Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance

Author(s): Piying Huang, Zhe Wang, Kun Cai, Liangwan Wei, Yindi Chu, Mingquan Guo* and Enguo Fan*

Volume 29, Issue 12, 2022

Published on: 24 August, 2021

Page: [2109 - 2126] Pages: 18

DOI: 10.2174/0929867328666210614121222

Price: $65

Abstract

Antibiotic resistance is currently a world health crisis that urges the development of new antibacterial substances. To this end, natural products, including flavonoids, alkaloids, terpenoids, steroids, peptides and organic acids play a vital role in the development of medicines and thus constitute a rich source in clinical practices, providing an important source of drugs directly or for the screen of lead compounds for new antibiotic development. Because membrane proteins, which comprise more than 60% of the current clinical drug targets, play crucial roles in signal transduction, transport, bacterial pathogenicity and drug resistance, as well as immunogenicity, it is our aim to summarize those natural products with different structures that target bacterial membrane proteins, such as efflux pumps and enzymes, to provide an overview for the development of new antibiotics to deal with antibiotic resistance.

Keywords: Natural products, bacterial membrane proteins, antibiotic resistance, drug development, efflux pumps, enzymes.

[1]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[2]
First line health information. Global New Drug Approvals,October. 2019.https://www.vodjk.com/news/191112/1609559.shtml(Accessed Nov 12, 2019).
[3]
Sina Medical News. Global New Drug Approved in December. 2019.https://med.sina.com/article_detail_103_2_ 75190.html(Accessed Dec 9, 2019).
[4]
Sina Medical News. Global New Drug Approved in December. 2019.https://med.sina.com/article_detail_103_2_ 76635.html (Accessed Jan 4, 2020).
[5]
Original new drugs in the field of oncology approved globally in. 2020.https://new.qq.com/rain/a/20210204A014-ZM00 (Accessed Feb 4, 2021).
[6]
China Food and Drug Network. New drugs approved worldwide in January, 2021.http://www.cnpharm.com/c/2021-02-23/778392.shtml (Accessed Feb 23, 2021).
[7]
China Food and Drug Network. New drugs approved worldwide in February, 2021.http://mtest.health-china.com/c/2021-03-10/780670.shtml (Accessed Mar 10, 2021).
[8]
China Food and Drug Network. New drugs approved worldwide in March, 2021.http://www.cnpharm.com/c/2021-04-06/784170.shtml (Accessed Apr 6, 2021).
[9]
Graul, A.I.; Pina, P.; Tracy, M.; Sorbera, L. A report of new drugs research and development in 2019. Prog. Pharm. Sci., 2020, 44(5), 395-400.
[10]
Chen, Z.; Gao, X.; Jiao, Y.; Qiu, Y.; Wang, A.; Yu, M.; Che, F.; Li, S.; Liu, J.; Li, J.; Zhang, H.; Yu, C.; Li, G.; Gao, Y.; Pan, L.; Sun, W.; Guo, J.; Cao, B.; Zhu, Y.; Xu, H. Tanshinone IIA Exerts Anti-Inflammatory and Immune-Regulating Effects on Vulnerable Atherosclerotic Plaque Partially via the TLR4/MyD88/NF-κB Signal Pathway. Front. Pharmacol., 2019, 10, 850.
[http://dx.doi.org/10.3389/fphar.2019.00850] [PMID: 31402870]
[11]
Liu, X.; Wang, Q. Natural Product Chemistry, 2nd ed; Chemical Industrial Press: Beijing, 2010.
[12]
Prabhala, B.K.; Aduri, N.G.; Sharma, N.; Shaheen, A.; Sharma, A.; Iqbal, M.; Hansen, P.R.; Brasen, C.; Gajhede, M.; Rahman, M.; Mirza, O. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells. J. Biol. Chem., 2018, 293(3), 1007-1017.
[http://dx.doi.org/10.1074/jbc.M117.805960] [PMID: 29150447]
[13]
Briffotaux, J.; Huang, W.; Wang, X.; Gicquel, B. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb.), 2017, 107, 13-19.
[http://dx.doi.org/10.1016/j.tube.2017.08.001] [PMID: 29050760]
[14]
Deng, C.Y.; Zhang, H.; Wu, Y.; Ding, L.L.; Pan, Y.; Sun, S.T.; Li, Y.J.; Wang, L.; Qian, W. Proteolysis of histidine kinase VgrS inhibits its autophosphorylation and promotes osmostress resistance in Xanthomonas campestris. Nat. Commun., 2018, 9(1), 4791.
[http://dx.doi.org/10.1038/s41467-018-07228-4] [PMID: 30442885]
[15]
Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev., 2008, 32(2), 234-258.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00105.x] [PMID: 18266856]
[16]
Perron, G.G.; Inglis, R.F.; Pennings, P.S.; Cobey, S. Fighting microbial drug resistance: A primer on the role of evolutionary biology in public health. Evol. Appl., 2015, 8(3), 211-222.
[http://dx.doi.org/10.1111/eva.12254] [PMID: 25861380]
[17]
Reza, A.; Sutton, J.M.; Rahman, K.M. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics (Basel), 2019, 8(4), 229.
[http://dx.doi.org/10.3390/antibiotics8040229] [PMID: 31752382]
[18]
Aparna, V.; Dineshkumar, K.; Mohanalakshmi, N.; Velmurugan, D.; Hopper, W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One, 2014, 9(7)e101840
[http://dx.doi.org/10.1371/journal.pone.0101840] [PMID: 25025665]
[19]
Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res., 2019, 149(2), 129-145.
[http://dx.doi.org/10.4103/ijmr.IJMR_2079_17] [PMID: 31219077]
[20]
Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol., 2018, 16(9), 523-539.
[http://dx.doi.org/10.1038/s41579-018-0048-6] [PMID: 30002505]
[21]
Zhang, Y.; Zhang, J.; Cui, P.; Zhang, Y.; Zhang, W. Identification of Novel Efflux Proteins Rv0191, Rv3756c, Rv3008, and Rv1667c Involved in Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2017, 61(8), e00940-e17.
[http://dx.doi.org/10.1128/AAC.00940-17] [PMID: 28584158]
[22]
Hart, E.M.; Mitchell, A.M.; Konovalova, A.; Grabowicz, M.; Sheng, J.; Han, X.; Rodriguez-Rivera, F.P.; Schwaid, A.G.; Malinverni, J.C.; Balibar, C.J.; Bodea, S.; Si, Q.; Wang, H.; Homsher, M.F.; Painter, R.E.; Ogawa, A.K.; Sutterlin, H.; Roemer, T.; Black, T.A.; Rothman, D.M.; Walker, S.S.; Silhavy, T.J. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc. Natl. Acad. Sci. USA, 2019, 116(43), 21748-21757.
[http://dx.doi.org/10.1073/pnas.1912345116] [PMID: 31591200]
[23]
Blanco, P.; Sanz-García, F.; Hernando-Amado, S.; Martínez, J.L.; Alcalde-Rico, M. The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opin. Drug Discov., 2018, 13(10), 919-931.
[http://dx.doi.org/10.1080/17460441.2018.1514386] [PMID: 30198793]
[24]
Ohene-Agyei, T.; Mowla, R.; Rahman, T.; Venter, H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiol Open, 2014, 3(6), 885-896.
[http://dx.doi.org/10.1002/mbo3.212] [PMID: 25224951]
[25]
Tambat, R.; Jangra, M.; Mahey, N.; Chandal, N.; Kaur, M.; Chaudhary, S.; Verma, D.K.; Thakur, K.G.; Raje, M.; Jachak, S.; Khatri, N.; Nandanwar, H. Microbe-derived indole metabolite demonstrates potent multidrug efflux pump inhibition in Staphylococcus aureus. Front. Microbiol., 2019, 10, 2153.
[http://dx.doi.org/10.3389/fmicb.2019.02153] [PMID: 31620109]
[26]
Costa, S.S.; Sobkowiak, B.; Parreira, R.; Edgeworth, J.D.; Viveiros, M.; Clark, T.G.; Couto, I. Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus. Front. Genet., 2019, 9, 710.
[http://dx.doi.org/10.3389/fgene.2018.00710] [PMID: 30687388]
[27]
Siriyong, T.; Voravuthikunchai, S.P.; Coote, P.J. Steroidal alkaloids and conessine from the medicinal plant Holarrhena antidysenterica restore antibiotic efficacy in a Galleria mellonella model of multidrug-resistant Pseudomonas aeruginosa infection. BMC Complement. Altern. Med., 2018, 18(1), 285.
[http://dx.doi.org/10.1186/s12906-018-2348-9] [PMID: 30340578]
[28]
Luo, Y.; Tian, G.; Zhuang, Z.; Chen, J.; You, N.; Zhuo, L.; Liang, B.; Song, Y.; Zang, S.; Liu, J.; Yang, J.; Ge, W.; Shi, J. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am. J. Transl. Res., 2019, 11(5), 2668-2682.
[PMID: 31217846]
[29]
Cui, H.X.; Hu, Y.N.; Li, J.W.; Yuan, K.; Guo, Y. Preparation and evaluation of antidiabetic agents of berberine organic acid salts for enhancing the bioavailability. Molecules, 2018, 24(1), 103.
[http://dx.doi.org/10.3390/molecules24010103] [PMID: 30597911]
[30]
Daury, L.; Orange, F.; Taveau, J.C.; Verchère, A.; Monlezun, L.; Gounou, C.; Marreddy, R.K.; Picard, M.; Broutin, I.; Pos, K.M.; Lambert, O. Tripartite assembly of RND multidrug efflux pumps. Nat. Commun., 2016, 7, 10731.
[http://dx.doi.org/10.1038/ncomms10731] [PMID: 26867482]
[31]
Jo, J.T.; Brinkman, F.S.; Hancock, R.E. Aminoglycoside efflux in Pseudomonas aeruginosa: Involvement of novel outer membrane proteins. Antimicrob. Agents Chemother., 2003, 47(3), 1101-1111.
[http://dx.doi.org/10.1128/AAC.47.3.1101-1111.2003] [PMID: 12604548]
[32]
Siriyong, T.; Srimanote, P.; Chusri, S.; Yingyongnarongkul, B.E.; Suaisom, C.; Tipmanee, V.; Voravuthikunchai, S.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement. Altern. Med., 2017, 17(1), 405.
[http://dx.doi.org/10.1186/s12906-017-1913-y] [PMID: 28806947]
[33]
Morita, Y.; Nakashima, K.; Nishino, K.; Kotani, K.; Tomida, J.; Inoue, M.; Kawamura, Y. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa. Front. Microbiol., 2016, 7, 1223.
[http://dx.doi.org/10.3389/fmicb.2016.01223] [PMID: 27547203]
[34]
Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815.
[http://dx.doi.org/10.18632/oncotarget.8315] [PMID: 27027348]
[35]
Kim, N.; Nam, M.; Kang, M.S.; Lee, J.O.; Lee, Y.W.; Hwang, G.S.; Kim, H.S. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci. Rep., 2017, 7, 41066.
[http://dx.doi.org/10.1038/srep41066] [PMID: 28117414]
[36]
Chen, M.; Wang, Y. Mycobacterium drug efflux Pump and its role in drug resistance mechanism. Chin. J. Publ. Health, 2007, 6, 697-699.
[37]
Lv, Y.L.; Wu, Z.Z.; Chen, L.X.; Wu, B.X.; Chen, L.L.; Qin, G.C.; Gui, B.; Zhou, J.Y. Neuroprotective effects of tetrandrine against vascular dementia. Neural Regen. Res., 2016, 11(3), 454-459.
[http://dx.doi.org/10.4103/1673-5374.179058] [PMID: 27127485]
[38]
Zhang, Z.; Yan, J.; Xu, K.; Ji, Z.; Li, L. Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. BMC Infect. Dis., 2015, 15, 153.
[http://dx.doi.org/10.1186/s12879-015-0905-0] [PMID: 25887373]
[39]
Cloete, R.; Kapp, E.; Joubert, J.; Christoffels, A.; Malan, S.F. Molecular modelling and simulation studies of the Mycobacterium tuberculosis multidrug efflux pump protein Rv1258c. PLoS One, 2018, 13(11)e0207605
[http://dx.doi.org/10.1371/journal.pone.0207605] [PMID: 30475855]
[40]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186] [PMID: 20525733]
[41]
Solnier, J.; Martin, L.; Bhakta, S.; Bucar, F. Flavonoids as novel efflux pump inhibitors and antimicrobials against both environmental and pathogenic intracellular mycobacterial species. Molecules, 2020, 25(3), 734.
[http://dx.doi.org/10.3390/molecules25030734] [PMID: 32046221]
[42]
Rodrigues, L.; Ramos, J.; Couto, I.; Amaral, L.; Viveiros, M. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: Correlation with antibiotic resistance. BMC Microbiol., 2011, 11, 35.
[http://dx.doi.org/10.1186/1471-2180-11-35] [PMID: 21332993]
[43]
Huang, Y.; Sun, Y.; Wang, W.W.; Zhang, L. Boeravinone B a natural rotenoid exerts anticancer activity via inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells. Am. J. Transl. Res., 2018, 10(12), 4183-4192.
[PMID: 30662661]
[44]
Singh, S.; Kalia, N.P.; Joshi, P.; Kumar, A.; Sharma, P.R.; Kumar, A.; Bharate, S.B.; Khan, I.A.; Boeravinone, B.; Boeravinone, B. A Novel Dual Inhibitor of NorA Bacterial Efflux Pump of Staphylococcus aureus and Human P-Glycoprotein, Reduces the Biofilm Formation and Intracellular Invasion of Bacteria. Front. Microbiol., 2017, 8, 1868.
[http://dx.doi.org/10.3389/fmicb.2017.01868] [PMID: 29046665]
[45]
Kuzuyama, T. Biosynthetic studies on terpenoids produced by Streptomyces. J. Antibiot. (Tokyo), 2017, 70(7), 811-818.
[http://dx.doi.org/10.1038/ja.2017.12] [PMID: 28196976]
[46]
Bhatia, S.P.; McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on α-bisabolol. Food Chem. Toxicol., 2008, 46(11)(Suppl. 11), S72-S76.
[http://dx.doi.org/10.1016/j.fct.2008.06.025] [PMID: 18640217]
[47]
Chovanová, R.; Mezovská, J.; Vaverková, Š.; Mikulášová, M. The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett. Appl. Microbiol., 2015, 61(1), 58-62.
[http://dx.doi.org/10.1111/lam.12424] [PMID: 25846244]
[48]
Pereira da Cruz, R.; Sampaio de Freitas, T.; Socorro Costa, M.D.; Lucas Dos Santos, A.T.; Ferreira, C.F.; Pereira, R.L.S.; Bezerra, J.W.A.; Quintans-Júnior, L.J.; De Souza, A.A.A.; Júnior, J.P.S.; Iriti, M.; Varoni, E.M.; Menezes, I.R.A.; Melo Coutinho, H.D.; Morais-Braga, M.F.B. Effect of α-bisabolol and its β-cyclodextrin complex as TetK and NorA efflux pump inhibitors in Staphylococcus aureus strains. Antibiotics (Basel), 2020, 9(1), 28.
[http://dx.doi.org/10.3390/antibiotics9010028] [PMID: 31947642]
[49]
Tintino, S.R.; Morais-Tintino, C.D.; Campina, F.F.; Pereira, R.L. Costa, Mdo.S.; Braga, M.F.; Limaverde, P.W.; Andrade, J.C.; Siqueira-Junior, J.P.; Coutinho, H.D.; Balbino, V.Q.; Leal-Balbino, T.C.; Ribeiro-Filho, J.; Quintans-Júnior, L.J. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps. EXCLI J., 2016, 15, 315-322.
[PMID: 27298617]
[50]
Bame, J.R.; Graf, T.N.; Junio, H.A.; Bussey, R.O., III; Jarmusch, S.A.; El-Elimat, T.; Falkinham, J.O., III; Oberlies, N.H.; Cech, R.A.; Cech, N.B. Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med., 2013, 79(5), 327-329.
[http://dx.doi.org/10.1055/s-0032-1328259] [PMID: 23468310]
[51]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5¢-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[52]
Negi, N.; Prakash, P.; Gupta, M.L.; Mohapatra, T.M. Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J. Clin. Diagn. Res., 2014, 8(10), DC04-DC07.
[http://dx.doi.org/10.7860/JCDR/2014/8329.4965] [PMID: 25478340]
[53]
Jin, J.; Zhang, J.Y.; Guo, N.; Sheng, H.; Li, L.; Liang, J.C.; Wang, X.L.; Li, Y.; Liu, M.Y.; Wu, X.P.; Yu, L.; Liu, M.Y.; Wu, X.P.; Yu, L. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. Molecules, 2010, 15(11), 7750-7762.
[http://dx.doi.org/10.3390/molecules15117750] [PMID: 21042264]
[54]
Torrents, E. Ribonucleotide reductases: Essential enzymes for bacterial life. Front. Cell. Infect. Microbiol., 2014, 4, 52.
[http://dx.doi.org/10.3389/fcimb.2014.00052] [PMID: 24809024]
[55]
Long, C.P.; Au, J.; Sandoval, N.R.; Gebreselassie, N.A.; Antoniewicz, M.R. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli. Nat. Commun., 2017, 8, 14316.
[http://dx.doi.org/10.1038/ncomms14316] [PMID: 28128209]
[56]
Sielaff, H.; Duncan, T.M.; Börsch, M. The regulatory subunit ε in Escherichia coli FOF1-ATP synthase. Biochim. Biophys. Acta Bioenerg., 2018, 1859(9), 775-788.
[http://dx.doi.org/10.1016/j.bbabio.2018.06.013] [PMID: 29932911]
[57]
Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial Enzymes and Antibiotic Resistance. Acta Naturae, 2018, 10(4), 33-48.
[http://dx.doi.org/10.32607/20758251-2018-10-4-33-48] [PMID: 30713760]
[58]
Chen, G.L.; Tian, Y.Q.; Wu, J.L.; Li, N.; Guo, M.Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep., 2016, 6, 38284.
[http://dx.doi.org/10.1038/srep38284] [PMID: 27922057]
[59]
Diosa-Toro, M.; Troost, B.; van de Pol, D.; Heberle, A.M.; Urcuqui-Inchima, S.; Thedieck, K.; Smit, J.M. Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Res., 2019, 161, 90-99.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.011] [PMID: 30468746]
[60]
Yu, T.; Wu, Q.; You, X.; Zhou, H.; Xu, S.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yang, Y.; Chen, K. Tomatidine alleviates osteoporosis by downregulation of p53. Med. Sci. Monit., 2020, 26e923996
[http://dx.doi.org/10.12659/MSM.923996] [PMID: 32300098]
[61]
Lamontagne Boulet, M.; Isabelle, C.; Guay, I.; Brouillette, E.; Langlois, J.P.; Jacques, P.É.; Rodrigue, S.; Brzezinski, R.; Beauregard, P.B.; Bouarab, K.; Boyapelly, K.; Boudreault, P.L.; Marsault, É.; Malouin, F. Tomatidine is a lead antibiotic molecule that targets Staphylococcus aureus ATP synthase subunit C. Antimicrob. Agents Chemother., 2018, 62(6), e02197-e17.
[http://dx.doi.org/10.1128/AAC.02197-17] [PMID: 29610201]
[62]
Luo, C.; Chen, H.; Wang, Y.; Lin, G.; Li, C.; Tan, L.; Su, Z.; Lai, X.; Xie, J.; Zeng, H. Protective effect of coptisine free base on indomethacin-induced gastric ulcers in rats: Characterization of potential molecular mechanisms. Life Sci., 2018, 193, 47-56.
[http://dx.doi.org/10.1016/j.lfs.2017.12.004] [PMID: 29223540]
[63]
Wu, J.; Zhang, H.; Hu, B.; Yang, L.; Wang, P.; Wang, F.; Meng, X. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur. J. Pharmacol., 2016, 780, 106-114.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.037] [PMID: 27018392]
[64]
Jonsson, I.M.; Mazmanian, S.K.; Schneewind, O.; Bremell, T.; Tarkowski, A. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect., 2003, 5(9), 775-780.
[http://dx.doi.org/10.1016/S1286-4579(03)00143-6] [PMID: 12850203]
[65]
Wang, G.; Wang, X.; Sun, L.; Gao, Y.; Niu, X.; Wang, H. Novel inhibitor discovery of Staphylococcus aureus sortase B and the mechanism confirmation via molecular modeling. Molecules, 2018, 23(4), 977.
[http://dx.doi.org/10.3390/molecules23040977] [PMID: 29690584]
[66]
Nitulescu, G.; Zanfirescu, A.; Olaru, O.T.; Nicorescu, I.M.; Nitulescu, G.M.; Margina, D. Structural analysis of sortase A inhibitors. Molecules, 2016, 21(11), 1591.
[http://dx.doi.org/10.3390/molecules21111591] [PMID: 27879666]
[67]
Zhang, B.; Teng, Z.; Li, X.; Lu, G.; Deng, X.; Niu, X.; Wang, J. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin. Front. Microbiol., 2017, 8, 1715.
[http://dx.doi.org/10.3389/fmicb.2017.01715] [PMID: 28932220]
[68]
Mu, D.; Xiang, H.; Dong, H.; Wang, D.; Wang, T. Isovitexin, a Potential Candidate Inhibitor of Sortase A of Staphylococcus aureus USA300. J. Microbiol. Biotechnol., 2018, 28(9), 1426-1432.
[http://dx.doi.org/10.4014/jmb.1802.02014] [PMID: 30369109]
[69]
Fenton, A.K.; Manuse, S.; Flores-Kim, J.; Garcia, P.S.; Mercy, C.; Grangeasse, C.; Bernhardt, T.G.; Rudner, D.Z. Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc. Natl. Acad. Sci. USA, 2018, 115(11), 2812-2817.
[http://dx.doi.org/10.1073/pnas.1715218115] [PMID: 29487215]
[70]
Mahasenan, K.V.; Molina, R.; Bouley, R.; Batuecas, M.T.; Fisher, J.F.; Hermoso, J.A.; Chang, M.; Mobashery, S. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. J. Am. Chem. Soc., 2017, 139(5), 2102-2110.
[http://dx.doi.org/10.1021/jacs.6b12565] [PMID: 28099001]
[71]
Catteau, L.; Reichmann, N.T.; Olson, J.; Pinho, M.G.; Nizet, V.; Van Bambeke, F.; Quetin-Leclercq, J. Synergy between ursolic and oleanolic acids from Vitellaria paradoxa leaf extract and β-lactams against methicillin-resistant Staphylococcus aureus: In vitro and in vivo activity and underlying mechanisms. Molecules, 2017, 22(12), 2245.
[http://dx.doi.org/10.3390/molecules22122245] [PMID: 29258194]
[72]
Smith, P.A.; Romesberg, F.E. Mechanism of action of the arylomycin antibiotics and effects of signal peptidase I inhibition. Antimicrob. Agents Chemother., 2012, 56(10), 5054-5060.
[http://dx.doi.org/10.1128/AAC.00785-12] [PMID: 22802255]
[73]
Steed, D.B.; Liu, J.; Wasbrough, E.; Miller, L.; Halasohoris, S.; Miller, J.; Somerville, B.; Hershfield, J.R.; Romesberg, F.E. Origins of Yersinia pestis sensitivity to the arylomycin antibiotics and the inhibition of type I signal peptidase. Antimicrob. Agents Chemother., 2015, 59(7), 3887-3898.
[http://dx.doi.org/10.1128/AAC.00181-15] [PMID: 25896690]
[74]
Walsh, S.I.; Peters, D.S.; Smith, P.A.; Craney, A.; Dix, M.M.; Cravatt, B.F.; Romesberg, F.E. Inhibition of Protein Secretion in Escherichia coli and Sub-MIC Effects of Arylomycin Antibiotics. Antimicrob. Agents Chemother., 2019, 63(2), e01253-e18.
[PMID: 30420476]
[75]
Gillor, O.; Kirkup, B.C.; Riley, M.A. Colicins and microcins: the next generation antimicrobials. Adv. Appl. Microbiol., 2004, 54, 129-146.
[http://dx.doi.org/10.1016/S0065-2164(04)54005-4] [PMID: 15251279]
[76]
Lu, S.Y.; Graça, T.; Avillan, J.J.; Zhao, Z.; Call, D.R. Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity. Appl. Environ. Microbiol., 2019, 85(11), e00371-e19.
[http://dx.doi.org/10.1128/AEM.00371-19] [PMID: 30902857]
[77]
Liko, I.; Degiacomi, M.T.; Lee, S.; Newport, T.D.; Gault, J.; Reading, E.; Hopper, J.; Housden, N.G.; White, P.; Colledge, M.; Sula, A.; Wallace, B.A.; Kleanthous, C.; Stansfeld, P.J.; Bayley, H.; Benesch, J.; Allison, T.M.; Robinson, C.V. Lipid binding attenuates channel closure of the outer membrane protein OmpF. Proc. Natl. Acad. Sci. USA, 2018, 115(26), 6691-6696.
[http://dx.doi.org/10.1073/pnas.1721152115] [PMID: 29891712]
[78]
Bai, J.; Wu, Y.; Liu, X.; Zhong, K.; Huang, Y.; Gao, H. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane. Int. J. Mol. Sci., 2015, 16(11), 27145-27155.
[http://dx.doi.org/10.3390/ijms161126015] [PMID: 26580596]
[79]
Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; Honrao, C.; Ma, X.; Guo, J.J.; Makriyannis, A.; Linares-Otoya, L.; Böhringer, N.; Wuisan, Z.G.; Kaur, H.; Wu, R.; Mateus, A.; Typas, A.; Savitski, M.M.; Espinoza, J.L.; O’Rourke, A.; Nelson, K.E.; Hiller, S.; Noinaj, N.; Schäberle, T.F.; D’Onofrio, A.; Lewis, K. A new antibiotic selectively kills Gram-negative pathogens. Nature, 2019, 576(7787), 459-464.
[http://dx.doi.org/10.1038/s41586-019-1791-1] [PMID: 31747680]
[80]
Wright, G.D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep., 2017, 34(7), 694-701.
[http://dx.doi.org/10.1039/C7NP00019G] [PMID: 28569300]
[81]
Bernabè, G.; Dal, P.M.; Ronca, V.; Pauletto, A.; Marzaro, G.; Saluzzo, F.; Stefani, A.; Artusi, I.; De, F.V.; Ferlin, M.G.; Brun, P.; Castagliuolo, I. A novel aza-derivative inhibits agr quorum sensing signaling and synergizes methicillin-resistant Staphylococcus aureus to clindamycin. Front. Microbiol., 2021, 12610859
[http://dx.doi.org/10.3389/fmicb.2021.610859] [PMID: 33633702]
[82]
Yarlagadda, V.; Medina, R.; Wright, G.D.; Venturicidin, A. A Membrane-active natural product inhibitor of Atp synthase potentiates Aminoglycoside. Sci. Rep., 2020, 10(1), 8134.
[http://dx.doi.org/10.1038/s41598-020-64756-0] [PMID: 32424122]
[83]
Huang, J.; Guo, M.; Jin, S.; Wu, M.; Yang, C.; Zhang, G.; Wang, P.; Ji, J.; Zeng, Q.; Wang, X.; Wang, H. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagn. Photodyn. Ther., 2019, 28, 330-337.
[http://dx.doi.org/10.1016/j.pdpdt.2019.09.008] [PMID: 31618677]
[84]
Chen, G.; Wu, J.; Li, N.; Guo, M. Screening for anti-proliferative and anti-inflammatory components from Rhamnus davurica Pall. using bio-affinity ultrafiltration with multiple drug targets. Anal. Bioanal. Chem., 2018, 410(15), 3587-3595.
[http://dx.doi.org/10.1007/s00216-018-0953-6] [PMID: 29476234]
[85]
Chen, Z.; Gao, Y.; Lv, B.; Sun, F.; Yao, W.; Wang, Y.; Fu, X. Hypoionic shock facilitates aminoglycoside killing of both nutrient shift- and starvation-induced bacterial persister cells by rapidly enhancing aminoglycoside uptake. Front. Microbiol., 2019, 10, 2028.
[http://dx.doi.org/10.3389/fmicb.2019.02028] [PMID: 31551965]
[86]
Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy