Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Thiol-Lactam Initiated Radical Polymerization (TLIRP): Scope and Application for the Surface Functionalization of Nanoparticles

Author(s): Farzad Seidi*, Mohammad Reza Saeb, Yongcan Jin, Philippe Zinck and Huining Xiao*

Volume 19, Issue 4, 2022

Published on: 16 September, 2021

Page: [416 - 431] Pages: 16

DOI: 10.2174/1570193X18666210916165249

Price: $65

conference banner
Abstract

Controlled polymerization techniques make the possible fabrication of polymers with desired molecular weights, narrow dispersity, and tailor-making of advanced hybrid materials. Thiol- Lactam Initiated Radical Polymerization (TLIRP) was introduced in 2002 and developed during the last two decades. The thiol/lactam combination enables one to generate radicals that can initiate the polymerization of vinyl-based monomers. The study of the mechanism and kinetics of TLIRP revealed the characteristics of living polymerization for TLIRP. Moreover, TLIRP has been used successfully for the synthesis of homopolymers, block copolymers, and statistical copolymers with polydispersity below 2.0. Especially, TLIRP provides a very straightforward method for grafting polymer brushes on the surface of nanoparticles. We review herein the systems developed for TLIRP and their applications for macromolecular engineering, emphasizing the surface functionalization of nanoparticles via the grafting-from approach.

Keywords: Controlled radical polymerization, thiol-lactam initiated radical polymerization, TLIRP, tailor-made polymers, surface grafting, polydispersity.

Graphical Abstract

[1]
Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev., 2001, 101(9), 2921-2990.
[http://dx.doi.org/10.1021/cr940534g] [PMID: 11749397]
[2]
Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 2012, 45(10), 4015-4039.
[http://dx.doi.org/10.1021/ma3001719]
[3]
He, W.; Jiang, H.; Zhang, L.; Cheng, Z.; Zhu, X. Atom transfer radical polymerization of hydrophilic monomers and its applications. Polym. Chem., 2013, 4(10), 2919-2938.
[http://dx.doi.org/10.1039/c3py00122a]
[4]
Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev., 2018, 47(14), 5457-5490.
[http://dx.doi.org/10.1039/C8CS00259B] [PMID: 29868657]
[5]
Foster, J.C.; Radzinski, S.C.; Matson, J.B. Graft polymer synthesis by RAFT transfer-to. J. Polym. Sci. A Polym. Chem., 2017, 55(18), 2865-2876.
[http://dx.doi.org/10.1002/pola.28621]
[6]
Moad, G. A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization. J. Polym. Sci. A Polym. Chem., 2019, 57(3), 216-227.
[http://dx.doi.org/10.1002/pola.29199]
[7]
Grubbs, R.B. Nitroxide-mediated radical polymerization: limitations and versatility. Polym. Rev. (Phila. Pa.), 2011, 51(2), 104-137.
[http://dx.doi.org/10.1080/15583724.2011.566405]
[8]
Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci., 2013, 38(1), 63-235.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.06.002]
[9]
Sciannamea, V.; Jérôme, R.; Detrembleur, C. In situ nitroxide-mediated radical polymerization (NMP) processes: Their understanding and optimization. Chem. Rev., 2008, 108(3), 1104-1126.
[http://dx.doi.org/10.1021/cr0680540] [PMID: 18254646]
[10]
Valade, D.; Boyer, C.; Ameduri, B.; Boutevin, B. Poly (vinylidene fluoride)-b-poly (styrene) block copolymers by iodine transfer polymerization (ITP): Synthesis, characterization, and kinetics of ITP. Macromolecules, 2006, 39(25), 8639-8651.
[http://dx.doi.org/10.1021/ma061392i]
[11]
Zeng, J.; Zhu, J.; Zhang, Z.; Pan, X.; Zhang, W.; Cheng, Z.; Zhu, X. New selenium‐based iniferter agent for living free radical polymerization of styrene under UV irradiation. J. Polym. Sci. A Polym. Chem., 2012, 50(11), 2211-2218.
[http://dx.doi.org/10.1002/pola.25994]
[12]
Lu, J.; Zhou, N.; Pan, X.; Zhu, J.; Zhu, X. Branched polystyrene with high reflex index synthesized from selenium‐mediated polymerization. J. Polym. Sci. A Polym. Chem., 2014, 52(4), 504-510.
[http://dx.doi.org/10.1002/pola.27023]
[13]
Matyjaszewski, K. Advanced materials by atom transfer radical polymerization. Adv. Mater., 2018, 30(23)e1706441
[http://dx.doi.org/10.1002/adma.201706441] [PMID: 29582478]
[14]
Seidi, F.; Salimi, H.; Shamsabadi, A.A.; Shabanian, M. Synthesis of hybrid materials using graft copolymerization on non-cellulosic polysaccharides via homogenous ATRP. Prog. Polym. Sci., 2018, 76, 1-39.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.07.006]
[15]
Seidi, F.; Shamsabadi, A.A.; Amini, M.; Shabanian, M.; Crespy, D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym. Chem., 2019, 10(27), 3674-3711.
[http://dx.doi.org/10.1039/C9PY00495E]
[16]
Perrier, S.; Takolpuckdee, P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J. Polym. Sci. A Polym. Chem., 2005, 43(22), 5347-5393.
[http://dx.doi.org/10.1002/pola.20986]
[17]
Zhang, J.; Si, D.; Wang, S.; Liu, H.; Chen, X.; Zhou, H.; Yang, M.; Zhang, G. Novel organic/inorganic hybrid star polymer surface-crosslinked with polyhedral oligomeric silsesquioxane. Macromol. Res., 2019, 1-7.
[18]
Wu, J.; Xie, J.; Ling, L.; Ma, G.; Wang, B. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane and investigation of its effect on the properties of UV curable coatings. J. Coat. Technol. Res., 2013, 10(6), 849-857.
[http://dx.doi.org/10.1007/s11998-013-9525-z]
[19]
Zhou, F.; Liu, W.; Chen, M.; Sun, D.C. A novel way to prepare ultra-thin polymer films through surface radical chain-transfer reaction. Chem. Commun. (Camb.), 2001, (23), 2446-2447.
[http://dx.doi.org/10.1039/b107831n] [PMID: 12240007]
[20]
Costello, P.A.; Martin, I.K.; Slark, A.T.; Sherrington, D.C.; Titterton, A. Branched methacrylate copolymers from multifunctional monomers: Chemical composition and physical architecture distributions. Polymer (Guildf.), 2002, 43(2), 245-254.
[http://dx.doi.org/10.1016/S0032-3861(01)00581-X]
[21]
Isaure, F.; Cormack, P.A.G.; Sherrington, D.C. Synthesis of branched poly(methyl methacrylate)s: Effect of the branching comonomer structure. Macromolecules, 2004, 37(6), 2096-2105.
[http://dx.doi.org/10.1021/ma030445i]
[22]
Baudry, R.; Sherrington, D.C. Facile Synthesis of Branched Poly(vinyl alcohol)s. Macromolecules, 2006, 39(16), 5230-5237.
[http://dx.doi.org/10.1021/ma061221d]
[23]
Pfeifer, C.S.; Wilson, N.D.; Shelton, Z.R.; Stansbury, J.W. Delayed gelation through chain-transfer reactions: Mechanism for stress reduction In methacrylate networks. Polymer (Guildf.), 2011, 52(15), 3295-3303.
[http://dx.doi.org/10.1016/j.polymer.2011.05.034] [PMID: 21799544]
[24]
Chen, C.; Liu, J.; Sun, F.; Stansbury, J.W. Tuning the surface microstructure and gradient properties of polymers with photopolymerizable polysiloxane-modified nanogels. RSC Advances, 2014, 4(55), 28928-28936.
[http://dx.doi.org/10.1039/C4RA02176B] [PMID: 25045518]
[25]
Gao, C.; Zhang, D.; Wang, H.; Wang, C.; Yuan, J.; Zhu, C.; Liu, Y. Effect of polyhedral oligomeric silsesquioxane on thiol-ene UV curing kinetics of waterborne polyester. Prog. Org. Coat., 2019, 136105231
[http://dx.doi.org/10.1016/j.porgcoat.2019.105231]
[26]
Cheng, H.; Yan, D.; Xia, P. Copolymerization of styrene with acrylonitrile initiated by 2-methyl-2-undecanethiol. Makromol. Chem., 1989, 190(9), 2287-2291.
[http://dx.doi.org/10.1002/macp.1989.021900929]
[27]
Cheng, H.; Zhao, G.; Yan, D. Free‐radical copolymerization of styrene with N‐phenyl maleimide initiated by thiol. J. Polym. Sci. A Polym. Chem., 1992, 30(10), 2181-2185.
[http://dx.doi.org/10.1002/pola.1992.080301012]
[28]
Jiang, X.; Yan, D.; Zhu, X.; Lin, J.; Xia, P. Radical copolymerization between methyl methacrylate and N‐cyclohexylmaleimide with thiol as an inifer. J. Appl. Polym. Sci., 1999, 74(6), 1417-1423.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19991107)74:6<1417:AID-APP14>3.0.CO;2-5]
[29]
Hu, Y-H.; Chen, C-Y. Polymerization of methyl methacrylate by 2-pyrrolidinone and n-dodecyl mercaptan. J. Polym. Sci. A Polym. Chem., 2002, 40(21), 3692-3702.
[http://dx.doi.org/10.1002/pola.10456]
[30]
Otsu, T.; Yoshida, M.; Tazaki, T. A model for living radical polymerization. Makromol. Chem., Rapid. Commun., 1982, 3(2), 133-140.
[http://dx.doi.org/10.1002/marc.1982.030030209]
[31]
Otsu, T.; Matsunaga, T.; Doi, T.; Matsumoto, A. Features of living radical polymerization of vinyl monomers in homogeneous system using N,N-diethyldithiocarbamate derivatives as photoiniferters. Eur. Polym. J., 1995, 31(1), 67-78.
[http://dx.doi.org/10.1016/0014-3057(94)00122-7]
[32]
Hu, Y.H.; Chen, C.Y.; Wang, C.C.; Huang, Y.H.; Wang, S.P. Living polymerization of styrene initiated by mercaptan/∑‐caprolactam. J. Polym. Sci. A Polym. Chem., 2004, 42(19), 4976-4993.
[http://dx.doi.org/10.1002/pola.20333]
[33]
Penczek, S.; Kubisa, P.; Szymanski, R. On the diagnostic criteria of the livingness of polymerizations. Makromol. Chem., Rapid. Commun., 1991, 12(2), 77-80.
[http://dx.doi.org/10.1002/marc.1991.030120202]
[34]
Quirk, R.P.; Lee, B. Experimental criteria for living polymerizations. Polym. Int., 1992, 27(4), 359-367.
[http://dx.doi.org/10.1002/pi.4990270412]
[35]
Quirk, R.P.; Lynch, T. Anionic synthesis of primary amine-functionalized polystyrenes using 1-[4-[N, N-bis (trimethylsilyl) amino] phenyl]-1-phenylethylene. Macromolecules, 1993, 26(6), 1206-1212.
[http://dx.doi.org/10.1021/ma00058a002]
[36]
Hwang, H.S.; Bae, J.H.; Kim, H.G.; Lim, K.T. Synthesis of silica-polystyrene core-shell nanoparticles via surface thiol-lactam initiated radical polymerization. Eur. Polym. J., 2010, 46(8), 1654-1659.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.06.008]
[37]
Hung, C-Y.; Wang, C-C.; Chen, C-Y. Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer (Guildf.), 2013, 54(7), 1860-1866.
[http://dx.doi.org/10.1016/j.polymer.2013.01.045]
[38]
Wu, C.P.; Wang, C.C.; Chen, C.Y. Enhancing the PLA crystallization rate by incorporating a polystyrene‐block‐poly (methyl methacrylate) block copolymer: Synergy of polystyrene and poly (methyl methacrylate) segments. J. Polym. Sci., B, Polym. Phys., 2014, 52(12), 823-832.
[http://dx.doi.org/10.1002/polb.23492]
[39]
Wu, C-P.; Wang, C-C.; Chen, C-Y. Influence of asymmetric ratio of polystyrene-block-poly (methyl methacrylate) block copolymer on the crystallization rate of PLA. Eur. Polym. J., 2015, 66, 160-169.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.02.018]
[40]
Wu, C-P.; Wang, C-C.; Chen, C-Y. Investigation of mercaptan/∑-caprolactam initiated bulk copolymerization of methyl methacrylate with vinyl monomers. J. Polym. Res., 2019, 26(4), 94.
[http://dx.doi.org/10.1007/s10965-019-1756-y]
[41]
Fineman, M.; Ross, S.D. Linear method for determining monomer reactivity ratios in copolymerization. J. Poly. Sci., 1950, 5(2), 259-262.
[http://dx.doi.org/10.1002/pol.1950.120050210]
[42]
Yu, X.; Levine, S.E.; Broadbelt, L.J. Kinetic study of the copolymerization of methyl methacrylate and methyl acrylate using quantum chemistry. Macromolecules, 2008, 41(21), 8242-8251.
[http://dx.doi.org/10.1021/ma801241p]
[43]
Ramana Reddy, G.; Prasad Babu, Y.P.; Rami Reddy, N.S. Microemulsion and conventional emulsion copolymerizations of methyl methacrylate with acrylonitrile. J. Appl. Polym. Sci., 2002, 85(7), 1503-1510.
[http://dx.doi.org/10.1002/app.10782]
[44]
Khesareh, R.; McManus, N.; Penlidis, A. High temperature bulk copolymerization of methyl methacrylate and acrylonitrile. I. Reactivity ratio estimation. J. Appl. Polym. Sci., 2006, 100(1), 843-851.
[http://dx.doi.org/10.1002/app.23226]
[45]
Ma, Y.D.; Won, Y.C.; Kubo, K.; Fukuda, T. Propagation and termination processes in the free-radical copolymerization of methyl methacrylate and vinyl acetate. Macromolecules, 1993, 26(25), 6766-6770.
[http://dx.doi.org/10.1021/ma00077a011]
[46]
Scorah, M.; Hua, H.; Dubé, M. Bulk and solution copolymerization of methyl methacrylate and vinyl acetate. J. Appl. Polym. Sci., 2001, 82(5), 1238-1255.
[http://dx.doi.org/10.1002/app.1958]
[47]
Brar, A.; Charan, S. Reactivity ratios and microstructure determination of (vinyl acetate)-(methyl methacrylate) copolymers. Eur. Polym. J., 1993, 29(5), 755-759.
[http://dx.doi.org/10.1016/0014-3057(93)90140-B]
[48]
Dubé, M.A.; Penlidis, A. A systematic approach to the study of multicomponent polymerization kinetics-the butyl acrylate/methyl methacrylate/vinyl acetate example: 1. Bulk copoly-merization. Polymer (Guildf.), 1995, 36(3), 587-598.
[http://dx.doi.org/10.1016/0032-3861(95)91568-R]
[49]
Hu, Y-H.; Chen, C-Y. Study of the thermal behaviour of poly(methyl methacrylate) initiated by lactams and thiols. Polym. Degrad. Stabil., 2003, 80(1), 1-10.
[http://dx.doi.org/10.1016/S0141-3910(02)00375-0]
[50]
Hu, Y-H.; Chen, C-Y.; Wang, C-C. Thermal degradation kinetics of poly(n-butyl acrylate) initiated by lactams and thiols. Polym. Degrad. Stabil., 2004, 84(3), 505-514.
[http://dx.doi.org/10.1016/j.polymdegradstab.2004.01.009]
[51]
Taylor, H.S.; Tobolsky, A.V. Radical chain processes in vinyl and diene reactions. J. Am. Chem. Soc., 1945, 67(12), 2063-2067.
[http://dx.doi.org/10.1021/ja01228a003]
[52]
Simha, R.; Wall, L.; Blatz, P. Depolymerization as a chain reaction. J. Polym. Sci., 1950, 5(5), 615-632.
[http://dx.doi.org/10.1002/pol.1950.120050509]
[53]
Lehmann, F.A.; Brauer, G.M. Analysis of pyrolyzates of polystyrene and poly (methyl methacrylate) by gas chromato-graphy. Anal. Chem., 1961, 33(6), 673-676.
[http://dx.doi.org/10.1021/ac60174a008]
[54]
Jellinek, H.; Clark, J. A new technique for the study of high-polymer degradation reactions. Can. J. Chem., 1963, 41(2), 355-362.
[http://dx.doi.org/10.1139/v63-052]
[55]
Manring, L.E. Thermal degradation of poly (methyl methacrylate). 2. Vinyl-terminated polymer. Macromolecules, 1989, 22(6), 2673-2677.
[http://dx.doi.org/10.1021/ma00196a024]
[56]
Hu, Y-H.; Chen, C-Y. The effect of end groups on the thermal degradation of poly(methyl methacrylate). Polym. Degrad. Stabil., 2003, 82(1), 81-88.
[http://dx.doi.org/10.1016/S0141-3910(03)00165-4]
[57]
Bach, L.G.; Jeong, Y.; Hwang, H.S.; Lim, K. A facile synthesis of PMMA-SiO2 nanocomposites via surface initiated radical polymerization. Mol. Cryst. Liq. Cryst., 2012, 565, 78-87.
[58]
Lee, J.; Hwang, H.S.; Koh, W-G.; Park, I. Robust and superomniphobic core-shell SiO2@ poly (1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate-co-methyl methacrylate) coating materials synthesized by thiol lactam initiated radical polymerization. Prog. Org. Coat., 2020, 148105851
[http://dx.doi.org/10.1016/j.porgcoat.2020.105851]
[59]
Lee, J.; Hwang, H.S.; Lo, T.N.H.; Koh, W-G.; Park, I. Effect of Silica Size and Content on Superamphiphobic Properties of Silica-Fluoropolymer Core-Shell Coatings. Polymers (Basel), 2020, 12(12), 2864.
[http://dx.doi.org/10.3390/polym12122864] [PMID: 33265976]
[60]
Islam, M.R.; Bach, L.G.; Mai, T.B.; Tran, T.N.; Niranjanmurthi, L.; Lim, K. Chemical modification of Al2O3 nanoparticles by PMMA via a facile surface initiated controled radical polymerization. ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, 2012.
[61]
Bach, L.G.; Islam, M.R.; Kim, J.T.; Seo, S.; Lim, K.T. Encapsulation of Fe3O4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initiated radical polymerization. Appl. Surf. Sci., 2012, 258(7), 2959-2966.
[http://dx.doi.org/10.1016/j.apsusc.2011.11.016]
[62]
Motevalizadeh, S.F.; Khoobi, M.; Babanejad, N.; Mohit, E.; Dehghankelishadi, P.; Javar, H.A.; Dorkoosh, F.A.; Faramarzi, M.A.; Shafiee, A. Novel pH-responsive multilayer magnetic nanoparticles for controlled drug delivery. J. Indian Chem. Soc., 2016, 13(9), 1653-1666.
[63]
Tarasi, R.; Alipour, M.; Gorgannezhad, L.; Imanparast, S.; Yousefi-Ahmadipour, A.; Ramezani, A.; Ganjali, M.R.; Shafiee, A.; Faramarzi, M.A.; Khoobi, M. Laccase immobilization onto magnetic β-cyclodextrin-modified chitosan: Improved enzyme stability and efficient performance for phenolic compounds elimination. Macromol. Res., 2018, 26(8), 755-762.
[http://dx.doi.org/10.1007/s13233-018-6095-z]
[64]
Miri, S.S.; Yahagh, A.; Sadighi, A.; Shemirani, F.; Beyki, M.H.; Ganjali, M.R.; Khoobi, M. Poly(Acrolein-co-β-cyclodextrin) functionalized magnetic nanoparticles for selective CD45-positive cells capturing. J. Nanosci. Nanotechnol., 2019, 19(2), 655-663.
[http://dx.doi.org/10.1166/jnn.2019.15754] [PMID: 30360137]
[65]
Bach, L.G.; Hong, S-S.; Hwang, H.S.; Kim, H.; Lim, K. Synthesis and characterization of poly(oxyethylene methacrylate) coated TiO2 nanoparticles via surface thiol-lactam initiated radical polymerization. Mol. Cryst. Liquid Cryst., 2012, 565, 88-97.
[66]
Bach, L.G.; Islam, M.R.; Gal, Y.S.; Lim, K.T. Synthesis and characterization of TiO2/poly(methyl methacrylate) nanocom-posites via surface thiol-lactam initiated radical polymerization. J. Nanosci. Nanotechnol., 2012, 12(7), 5976-5980.
[http://dx.doi.org/10.1166/jnn.2012.6300] [PMID: 22966692]
[67]
Bach, L.G.; Islam, R.; Choi, B.; Gal, Y-S.; Lim, K. Synthesis of P(MMA-co-MAA)/TiO2 nanocomposites via surface thiol-lactam initiated radical polymerization. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2012, 568.
[68]
Bach, L.G.; Islam, R.; Jeong, Y.; Park, C.; Lim, K. Synthesis of PS-g-TiO2 nanocomposites through a simple method of surface initiated radical polymerization. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2012, 568.
[69]
Bach, L.G.; Islam, M.R.; Seo, S.Y.; Lim, K.T. A novel route for the synthesis of poly (2‐hydroxyethyl methacrylate) grafted TiO2 nanoparticles via surface thiol‐lactam initiated radical polymerization. J. Appl. Polym. Sci., 2013, 127(1), 261-269.
[http://dx.doi.org/10.1002/app.37879]
[70]
Islam, M.R.; Bach, L.G.; Jeong, J.H.; Kim, H.G.; Lim, K.T. Encapsulation of TiO2 nanoparticles with poly(4-vinylpyridine) using surface functionalized thiol-lactam initiated radical polymerization. J. Nanosci. Nanotechnol., 2013, 13(5), 3546-3549.
[http://dx.doi.org/10.1166/jnn.2013.7278] [PMID: 23858899]
[71]
Bach, L.G.; Cao, X.T.; Ho, V.; Lim, K. A facile route towards the synthesis of nanocomposites for the application as solid electrolytes via grafting polymer from TiO 2 nanoparticles. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2015, 618, 120-128.
[http://dx.doi.org/10.1080/15421406.2015.1076315]
[72]
Bach, L.G.; Islam, M.R.; Kim, Y.H.; Seo, S.D.; Park, C.; Kim, H.G.; Lim, K.T. A facile route towards the synthesis of polystyrene/zinc oxide nanocomposites. J. Nanosci. Nanotechnol., 2013, 13(1), 694-697.
[http://dx.doi.org/10.1166/jnn.2013.6929] [PMID: 23646799]
[73]
Bach, L.G.; Nguyen, D.C.; Nguyen, N.V.; Tran, T.; Islam, M.; Lim, K.; Vo, D-V.; Nguyen, T. A simple synthesis route for preparation and optical properties of PMMA-g-ZnO nanocomposites through surface-initiated radical polymerization. IOP Conf. Series Mater. Sci. Eng., 2019, 479012108
[http://dx.doi.org/10.1088/1757-899X/479/1/012108]
[74]
Doan Van, T.; Hieu-vu, Q.; Bui Le, M.; Pham Van, T. Md. Rafiqul, I.; Van Thi, T.H.; duy Trinh, N. Chemically modified hydroxyapatite nanocrystals by temperature-responsive poly(N-isopropylacrylamide) via surface initiated radical polymerization. Asian J. Chem., 2019, 31(6), 1221-1224.
[http://dx.doi.org/10.14233/ajchem.2019.21769]
[75]
Nguyen, T.; Nguyen, P.; Islam, M.; Lim, K.; Bach, L.G. A precised surface modification of hydroxyapatite with poly(methylmeth-acrylate) for tissue engineering & regenerative medicine. Asian J. Chem., 2019, 31, 545-550.
[http://dx.doi.org/10.14233/ajchem.2019.21616]
[76]
Rashid, M.H.-O.; Bae, J.H.; Park, C.; Lim, K.T. Synthesis of well-dispersed multiwalled carbon nanotubes-polystyrene nanocomposites via surface thiol-lactam initiated radical polymerization. Mol. Cryst. Liq. Cryst., 2010, 532(1) 98/[514]-105/[521].
[http://dx.doi.org/10.1080/15421406.2010.497039]
[77]
Rashid, M.H.; Lee, W-K.; Hong, S-S.; Park, J.M.; Kim, H.G.; Lim, K.T. Polymer brushes on carbon nanotubes by thiol-lactam initiated radical polymerization of 2-hydroxyethyl methacrylate. J. Nanosci. Nanotechnol., 2012, 12(1), 840-846.
[http://dx.doi.org/10.1166/jnn.2012.5392] [PMID: 22524067]
[78]
Zhang, Q.; Wang, Q.; Luo, Z.; Zhan, X.; Chen, F. Conventional and RAFT miniemulsion copolymerizations of butyl methacrylate with fluoromethacrylate and monomer reactivity ratios. Polym. Eng. Sci., 2009, 49(9), 1818-1824.
[http://dx.doi.org/10.1002/pen.21419]
[79]
Tarasi, R.; Khoobi, M.; Niknejad, H.; Ramazani, A.; Ma’mani, L.; Bahadorikhalili, S.; Shafiee, A. β-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: A novel biocompatible nanocomposite for targeted docetaxel delivery. J. Magn. Magn. Mater., 2016, 417, 451-459.
[http://dx.doi.org/10.1016/j.jmmm.2016.05.080]
[80]
Mayer, A.M.; Staples, R.C. Laccase: New functions for an old enzyme. Phytochemistry, 2002, 60(6), 551-565.
[http://dx.doi.org/10.1016/S0031-9422(02)00171-1] [PMID: 12126701]
[81]
Strong, P.J.; Claus, H. Laccase: A review of its past and its future in bioremediation. Crit. Rev. Environ. Sci. Technol., 2011, 41(4), 373-434.
[http://dx.doi.org/10.1080/10643380902945706]
[82]
Chernikova, E.V.; Pokataeva, Z.A.; Garina, E.S.; Lachinov, M.B.; Golubev, V.B. Two‐stage pseudoliving radical polymerization under the influence of triphenylmethyl radicals. Macromol. Chem. Phys., 2001, 202(1), 188-193.
[http://dx.doi.org/10.1002/1521-3935(20010101)202:1<188:AID-MACP188>3.0.CO;2-V]
[83]
Xu, Y-Q.; Lu, J-M.; Li, N-J.; Yan, F.; Xia, X-W.; Xu, Q-F. Pseudo-living radical polymerization using triarylmethane as the thermal iniferter. Eur. Polym. J., 2008, 44(7), 2404-2411.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.05.007]
[84]
Lee, J-h.; Lee, B.; Won, J-W.; Kim, C-h. Synthesis of novel telechelic fluoropolyols based on vinylidene fluoride/hexafluo-ropropylene copolymers by iodine transfer polymerization. Macromol. Res., 2017, 25(10), 1028-1034.
[http://dx.doi.org/10.1007/s13233-017-5137-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy