I.; Reunanen, J.; Partanen, P.; Satokari, R.; Vesterlund, S.; Hendrickx, A.P.; Lebeer, S.; De Keersmaecker, S.C.; Vanderleyden, J.; Hämäläinen, T.; Laukkanen, S.; Salovuori, N.; Ritari, J.; Alatalo, E.; Korpela, R.; Mattila-Sandholm, T.; Lassig, A.; Hatakka, K.; Kinnunen, K.T.; Karjalainen, H.; Saxelin, M.; Laakso, K.; Surakka, A.; Palva, A.; Salusjärvi, T.; Auvinen, P.; de Vos, W.M. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc. Natl. Acad. Sci. USA, 2009, 106(40), 17193-17198.
[http://dx.doi.org/10.1073/pnas.0908876106] [PMID: 19805152]
[40]
Pineton de Chambrun, G.; Neut, C.; Chau, A.; Cazaubiel, M.; Pelerin, F.; Justen, P.; Desreumaux, P. A randomized clinical trial of Saccharomyces cerevisiae versus placebo in the irritable bowel syndrome. Dig. Liver Dis., 2015, 47(2), 119-124.
[http://dx.doi.org/10.1016/j.dld.2014.11.007] [PMID: 25488056]
[41]
Lyra, A.; Hillilä, M.; Huttunen, T.; Männikkö, S.; Taalikka, M.; Tennilä, J.; Tarpila, A.; Lahtinen, S.; Ouwehand, A.C.; Veijola, L. Irritable bowel syndrome symptom severity improves equally with probiotic and placebo. World J. Gastroenterol., 2016, 22(48), 10631-10642.
[http://dx.doi.org/10.3748/wjg.v22.i48.10631] [PMID: 28082816]
[42]
Majeed, M.; Nagabhushanam, K.; Natarajan, S.; Sivakumar, A.; Ali, F.; Pande, A.; Majeed, S.; Karri, S.K. Bacillus coagulans MTCC 5856 supplementation in the management of diarrhea predominant Irritable Bowel Syndrome: A double blind randomized placebo controlled pilot clinical study. Nutr. J., 2016, 15, 21.
[http://dx.doi.org/10.1186/s12937-016-0140-6] [PMID: 26922379]
[43]
Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.P.; Cominetti, O.; Welsh, C.; Rieder, A.; Traynor, J.; Gregory, C.; De Palma, G.; Pigrau, M.; Ford, A.C.; Macri, J.; Berger, B.; Bergonzelli, G.; Surette, M.G.; Collins, S.M.; Moayyedi, P.; Bercik, P. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology, 2017, 153(2), 448-459.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.05.003] [PMID: 28483500]
[44]
Dale, H.F.; Rasmussen, S.H.; Asiller, O.O.; Lied, G.A. Probiotics in irritable bowel syndrome: an up-to-date systematic review. Nutrients, 2019, 11(9), 2048.
[http://dx.doi.org/10.3390/nu11092048] [PMID: 31480656]
[45]
Staudacher, H.M.; Whelan, K. Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proc. Nutr. Soc., 2016, 75(3), 306-318.
[http://dx.doi.org/10.1017/S0029665116000021] [PMID: 26908093]
[46]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[47]
Quigley, E.M.M. The enteric microbiota in the pathogenesis and management of constipation. Best Pract. Res. Clin. Gastroenterol., 2011, 25(1), 119-126.
[http://dx.doi.org/10.1016/j.bpg.2011.01.003] [PMID: 21382583]
[48]
Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol., 2018, 9, 1832-1834.
[http://dx.doi.org/10.3389/fimmu.2018.01832] [PMID: 30154787]
[49]
Varjú, P.; Farkas, N.; Hegyi, P.; Garami, A.; Szabó, I.; Illés, A.; Solymár, M.; Vincze, Á.; Balaskó, M.; Pár, G.; Bajor, J.; Szűcs, Á.; Huszár, O.; Pécsi, D.; Czimmer, J. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies. PLoS One, 2017, 12(8) ,e0182942
[http://dx.doi.org/10.1371/journal.pone.0182942] [PMID: 28806407]
[50]
Pedersen, N.; Vegh, Z.; Burisch, J.; Jensen, L.; Ankersen, D.V.; Felding, M.; Andersen, N.N.; Munkholm, P. Ehealth monitoring in irritable bowel syndrome patients treated with low fermentable oligo-, di-, mono-saccharides and polyols diet. World J. Gastroenterol., 2014, 20(21), 6680-6684.
[http://dx.doi.org/10.3748/wjg.v20.i21.6680] [PMID: 24914395]
[51]
McIntosh, K.; Reed, D.E.; Schneider, T. FODMAPs alter symptoms and the metabolome of patients with IBS: Arandomised controlled trial; Gut. Published Online First, 2016. 14.
[http://dx.doi.org/10.1136/gutjnl-2015-311339] [PMID: 26976734]
[52]
Tana, C.; Umesaki, Y.; Imaoka, A. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil., 2010, 22(5), 512-519.
[53]
Mazzawi, T.; Hausken, T.; Gundersen, D.; El-Salhy, M. Dietary guidance normalizes large intestinal endocrine cell densities in patients with irritable bowel syndrome. Eur. J. Clin. Nutr., 2016, 70(2), 175-181.
[http://dx.doi.org/10.1038/ejcn.2015.191] [PMID: 26603880]
[54]
Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology, 2014, 146(1), 67-75.e5.
[http://dx.doi.org/10.1053/j.gastro.2013.09.046] [PMID: 24076059]
[55]
Staudacher, H.M.; Lomer, M.C.E.; Louis, P. The low FODMAP diet reduces symptoms in irritable bowel syndrome compared with placebo diet and the microbiota alterations may be prevented by probiotic co-administration:A 2x2 factorial randomised controlled trial. Gastroenterol, 2016, 150(4), S230.
[http://dx.doi.org/10.1016/S0016-5085(16)30842-3]
[56]
Pedersen, N.; Ankersen, D.V.; Felding, M.; Wachmann, H.; Végh, Z.; Molzen, L.; Burisch, J.; Andersen, J.R.; Munkholm, P. Low-FODMAP diet reduces irritable bowel symptoms in patients with inflammatory bowel disease. World J. Gastroenterol., 2017, 23(18), 3356-3366.
[http://dx.doi.org/10.3748/wjg.v23.i18.3356] [PMID: 28566897]
[57]
Guerreiro, M.M.; Santos, Z.; Carolino, E.; Correa, J.; Cravo, M.; Augusto, F.; Chagas, C.; Guerreiro, C.S. Effectiveness of two dietary approaches on the quality of life and gastrointestinal symptoms of individuals with irritable bowel syndrome. J. Clin. Med., 2020, 9(1), 125.
[http://dx.doi.org/10.3390/jcm9010125] [PMID: 31906563]
[58]
Aziz, I.; Trott, N.; Briggs, R. Efficacy of a gluten-free diet in subjects with irritable bowel syndrome-diarrhea unaware of their HLA-DQ2/8 genotype. Clin. Gastroenterol. Hepatol., 2016, 14(5), 696-703.
[59]
Wahnschaffe, U.; Schulzke, J.D.; Zeitz, M.; Ullrich, R. Predictors of clinical response to gluten-free diet in patients diagnosed with diarrhea-predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol., 2007, 5(7), 844-850.
[http://dx.doi.org/10.1016/j.cgh.2007.03.021] [PMID: 17553753]
[60]
Vazquez-Roque, M.I.; Camilleri, M.; Smyrk, T.; Murray, J.A.; Marietta, E.; O’Neill, J.; Carlson, P.; Lamsam, J.; Janzow, D.; Eckert, D.; Burton, D.; Zinsmeister, A.R. A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology, 2013, 144(5), 903-911.e3.
[http://dx.doi.org/10.1053/j.gastro.2013.01.049] [PMID: 23357715]
[61]
Biesiekierski, J R.; Peters, S L.; Newnham, E D. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterol, 2013, 145(2), 320-328.
[http://dx.doi.org/10.1053/j.gastro.2013.04.051]
[62]
Scarpato, E.; Auricchio, R.; Penagini, F.; Campanozzi, A.; Zuccotti, G.V.; Troncone, R. Efficacy of the gluten free diet in the management of functional gastrointestinal disorders: A systematic review on behalf of the Italian Society of Paediatrics. Ital. J. Pediatr., 2019, 45(1), 9.
[http://dx.doi.org/10.1186/s13052-019-0606-1] [PMID: 30635010]
[63]
Chen, C.C.; Walker, W.A. Probiotics and prebiotics: role in clinical disease states. Adv. Pediatr., 2005, 52, 77-113.
[http://dx.doi.org/10.1016/j.yapd.2005.03.001] [PMID: 16124337]
[64]
Moser, A.M.; Spindelboeck, W.; Halwachs, B.; Strohmaier, H.; Kump, P.; Gorkiewicz, G.; Högenauer, C. Effects of an oral synbiotic on the gastrointestinal immune system and microbiota in patients with diarrhea-predominant irritable bowel syndrome. Eur. J. Nutr., 2019, 58(7), 2767-2778.
[PMID: 30251020]
[65]
Tsuchiya, J.; Barreto, R.; Okura, R.; Kawakita, S.; Fesce, E.; Marotta, F. Single-blind follow-up study on the effectiveness of a symbiotic preparation in irritable bowel syndrome. Chin. J. Dig. Dis., 2004, 5(4), 169-174.
[http://dx.doi.org/10.1111/j.1443-9573.2004.00176.x] [PMID: 15612887]
[66]
Colecchia, A.; Vestito, A.; La Rocca, A.; Pasqui, F.; Nikiforaki, A.; Festi, D. Effect of a symbiotic preparation on the clinical manifestations of irritable bowel syndrome, constipation-variant. Results of an open, uncontrolled multicenter study. Minerva Gastroenterol. Dietol., 2006, 52(4), 349-358.
[PMID: 17108864]
[67]
Andriulli, A.; Neri, M.; Loguercio, C.; Terreni, N.; Merla, A.; Cardarella, M.P.; Federico, A.; Chilovi, F.; Milandri, G.L.; De Bona, M.; Cavenati, S.; Gullini, S.; Abbiati, R.; Garbagna, N.; Cerutti, R.; Grossi, E. Clinical trial on the efficacy of a new symbiotic formulation, Flortec, in patients with irritable bowel syndrome: A multicenter, randomized study. J. Clin. Gastroenterol., 2008, 42(Suppl. 3 Pt 2), S218-S223.
[http://dx.doi.org/10.1097/MCG.0b013e31817fadd6] [PMID: 18685503]
[68]
Cappello, C.; Tremolaterra, F.; Pascariello, A.; Ciacci, C.; Iovino, P. A randomised clinical trial (RCT) of a symbiotic mixture in patients with irritable bowel syndrome (IBS): effects on symptoms, colonic transit and quality of life. Int. J. Colorectal Dis., 2013, 28(3), 349-358.
[http://dx.doi.org/10.1007/s00384-012-1552-1] [PMID: 22885882]
[69]
Lee, S.H.; Cho, D.Y.; Lee, S.H.; Han, K.S.; Yang, S.W.; Kim, J.H.; Lee, S.H.; Kim, S.M.; Kim, K.N. A randomized clinical trial of synbiotics in irritable bowel syndrome: dose-dependent effects on gastrointestinal symptoms and fatigue. Korean J. Fam. Med., 2019, 40(1), 2-8.
[http://dx.doi.org/10.4082/kjfm.17.0064] [PMID: 30360032]
[70]
Pedersen, N.; Andersen, N.N.; Végh, Z.; Jensen, L.; Ankersen, D.V.; Felding, M.; Simonsen, M.H.; Burisch, J.; Munkholm, P. Ehealth: low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome. World J. Gastroenterol., 2014, 20(43), 16215-16226.
[http://dx.doi.org/10.3748/wjg.v20.i43.16215] [PMID: 25473176]
[71]
Bourdu, S.; Dapoigny, M.; Chapuy, E.; Artigue, F.; Vasson, M.P.; Dechelotte, P.; Bommelaer, G.; Eschalier, A.; Ardid, D. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology, 2005, 128(7), 1996-2008.
[http://dx.doi.org/10.1053/j.gastro.2005.03.082] [PMID: 15940632]
[72]
Sun, Q.; Jia, Q.; Song, L.; Duan, L. Alterations in fecal short-chain fatty acids in patients with irritable bowel syndrome: A systematic review and meta-analysis. Medicine (Baltimore), 2019, 98(7) ,e14513
[http://dx.doi.org/10.1097/MD.0000000000014513] [PMID: 30762787]
[73]
Farup, P.G.; Rudi, K.; Hestad, K. Faecal short-chain fatty acids - a diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol., 2016, 16(1), 51.
[http://dx.doi.org/10.1186/s12876-016-0446-z] [PMID: 27121286]
[74]
Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett., 2002, 217(2), 133-139.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11467.x] [PMID: 12480096]
[75]
Sleiman, S.F.; Basso, M.; Mahishi, L.; Kozikowski, A.P.; Donohoe, M.E.; Langley, B.; Ratan, R.R. Putting the ‘HAT’ back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin. Investig. Drugs, 2009, 18(5), 573-584.
[http://dx.doi.org/10.1517/13543780902810345] [PMID: 19388875]
[76]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[77]
Bordin, M.; D’Atri, F.; Guillemot, L.; Citi, S. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol. Cancer Res., 2004, 2(12), 692-701.
[PMID: 15634758]
[78]
Manrique Vergara, D.; González Sánchez, M.E. Short chain fatty acids (butyric acid) and intestinal diseases. Nutr. Hosp., 2017, 34(Suppl. 4), 58-61.
[http://dx.doi.org/10.20960/nh.1573] [PMID: 29156934]
[79]
Gibson, P.R.; Rosella, O.; Wilson, A.J.; Mariadason, J.M.; Rickard, K.; Byron, K.; Barkla, D.H. Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis, 1999, 20(4), 539-544.
[http://dx.doi.org/10.1093/carcin/20.4.539] [PMID: 10223179]
[80]
Kotunia, A.; Woliński, J.; Laubitz, D.; Jurkowska, M.; Romé, V.; Guilloteau, P.; Zabielski, R. Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. J. Physiol. Pharmacol., 2004, 55(Suppl. 2), 59-68.
[PMID: 15608361]
[81]
Banasiewicz, T.; Krokowicz, Ł.; Stojcev, Z.; Kaczmarek, B.F.; Kaczmarek, E.; Maik, J.; Marciniak, R.; Krokowicz, P.; Walkowiak, J.; Drews, M. Microencapsulated sodium butyrate reduces the frequency of abdominal pain in patients with irritable bowel syndrome. Colorectal Dis., 2013, 15(2), 204-209.
[http://dx.doi.org/10.1111/j.1463-1318.2012.03152.x] [PMID: 22738315]
[82]
Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. The role of butyrate on colonic function. Aliment. Pharmacol. Ther., 2008, 27(2), 104-119.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x] [PMID: 17973645]
[83]
Ratajczak, W.; Rył, A.; Mizerski, A.; Walczakiewicz, K.; Sipak, O.; Laszczyńska, M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol., 2019, 66(1), 1-12.
[http://dx.doi.org/10.18388/abp.2018_2648] [PMID: 30831575]
[84]
Chen, T.; Noto, D.; Hoshino, Y.; Mizuno, M.; Miyake, S. Butyrate suppresses demyelination and enhances remyelination. J. Neuroinflammation, 2019, 16(1), 165.
[http://dx.doi.org/10.1186/s12974-019-1552-y] [PMID: 31399117]
[85]
Tontini, G.E.; Stella, A.; Campieri, M.; Vecchi, M. Association among the use of probiotics and butyrate in Irritable bowel syndrome. Abstr in National meeting of Gastroenterology and digestive endoscopy,; Rome,, 2009.
[86]
Russo, R.; Cristiano, C.; Avagliano, C.; De Caro, C.; La Rana, G.; Raso, G.M.; Canani, R.B.; Meli, R.; Calignano, A. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr. Med. Chem., 2018, 25(32), 3930-3952.
[http://dx.doi.org/10.2174/0929867324666170216113756] [PMID: 28215162]
[87]
Storr, M.A.; Sharkey, K.A. The endocannabinoid system and gut-brain signalling. Curr. Opin. Pharmacol., 2007, 7(6), 575-582.
[http://dx.doi.org/10.1016/j.coph.2007.08.008] [PMID: 17904903]
[88]
Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev., 2006, 58(3), 389-462.
[http://dx.doi.org/10.1124/pr.58.3.2] [PMID: 16968947]
[89]
Fichna, J.; Wood, J.T.; Papanastasiou, M.; Vadivel, S.K.; Oprocha, P.; Sałaga, M.; Sobczak, M.; Mokrowiecka, A.; Cygankiewicz, A.I.; Zakrzewski, P.K.; Małecka-Panas, E.; Krajewska, W.M.; Kościelniak, P.; Makriyannis, A.; Storr, M.A. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: A pilot study. PLoS One, 2013, 8(12) ,e85073
[http://dx.doi.org/10.1371/journal.pone.0085073] [PMID: 24386448]
[90]
Brugnatelli, V.; Turco, F.; Freo, U.; Zanette, G. Irritable bowel syndrome: manipulating the endocannabinoid system as first-line treatment. Front. Neurosci., 2020, 14, 371.
[http://dx.doi.org/10.3389/fnins.2020.00371] [PMID: 32372912]
[91]
Skaper, S.D.; Facci, L.; Giusti, P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol. Neurobiol., 2013, 48(2), 340-352.
[http://dx.doi.org/10.1007/s12035-013-8487-6] [PMID: 23813098]
[92]
Cordaro, M.; Scuto, M.; Siracusa, R.; D’amico, R.; Filippo Peritore, A.; Gugliandolo, E.; Fusco, R.; Crupi, R.; Impellizzeri, D.; Pozzebon, M.; Alfonsi, D.; Mattei, N.; Marcolongo, G.; Evangelista, M.; Cuzzocrea, S.; Di Paola, R. Effect of N-palmitoylethanolamine-oxazoline on comorbid neuropsychiatric disturbance associated with inflammatory bowel disease. FASEB J., 2020, 34(3), 4085-4106.
[http://dx.doi.org/10.1096/fj.201901584RR] [PMID: 31950563]
[93]
Barbara, G.; Cremon, C.; Bellacosa, L. 714 randomized placebo-controlled multicenter study on the effect of palmitoyl-ethanolamide and polydatin on immune activation in patients with irritable bowel syndrome. Gastroenterology, 2014, 146, S-124.
[http://dx.doi.org/10.1016/S0016-5085(14)60446-7]
[94]
Cremon, C.; Stanghellini, V.; Barbaro, M.R.; Cogliandro, R.F.; Bellacosa, L.; Santos, J.; Vicario, M.; Pigrau, M.; Alonso Cotoner, C.; Lobo, B.; Azpiroz, F.; Bruley des Varannes, S.; Neunlist, M.; DeFilippis, D.; Iuvone, T.; Petrosino, S.; Di Marzo, V.; Barbara, G. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment. Pharmacol. Ther., 2017, 45(7), 909-922.
[http://dx.doi.org/10.1111/apt.13958] [PMID: 28164346]
[95]
Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; Esposito, E.; Cuzzocrea, S. Micronized/ultramicronized palmitoylethanolamide displays superior oral efficacy compared to nonmicronized palmitoylethanolamide in a rat model of inflammatory pain. J. Neuroinflammation, 2014, 11, 136.
[http://dx.doi.org/10.1186/s12974-014-0136-0] [PMID: 25164769]
[96]
Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev., 2011, 91(1), 151-175.
[http://dx.doi.org/10.1152/physrev.00003.2008] [PMID: 21248165]
[97]
Menchetti, L.; Traina, G.; Tomasello, G.; Casagrande-Proietti, P.; Leonardi, L.; Barbato, O.; Brecchia, G. Potential benefits of colostrum in gastrointestinal diseases. Front. Biosci. (Schol. Ed.), 2016, 8, 331-351.
[http://dx.doi.org/10.2741/s467] [PMID: 27100711]
[98]
Hałasa, M.; Maciejewska, D.; Baśkiewicz-Hałasa, M.; Machaliński, B.; Safranow, K.; Stachowska, E. Oral supplementation with bovine colostrum decreases intestinal permeability and stool concentrations of zonulin in athletes. Nutrients, 2017, 9(4), 370.
[http://dx.doi.org/10.3390/nu9040370] [PMID: 28397754]
[99]
Fasano, A. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am. J. Pathol., 2008, 173(5), 1243-1252.
[http://dx.doi.org/10.2353/ajpath.2008.080192] [PMID: 18832585]
[100]
Playford, R.J.; MacDonald, C.E.; Calnan, D.P.; Floyd, D.N.; Podas, T.; Johnson, W.; Wicks, A.C.; Bashir, O.; Marchbank, T. Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin. Sci. (Lond.), 2001, 100(6), 627-633.
[http://dx.doi.org/10.1042/CS20010015] [PMID: 11352778]
[101]
Marchbank, T.; Davison, G.; Oakes, J.R.; Ghatei, M.A.; Patterson, M.; Moyer, M.P.; Playford, R.J. The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(3), G477-G484.
[http://dx.doi.org/10.1152/ajpgi.00281.2010] [PMID: 21148400]
[102]
Velikova, T.; Tumangelova-Yuzeir, K.; Georgieva, R.; Ivanova-Todorova, E.; Karaivanova, E.; Nakov, V.; Nakov, R.; Kyurkchiev, D. Lactobacilli supplemented with larch arabinogalactan and colostrum stimulates an immune response towards peripheral NK activation and gut tolerance. Nutrients, 2020, 12(6), 1706.
[http://dx.doi.org/10.3390/nu12061706] [PMID: 32517330]
[103]
Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3698-3703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[104]
Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; Ouwehand, A.; Leyer, G.; Carcano, D.; Colombel, J.F.; Ardid, D.; Desreumaux, P. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med., 2007, 13(1), 35-37.
[http://dx.doi.org/10.1038/nm1521] [PMID: 17159985]
[105]
Quigley, E.M. Probiotics in irritable bowel syndrome: the science and the evidence. J. Clin. Gastroenterol., 2015, 49(Suppl. 1), S60-S64.
[http://dx.doi.org/10.1097/MCG.0000000000000348] [PMID: 26447967]
[106]
National Institute for Health and Care Excellence (NICE).. Irritable bowel syndrome in adults: diagnosis and management of irritable bowel syndrome in primary care., 2015.
[107]
Hardy, H.; Harris, J.; Lyon, E.; Beal, J.; Foey, A.D. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients, 2013, 5(6), 1869-1912.
[http://dx.doi.org/10.3390/nu5061869] [PMID: 23760057]
[108]
Portincasa, P.; Lembo, A.; de Bari, O.; Di Palo, D.M.; Maggio, A.; Cataldo, I.; Calamita, G. The role of dietary approach in irritable bowel syndrome. Curr. Med. Chem., 2019, 26(19), 3512-3520.
[http://dx.doi.org/10.2174/0929867324666170428102451] [PMID: 28462704]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy