Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies

Author(s): Jessica Vaca, Aurelio Ortiz and Estibaliz Sansinenea*

Volume 29, Issue 12, 2022

Published on: 29 July, 2021

Page: [2093 - 2108] Pages: 16

DOI: 10.2174/0929867328666210527093041

Price: $65

Abstract

Background: Currently antibiotic resistant pathogenic bacteria are emerging as an important health problem worldwide. The search for new compounds with antibiotic characteristics is the most promising alternative. Bacteriocins are natural compounds that are inhibitory against pathogens, and Bacillus species are the major producers of these compounds, showing antimicrobial activity against clinically important bacteria. These peptides not only have potential in the pharmaceutical industry but also in food and agricultural sectors.

Objective: We provide an overview of the recent bacteriocins isolated from different species of Bacillus including their applications and older bacteriocins.

Results: In this review, we have revised some works about the improvements carried out in the production of bacteriocins.

Conclusion: These applications make bacteriocins very promising compounds that need to study for industrial production.

Keywords: Bacteriocins, antibacterial, antimicrobial peptides, antibiotics, pathegonic bacteria, Bacillus natural compounds.

[1]
Sumi, C.D.; Yang, B.W.; Yeo, I-C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol., 2015, 61(2), 93-103.
[http://dx.doi.org/10.1139/cjm-2014-0613] [PMID: 25629960]
[2]
Dobson, A.; Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocin production: A probiotic trait? Appl. Environ. Microbiol., 2012, 78(1), 1-6.
[http://dx.doi.org/10.1128/AEM.05576-11] [PMID: 22038602]
[3]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[4]
Yusuf, M.A. Lactic Acid Bacteria: Bacteriocin producer: A mini review. IOSR J. Pharm, 2013, 3, 44-50.
[5]
Bemena, L.D.; Mohamed, L.A.; Fernandes, A.M.; Lee, B.H. Applications of bacteriocins in food, livestock health and medicine. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 924-949.
[6]
Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 1993, 12(1-3), 39-85.
[http://dx.doi.org/10.1016/0168-6445(93)90057-G] [PMID: 8398217]
[7]
Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol., 2002, 56, 117-137.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.161024] [PMID: 12142491]
[8]
O’Sullivan, L.; Ryan, M.P.; Ross, R.P.; Hill, C. Generation of food-grade lactococcal starters which produce the lantibiotics lacticin 3147 and lacticin 481. Appl. Environ. Microbiol., 2003, 69(6), 3681-3685.
[http://dx.doi.org/10.1128/AEM.69.6.3681-3685.2003] [PMID: 12788782]
[9]
Tagg, J.R. Streptococcal Bacteriocin-Like Inhibitory Substances: Some Personal Insights into the Bacteriocin-Like Activities Produced by Streptococci Good and Bad. Probiotics Antimicrob. Proteins, 2009, 1(1), 60-66.
[http://dx.doi.org/10.1007/s12602-008-9002-7] [PMID: 26783132]
[10]
Sansinenea, E. Industrial Applications of Novel Compounds from Bacillus sp. In: Frontiers in Soil and Environmental Microbiology; Nayak, SK; Mishra, BB, Eds.; CRC Press, Taylor & Francis Group, 2020; pp. 81-88.
[11]
Sansinenea, E. Applications and Patents of Bacillus spp. Agriculture In: Intellectual Property Issues in Microbiology. Springer Singapore, 2019, pp. 133-146.
[http://dx.doi.org/10.1007/978-981-13-7466-1_8]
[12]
Ortiz, A.; Sansinenea, E. Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature. Mini Rev. Med. Chem., 2019, 19(5), 373-380.
[http://dx.doi.org/10.2174/1389557518666180829113612] [PMID: 30156158]
[13]
Salazar-Marroquín, E.L.; Galán-Wong, L.J.; Moreno-Medina, V.R.; Reyes-López, M.A.; Pereyra-Alférez, B. Bacteriocins synthesized by Bacillus thuringiensis: Generalities and potential applications. Rev. Med. Microbiol., 2016, 27(3), 95-101.
[http://dx.doi.org/10.1097/MRM.0000000000000076] [PMID: 27340340]
[14]
Martirani, L.; Varcamonti, M.; Naclerio, G.; De Felice, M. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb. Cell Fact., 2002, 1(1), 1-5.
[http://dx.doi.org/10.1186/1475-2859-1-1] [PMID: 12076356]
[15]
Abriouel, H.; Franz, C.M.A.P.; Ben Omar, N.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev., 2011, 35(1), 201-232.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00244.x] [PMID: 20695901]
[16]
Lee, H.; Kim, H.Y. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol., 2011, 21(3), 229-235.
[http://dx.doi.org/10.4014/jmb.1010.10017] [PMID: 21464591]
[17]
Liu, Q.; Gao, G.; Xu, H.; Qiao, M. Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Res. Microbiol., 2012, 163(6-7), 470-478.
[http://dx.doi.org/10.1016/j.resmic.2012.05.009] [PMID: 22677773]
[18]
Arguelles Arias, A.; Ongena, M.; Devreese, B.; Terrak, M.; Joris, B.; Fickers, P. Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One, 2013, 8(12), e83037.
[http://dx.doi.org/10.1371/journal.pone.0083037] [PMID: 24349428]
[19]
Kaewklom, S.; Lumlert, S.; Kraikul, W.; Aunpad, R. Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control, 2013, 32, 552-557.
[http://dx.doi.org/10.1016/j.foodcont.2013.01.012]
[20]
Dunlap, C.A.; Kim, S.J.; Kwon, S.W.; Rooney, A.P. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol., 2016, 66(3), 1212-1217.
[http://dx.doi.org/10.1099/ijsem.0.000858] [PMID: 26702995]
[21]
Scholz, R.; Vater, J.; Budiharjo, A.; Wang, Z.; He, Y.; Dietel, K.; Schwecke, T.; Herfort, S.; Lasch, P.; Borriss, R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol., 2014, 196(10), 1842-1852.
[http://dx.doi.org/10.1128/JB.01474-14] [PMID: 24610713]
[22]
Scholz, R.; Molohon, K.J.; Nachtigall, J.; Vater, J.; Markley, A.L.; Süssmuth, R.D.; Mitchell, D.A.; Borriss, R. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol., 2011, 193(1), 215-224.
[http://dx.doi.org/10.1128/JB.00784-10] [PMID: 20971906]
[23]
An, J.; Zhu, W.; Liu, Y.; Zhang, X.; Sun, L.; Hong, P.; Wang, Y.; Xu, C.; Xu, D.; Liu, H. Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control, 2015, 51, 278-282.
[http://dx.doi.org/10.1016/j.foodcont.2014.11.038]
[24]
Wu, Y.; An, J.; Liu, Y.; Wang, Y.; Ren, W.; Fang, Z.; Sun, L.; Gooneratne, R. Mode of action of a novel anti-Listeria bacteriocin (CAMT2) produced by Bacillus amyloliquefaciens ZJHD3-06 from Epinephelus areolatus. Arch. Microbiol., 2019, 201(1), 61-66.
[http://dx.doi.org/10.1007/s00203-018-1553-8] [PMID: 30203187]
[25]
Lim, K.B.; Balolong, M.P.; Kim, S.H.; Oh, J.K.; Lee, J.Y.; Kang, D-K. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7. BioMed Res. Int., 2016, 2016, 8521476.
[http://dx.doi.org/10.1155/2016/8521476] [PMID: 27239477]
[26]
Brock, S.; Knadler, J.; Ritter, T.; Baker, J.C. Characterization of a Bacteriocin from Bacillus amyloliquefaciens. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7, 1492-1503.
[http://dx.doi.org/10.20546/ijcmas.2018.706.177]
[27]
Sensoy-Karaoglu, S.; Sevim, A.; Sevim, E. Production and characterization of bacteriocin-like peptide produced by Bacillus amyloliquefaciens B10. Sevim ve ark. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2014, 30, 338-345.
[28]
Ayed, H.B.; Maalej, H.; Hmidet, N.; Nasri, M. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Glob. Antimicrob. Resist., 2015, 3(4), 255-261.
[http://dx.doi.org/10.1016/j.jgar.2015.07.001] [PMID: 27842869]
[29]
Salazar, F.; Ortiz, A.; Sansinenea, E. Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity. J. Glob. Antimicrob. Resist., 2017, 11, 177-182.
[http://dx.doi.org/10.1016/j.jgar.2017.08.008] [PMID: 28844975]
[30]
Palazzini, J.M.; Dunlap, C.A.; Bowman, M.J.; Chulze, S.N. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol. Res., 2016, 192, 30-36.
[http://dx.doi.org/10.1016/j.micres.2016.06.002] [PMID: 27664721]
[31]
Perumal, V.; Yao, Z.; Kim, J.A.; Kim, H-J.; Kim, J.H. Purification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal. J. Microbiol. Biotechnol., 2019, 29(7), 1033-1042.
[http://dx.doi.org/10.4014/jmb.1903.03065] [PMID: 31216789]
[32]
Butkhot, N.; Soodsawaeng, P.; Vuthiphandchai, V.; Nimrat, S. Characterisation and biosafety evaluation of a novel bacteriocin produced by Bacillus velezensis BUU004. Int. Food Res. J., 2019, 26, 1617-1625.
[33]
Tumbarski, Y.; Deseva, I.; Mihaylova, D.; Stoyanova, M.; Krastev, L.; Nikolova, R.; Yanakieva, V.; Ivanov, I. Isolation, Characterization and Amino Acid Composition of a Bacteriocin Produced by Bacillus methylotrophicus Strain BM47. Food Technol. Biotechnol., 2018, 56(4), 546-552.
[http://dx.doi.org/10.17113/ftb.56.04.18.5905] [PMID: 30923451]
[34]
Senbagam, D.; Gurusamy, R.; Senthilkumar, B. Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pac. J. Trop. Med., 2013, 6(12), 934-941.
[http://dx.doi.org/10.1016/S1995-7645(13)60167-4] [PMID: 24144023]
[35]
Wang, J.; Zhang, L.; Teng, K.; Sun, S.; Sun, Z.; Zhong, J. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity. Appl. Environ. Microbiol., 2014, 80(8), 2633-2643.
[http://dx.doi.org/10.1128/AEM.03751-13] [PMID: 24532070]
[36]
Minnaard, J.; Alippi, A.M. Partial characterization of bacteriocin-like compounds from two strains of Bacillus cereus with biological activity against Paenibacillus larvae, the causal agent of American Foulbrood disease. Lett. Appl. Microbiol., 2016, 63(6), 442-449.
[http://dx.doi.org/10.1111/lam.12665] [PMID: 27589675]
[37]
Leite, J.A.; Tulini, F.L.; dos Reis-Teixeira, F.B.; Rabinovitch, L.; Chaves, J.Q.; Rosa, N.G.; Cabral, H.; De Martinis, E.C.P. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. L.W.T., 2016, 72, 261-266.
[38]
Shenkarev, Z.O.; Finkina, E.I.; Nurmukhamedova, E.K.; Balandin, S.V.; Mineev, K.S.; Nadezhdin, K.D.; Yakimenko, Z.A.; Tagaev, A.A.; Temirov, Y.V.; Arseniev, A.S.; Ovchinnikova, T.V. Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry, 2010, 49(30), 6462-6472.
[http://dx.doi.org/10.1021/bi100871b] [PMID: 20578714]
[39]
Berić, T.; Stanković, S.; Draganić, V.; Kojić, M.; Lozo, J.; Fira, D. Novel antilisterial bacteriocin licheniocin 50.2 from Bacillus licheniformis VPS50.2 isolated from soil sample. J. Appl. Microbiol., 2014, 116(3), 502-510.
[http://dx.doi.org/10.1111/jam.12393] [PMID: 24238327]
[40]
Kayalvizhi, N.; Rameshkumar, N.; Gunasekaran, P. Cloning and characterization of mersacidin like bacteriocin from Bacillus licheniformis MKU3 in Escherichia coli. J. Food Sci. Technol., 2016, 53(5), 2298-2306.
[http://dx.doi.org/10.1007/s13197-016-2195-y] [PMID: 27407196]
[41]
Tigga, S.S.; Lawrence, R.; Jeyakumar, E. Production, purification and characterization of lichenin from Bacillus licheniformis. Int. J. Adv. Res. (Indore), 2017, 5, 1448-1507.
[http://dx.doi.org/10.21474/IJAR01/5665]
[42]
Guo, Y.; Yu, Z.; Xie, J.; Zhang, R. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance. J. Microbiol., 2012, 50(3), 452-458.
[http://dx.doi.org/10.1007/s12275-012-2051-3] [PMID: 22752909]
[43]
Vadakedath, N.; Halami, P.M. Characterization and mode of action of a potent bio-preservative from food-grade Bacillus licheniformis MCC 2016. Prep. Biochem. Biotechnol., 2019, 49(4), 334-343.
[http://dx.doi.org/10.1080/10826068.2019.1566141] [PMID: 30712459]
[44]
Dehghanifar, S.; Keyhanfar, M.; Emtiazi, G. Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Mol. Biol. Res. Commun., 2019, 8(1), 41-49.
[PMID: 31528643]
[45]
Nayak, S.; Limsuwan, C.; Chichurd, N.; Kühlmann, K-J.; Pungpang, S. Antimicrobial activity of partially characterized analytes from Bacillus pumilus (B2). Aquacult. Res., 2017, 2017, 1-8.
[46]
Fuchs, S.W.; Jaskolla, T.W.; Bochmann, S.; Kötter, P.; Wichelhaus, T.; Karas, M.; Stein, T.; Entian, K-D. Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Appl. Environ. Microbiol., 2011, 77(5), 1698-1707.
[http://dx.doi.org/10.1128/AEM.01962-10] [PMID: 21239550]
[47]
Kindoli, S.; Lee, H.A.; Kim, J.H. Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang. J. Microbiol. Biotechnol., 2012, 22(8), 1092-1100.
[http://dx.doi.org/10.4014/jmb.1110.10002] [PMID: 22713985]
[48]
Salum, K.; Lee, H.A.; Heo, K.; Kim, J.H. Properties of a Bacteriocin from Bacillus subtilis H27 Isolated from Cheonggukjang. Food Sci. Biotechnol., 2012, 21, 1745-1751.
[http://dx.doi.org/10.1007/s10068-012-0232-9]
[49]
Hammami, I.; Jaouadi, B.; Bacha, A.B.; Rebai, A.; Bejar, S.; Nesme, X.; Rhouma, A. Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: Purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol. Bioprocess Eng. BBE, 2012, 17, 41-49.
[http://dx.doi.org/10.1007/s12257-010-0401-8]
[50]
Phelan, R.W.; Barret, M.; Cotter, P.D.; O’Connor, P.M.; Chen, R.; Morrissey, J.P.; Dobson, A.D.W.; O’Gara, F.; Barbosa, T.M. Subtilomycin: A new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans. Mar. Drugs, 2013, 11(6), 1878-1898.
[http://dx.doi.org/10.3390/md11061878] [PMID: 23736764]
[51]
Li, J.; Li, H.; Zhang, Y.; Duan, X.; Liu, J. Characterization of a bacteriocin-like substance produced from a novel isolated strain of Bacillus subtilis SLYY-3. J. Ocean Univ. China, 2014, 13, 995-999.
[http://dx.doi.org/10.1007/s11802-014-2547-z]
[52]
Sharmila, P.S.; Vidya, A.K. Characterization and antibacterial activity of bacteriocin producing Bacillus subtilis isolated from raw milk. Int. J. Appl. Bioeng., 2015, 9, 1-6.
[http://dx.doi.org/10.18000/ijabeg.10129]
[53]
Liu, X.; Lee, J.Y.; Jeong, S-J.; Cho, K.M.; Kim, G.M.; Shin, J.H.; Kim, J-S.; Kim, J.H. Properties of a Bacteriocin Produced by Bacillus subtilis EMD4 Isolated from Ganjang (Soy Sauce). J. Microbiol. Biotechnol., 2015, 25(9), 1493-1501.
[http://dx.doi.org/10.4014/jmb.1502.02037] [PMID: 26017225]
[54]
Banerjee, G.; Nandi, A.; Ray, A.K. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch. Microbiol., 2017, 199(1), 115-124.
[http://dx.doi.org/10.1007/s00203-016-1283-8] [PMID: 27590016]
[55]
Ansari, A.; Zohra, R.R.; Tarar, O.M.; Qader, S.A.U.; Aman, A. Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiol., 2018, 18(1), 192.
[http://dx.doi.org/10.1186/s12866-018-1337-y] [PMID: 30466388]
[56]
Lee, S.G.; Chang, H.C. Purification and characterization of mejucin, a new bacteriocin produced by Bacillus subtilis SN7. LWT, 2018, 87, 8-15.
[http://dx.doi.org/10.1016/j.lwt.2017.08.044]
[57]
Sharma, G.; Dang, S.; Gupta, S.; Gabrani, R. Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med. Princ. Pract., 2018, 27(2), 186-192.
[http://dx.doi.org/10.1159/000487306] [PMID: 29402863]
[58]
Qin, Y.; Wang, Y.; He, Y.; Zhang, Y.; She, Q.; Chai, Y.; Li, P.; Shang, Q. Characterization of subtilin L-Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil. Front. Microbiol., 2019, 10, 484.
[http://dx.doi.org/10.3389/fmicb.2019.00484] [PMID: 30930878]
[59]
Kamoun, F.; Fguira, I.B.; Hassen, N.B.B.; Mejdoub, H.; Lereclus, D.; Jaoua, S. Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl. Biochem. Biotechnol., 2011, 165(1), 300-314.
[http://dx.doi.org/10.1007/s12010-011-9252-9] [PMID: 21487734]
[60]
Chehimi, S.; Limam, F.; Lanneluc, I.; Delalande, F.; Van Dorsselaer, A.; Sablé, S. Identification of three novel B. thuringiensis strains that produce the Thuricin S bacteriocin. Bt Res, 2012, 3, 3-10.
[61]
Ugras, S.; Sezen, K.; Kati, H.; Demirbag, Z. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. J. Microbiol. Biotechnol., 2013, 23(2), 167-176.
[http://dx.doi.org/10.4014/jmb.1209.09056] [PMID: 23412058]
[62]
Xin, B.; Zheng, J.; Xu, Z.; Li, C.; Ruan, L.; Peng, D.; Sun, M. Three novel lantibiotics, ticins A1, A3, and A4, have extremely stable properties and are promising food biopreservatives. Appl. Environ. Microbiol., 2015, 81(20), 6964-6972.
[http://dx.doi.org/10.1128/AEM.01851-15] [PMID: 26231642]
[63]
Huang, T.; Zhang, X.; Pan, J.; Su, X.; Jin, X.; Guan, X. Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. Sci. Rep., 2016, 6, 35560.
[http://dx.doi.org/10.1038/srep35560] [PMID: 27762322]
[64]
Mouloud, G.; Daoud, H.; Bassem, J.; Laribi Atef, I.; Hani, B. New bacteriocin from Bacillus clausii strainGM17: Purification, characterization, and biological activity. Appl. Biochem. Biotechnol., 2013, 171(8), 2186-2200.
[http://dx.doi.org/10.1007/s12010-013-0489-3] [PMID: 24037515]
[65]
Riazi, S.; Dover, S.E.; Chikindas, M.L. Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol., 2012, 113(3), 714-722.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05376.x] [PMID: 22737982]
[66]
Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Vanithamani, S.; Kanagavel, M.; Anbarasu, K.; Natarajaseenivasan, K. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int. J. Biol. Macromol., 2015, 79, 800-806.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.005] [PMID: 26054664]
[67]
Fu, L.; Wang, C.; Ruan, X.; Li, G.; Zhao, Y.; Wang, Y. Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208. Int. J. Food Microbiol., 2018, 266, 60-68.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.012] [PMID: 29179097]
[68]
Al-Thubiani, A.S.A.; Maher, Y.A.; Fathi, A.; Abourehab, M.A.S.; Alarjah, M.; Khan, M.S.A.; Al-Ghamdi, S.B. Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora. Saudi Pharm. J., 2018, 26(8), 1089-1097.
[http://dx.doi.org/10.1016/j.jsps.2018.05.019] [PMID: 30532629]
[69]
Basi-Chipalu, S.; Dischinger, J.; Josten, M.; Szekat, C.; Zweynert, A.; Sahl, H-G.; Bierbaum, G. Pseudomycoicidin, a Class II Lantibiotic from Bacillus pseudomycoides. Appl. Environ. Microbiol., 2015, 81(10), 3419-3429.
[http://dx.doi.org/10.1128/AEM.00299-15] [PMID: 25769830]
[70]
Fields, F.R.; Carothers, K.E.; Balsara, R.D.; Ploplis, V.A.; Castellino, F.J.; Lee, S.W. Rational design of syn-safencin, a novel linear antimicrobial peptide derived from the circular bacteriocin safencin AS-48. J. Antibiot. (Tokyo), 2018, 71(6), 592-600.
[http://dx.doi.org/10.1038/s41429-018-0032-4] [PMID: 29463889]
[71]
Chopra, L.; Singh, G.; Choudhary, V.; Sahoo, D.K. Sonorensin: An antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl. Environ. Microbiol., 2014, 80(10), 2981-2990.
[http://dx.doi.org/10.1128/AEM.04259-13] [PMID: 24610839]
[72]
Kim, Y-O.; Park, I-S.; Kim, D-J.; Nam, B-H.; Kim, D-G.; Jee, Y-J.; An, C-M. Identification and Characterization of a Bacteriocin Produced by an Isolated Bacillus sp. SW1-1 that Exhibits Antibacterial Activity against Fish Pathogens. J. Korean Soc. Appl. Biol. Chem., 2014, 57, 605-612.
[http://dx.doi.org/10.1007/s13765-014-4174-1]
[73]
Zhang, Y.; Zhou, J.; Pan, L.; Dai, Z.; Liu, C.; Wang, J.; Zhou, H. Production of Bacteriocin-like Substances by Bacillus Spp. JY-1 in Soy Whey. Adv. Biochem., 2019, 7, 65-70.
[http://dx.doi.org/10.11648/j.ab.20190703.12]
[74]
Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K-H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 2019, 24(6), 1046.
[http://dx.doi.org/10.3390/molecules24061046] [PMID: 30884857]
[75]
Oscáriz, J.C.; Cintas, L.; Holo, H.; Lasa, I.; Nes, I.F.; Pisabarro, A.G. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett., 2006, 254(1), 108-115.
[http://dx.doi.org/10.1111/j.1574-6968.2005.00009.x] [PMID: 16451187]
[76]
Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J. Appl. Microbiol., 2001, 91(4), 636-645.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01429.x] [PMID: 11576300]
[77]
Aunpad, R.; Na-Bangchang, K. Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr. Microbiol., 2007, 55(4), 308-313.
[http://dx.doi.org/10.1007/s00284-006-0632-2] [PMID: 17700984]
[78]
Favret, M.E.; Yousten, A.A. Thuricin: The bacteriocin produced by Bacillus thuringiensis. J. Invertebr. Pathol., 1989, 53(2), 206-216.
[http://dx.doi.org/10.1016/0022-2011(89)90009-8] [PMID: 2723445]
[79]
Paik, H.D.; Bae, S.S.; Park, S.H.; Pan, J.G. Identification and partial characterization of tochicin, a bacteriocin offduced by Bacillus thuringiensis subsp tochigiensis. J. Ind. Microbiol. Biotechnol., 1997, 19(4), 294-298.
[http://dx.doi.org/10.1038/sj.jim.2900462] [PMID: 9439004]
[80]
Cherif, A.; Ouzari, H.; Daffonchio, D.; Cherif, H.; Ben Slama, K.; Hassen, A.; Jaoua, S.; Boudabous, A. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol., 2001, 32(4), 243-247.
[http://dx.doi.org/10.1046/j.1472-765X.2001.00898.x] [PMID: 11298934]
[81]
Lee, H.; Churey, J.J.; Worobo, R.W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett., 2009, 299(2), 205-213.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01749.x] [PMID: 19732155]
[82]
Gray, E.J.; Lee, K.D.; Souleimanov, A.M.; Di Falco, M.R.; Zhou, X.; Ly, A.; Charles, T.C.; Driscoll, B.T.; Smith, D.L. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol., 2006, 100(3), 545-554.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02822.x] [PMID: 16478494]
[83]
Ahern, M.; Verschueren, S.; van Sinderen, D. Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett., 2003, 220(1), 127-131.
[http://dx.doi.org/10.1016/S0378-1097(03)00086-7] [PMID: 12644238]
[84]
Kamoun, F.; Mejdoub, H.; Aouissaoui, H.; Reinbolt, J.; Hammami, A.; Jaoua, S. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol., 2005, 98(4), 881-888.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02513.x] [PMID: 15752334]
[85]
Cherif, A.; Rezgui, W.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110. Microbiol. Res., 2008, 163(6), 684-692.
[http://dx.doi.org/10.1016/j.micres.2006.10.005] [PMID: 19216106]
[86]
Barboza-Corona, J.E.; Vázquez-Acosta, H.; Bideshi, D.K.; Salcedo-Hernández, R. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol., 2007, 187(2), 117-126.
[http://dx.doi.org/10.1007/s00203-006-0178-5] [PMID: 17031616]
[87]
Rea, M.C.; Sit, C.S.; Clayton, E.; O’Connor, P.M.; Whittal, R.M.; Zheng, J.; Vederas, J.C.; Ross, R.P.; Hill, C. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9352-9357.
[http://dx.doi.org/10.1073/pnas.0913554107] [PMID: 20435915]
[88]
Chopra, L.; Singh, G.; Jena, K.K.; Verma, H.; Sahoo, D.K. Bioprocess development for the production of sonorensin by Bacillus sonorensis MT93 and its application as a food preservative. Bioresour. Technol., 2015, 175, 358-366.
[http://dx.doi.org/10.1016/j.biortech.2014.10.105] [PMID: 25459843]
[89]
Nazari, M.; Smith, D.L. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. Front. Plant Sci., 2020, 11, 916.
[http://dx.doi.org/10.3389/fpls.2020.00916] [PMID: 32733506]
[90]
Egan, K.; Ross, R.P.; Hill, C. Bacteriocins: Antibiotics in the age of the microbiome. Emerg Top Life Sci, 2017, 1(1), 55-63.
[http://dx.doi.org/10.1042/ETLS20160015] [PMID: 33525813]
[91]
Thomas, L.V.; Clarkson, M.R.; Delves-Broughton, J. Nisin. Natural food antimicrobial systems; Naidu, A.S., Ed.; CRC Press: Boca-Raton, FL, 2000, pp. 463-524.
[92]
Jeevaratnam, K.; Jamuna, M.; Bawa, A.S. Biological preservation of foods Bacteriocins of lactic acid bacteria. Indian J. Biotechnol., 2005, 4, 446-454.
[93]
Kimura, K.; Yokoyama, S. Trends in the application of Bacillus in fermented foods. Curr. Opin. Biotechnol., 2019, 56, 36-42.
[http://dx.doi.org/10.1016/j.copbio.2018.09.001] [PMID: 30227296]
[94]
Bizani, D.; Brandelli, A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. J. Appl. Microbiol., 2002, 93(3), 512-519.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01720.x] [PMID: 12174052]
[95]
O’Shea, E.F.; O’Connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl. Environ. Microbiol., 2010, 76(16), 5356-5362.
[http://dx.doi.org/10.1128/AEM.00523-10] [PMID: 20581174]
[96]
Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One, 2012, 7(10), e46884.
[http://dx.doi.org/10.1371/journal.pone.0046884] [PMID: 23056510]
[97]
Chhetria, V.; Prakitchaiwattanaa, C.; Settachaimongkona, S. A potential protective culture; halophilic Bacillus isolates with bacteriocin encoding gene against Staphylococcus aureus in salt added foods. Food Control, 2019, 104, 292-299.
[http://dx.doi.org/10.1016/j.foodcont.2019.04.043]
[98]
Healy, B.; Field, D.; O’Connor, P.M.; Hill, C.; Cotter, P.D.; Ross, R.P. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLoS One, 2013, 8(11), e79563.
[http://dx.doi.org/10.1371/journal.pone.0079563] [PMID: 24244524]
[99]
Jiao, D.; Liu, Y.; Liu, Y.; Zeng, R.; Hou, X.; Nie, G.; Sun, L.; Fang, Z. Preparation of phosphatidylcholine nanovesicles containing bacteriocin CAMT2 and their anti-listerial activity. Food Chem., 2020, 314, 126244.
[http://dx.doi.org/10.1016/j.foodchem.2020.126244] [PMID: 31982854]
[100]
Lawton, E.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Two-peptide lantibiotics: A medical perspective. Mini Rev. Med. Chem., 2007, 7(12), 1236-1247.
[http://dx.doi.org/10.2174/138955707782795638] [PMID: 18220976]
[101]
van Staden, A.D.; Brand, A.M.; Dicks, L.M. Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureusin vivo. J. Appl. Microbiol., 2012, 112(4), 831-840.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05241.x] [PMID: 22268790]
[102]
Oman, T.J.; van der Donk, W.A. Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem. Biol., 2009, 4(10), 865-874.
[http://dx.doi.org/10.1021/cb900194x] [PMID: 19678697]
[103]
Sutyak, K.E.; Wirawan, R.E.; Aroutcheva, A.A.; Chikindas, M.L. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol., 2008, 104(4), 1067-1074.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03626.x] [PMID: 17976171]
[104]
Rajavel, M.; Mitra, A.; Gopal, B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem., 2009, 284(46), 31882-31892.
[http://dx.doi.org/10.1074/jbc.M109.014522] [PMID: 19776011]
[105]
Wu, S.; Jia, S.; Sun, D.; Chen, M.; Chen, X.; Zhong, J.; Huan, L. Purification and characterization of two novel antimicrobial peptides Subpeptin JM4-A and Subpeptin JM4-B produced by Bacillus subtilis JM4. Curr. Microbiol., 2005, 51(5), 292-296.
[http://dx.doi.org/10.1007/s00284-005-0004-3] [PMID: 16211432]
[106]
Berditsch, M.; Lux, H.; Babii, O.; Afonin, S.; Ulrich, A.S. Therapeutic potential of Gramicidin S in the treatment of root canal infections. Pharmaceuticals (Basel), 2016, 9(3), 56.
[http://dx.doi.org/10.3390/ph9030056] [PMID: 27618065]
[107]
Ding, Y.; Qin, C.; Guo, Z.; Niu, W.; Zhang, R.; Li, Y. Solid-phase total synthesis and antimicrobial activities of loloatins A-D. Chem. Biodivers., 2007, 4(12), 2827-2834.
[http://dx.doi.org/10.1002/cbdv.200790232] [PMID: 18081093]
[108]
Munyuki, G.; Jackson, G.E.; Venter, G.A.; Kövér, K.E.; Szilágyi, L.; Rautenbach, M.; Spathelf, B.M.; Bhattacharya, B.; van der Spoel, D. β-sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus. Biochemistry, 2013, 52(44), 7798-7806.
[http://dx.doi.org/10.1021/bi401363m] [PMID: 24151934]
[109]
Diez-Gonzalez, F. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol., 2007, 8(1), 15-23.
[PMID: 17489435]
[110]
Callaway, T.R.; Anderson, R.C.; Edrington, T.S.; Genovese, K.J.; Harvey, R.B.; Poole, T.L.; Nisbet, D.J. Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim. Health Res. Rev., 2004, 5(1), 35-47.
[http://dx.doi.org/10.1079/AHR200462] [PMID: 15460539]
[111]
Xie, J.; Zhang, R.; Shang, C.; Guo, Y. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol., 2009, 8, 5611-5619.
[112]
Gutiérrez-Chávez, A.J.; Martínez-Ortega, E.A.; Valencia- Posadas, M.; León-Galván, M.F.; de la Fuente-Salcido, N.M.; Bideshi, D.K.; Barboza-Corona, J.E. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats. Folia Microbiol. (Praha), 2016, 61(1), 11-19.
[http://dx.doi.org/10.1007/s12223-015-0404-0] [PMID: 26022411]
[113]
Reilly, A.; Käferstein, F. Food safety and products from aquaculture. J. Appl. Microbiol., 1998, 85(Suppl. 1), 249S-257S.
[http://dx.doi.org/10.1111/j.1365-2672.1998.tb05305.x] [PMID: 21182715]
[114]
Sarojini, K.; Ajitha, S.S.; Ramasubburayan, R.; Palavesam, A.; Immanuel, G. Studies on the adhesion, aggregative properties and the probiotic efficiency of a potent bacteriocin-producing shrimp gut isolate Bacillus subtilis subsp. inaquosorum V1 against Carassius auratus. Aquacult. Int., 2020, 28, 1639-1656.
[http://dx.doi.org/10.1007/s10499-020-00548-7]
[115]
Taoka, Y.; Maeda, H.; Jo, J.Y.; Jeon, M.J.; Bai, S.C.; Lee, W.J.; Yuge, K.; Koshio, S. Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish. Sci., 2006, 72, 310-321.
[http://dx.doi.org/10.1111/j.1444-2906.2006.01152.x]
[116]
Gautam, K.; Schwinghamer, T.D.; Smith, D.L. The response of soybean to nod factors and a bacteriocin. Plant Signal. Behav., 2016, 11(10), e1241934.
[http://dx.doi.org/10.1080/15592324.2016.1241934] [PMID: 27700227]
[117]
Schwinghamer, T.; Souleimanov, A.; Dutilleul, P.; Smith, D.L. The response of canola cultivars to lipo-chitooligosaccharide (Nod Bj V [C18:1, MeFuc]) and thuricin 17. Plant Growth Regul., 2016, 78, 421-434.
[http://dx.doi.org/10.1007/s10725-015-0104-4]
[118]
Lajis, A.F.B. Biomanufacturing process for the production of bacteriocins from Bacillaceae family. Bioresour. Bioprocess., 2020, 7, 8.
[http://dx.doi.org/10.1186/s40643-020-0295-z]
[119]
Teng, Y.; Zhao, W.; Qian, C.; Li, O.; Zhu, L.; Wu, X. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol., 2012, 12, 45.
[http://dx.doi.org/10.1186/1471-2180-12-45] [PMID: 22443157]
[120]
Lee, K-H.; Jun, K-D.; Kim, W-S.; Paik, H-D. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol., 2001, 32(3), 146-151.
[http://dx.doi.org/10.1046/j.1472-765x.2001.00876.x] [PMID: 11264742]
[121]
Kurata, A.; Yamaguchi, T.; Kira, M.; Kishimoto, N. Characterization and heterologous expression of an antimicrobial peptide from Bacillus amyloliquefaciens CMW1. Biotechnol. Biotechnol. Equip., 2019, 33, 886-893.
[http://dx.doi.org/10.1080/13102818.2019.1627246]
[122]
Gaona-Mendoza, A.S.; Barboza-Corona, J.E.; Casados-Vázquez, L.E. Improving the yields of thurincin H in a native producer strain. Antonie van Leeuwenhoek, 2020, 113(7), 1061-1066.
[http://dx.doi.org/10.1007/s10482-020-01408-3] [PMID: 32314103]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy