Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Strategy Analysis of Ynones’ Radical Reactions

Author(s): Kaijun Chen, Dayun Huang* and Xiangyu Sun*

Volume 19, Issue 4, 2022

Published on: 10 August, 2021

Page: [432 - 438] Pages: 7

DOI: 10.2174/1570193X18666210810154051

Price: $65

conference banner
Abstract

This review highlights the multifaceted synthetic applications of ynones in radical reactions. Substantial progress has been made over the last decade (2010-2020) in the utilization of ynones. Herein, the chemistry of ynones is divided into three sections based on the classes of critical mechanistic insights: (1) radical addition and intramolecular cyclization; (2) radical addition and intermolecular annulation; (3) radical addition and coupling. We hope that this review will promote future research in this area.

Keywords: Radical, ynone, radical cyclization, reaction coupling, tandem reaction, intramolecular cyclization.

Graphical Abstract

[1]
(a) Li, Y.; Yu, J.; Bi, Y.; Yan, G.; Huang, D. Tandem reactions of ynones via conjugate addition of N, C, O, B, Si, P, and S-containing nucleophiles. Adv. Synth. Catal., 2019, 361, 4839-4881.
[http://dx.doi.org/10.1002/adsc.201900611]
(b) Whittaker, R.; Dermenci, A.; Dong, G. Synthesis of ynones and recent application in transition-metal catalyzed reactions. Synthesis, 2016, 48, 161-183.
(c) Arai, T.; Ikematsu, Y.; Suemitsu, Y. Nickel-catalyzed multicomponent coupling reaction using ynones. Pure Appl. Chem., 2010, 82, 1485-1490.
[http://dx.doi.org/10.1351/PAC-CON-09-09-08]
(d) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E. Sequential addition and cyclization processes of α, β-ynones and α, β-ynoates containing proximate nucleophiles. Synthesis, 2014, 46, 687-721.
[http://dx.doi.org/10.1055/s-0033-1338594]
(e) Fraile, A.; Parra, A.; Tortosa, M.; Aleán, J. Organocatalytic transformations of alkynals, alkynones, propriolates, and related electron-deficient alkynes. Tetrahedron, 2014, 70, 9145-9173.
[http://dx.doi.org/10.1016/j.tet.2014.07.023]
(f) Lu, X.; Zhang, C.; Xu, Z. Reactions of electron-deficient alkynes and allenes under phosphine catalysis. Acc. Chem. Res., 2001, 34(7), 535-544.
[http://dx.doi.org/10.1021/ar000253x] [PMID: 11456471]
[2]
(a) Li, H.; Cheng, P.; Jiang, L.; Yang, J.L.; Zu, L. Bio-inspired fragmentations: rapid assembly of indolones, 2-Quinolinones, and (-)-goniomitine. Angew. Chem. Int. Ed. Engl., 2017, 56(10), 2754-2757.
[http://dx.doi.org/10.1002/anie.201611830] [PMID: 28128515]
(b) Yuan, H.; Bi, K.; Chang, W.; Yue, R.; Li, B.; Ye, J.; Sun, Q.; Jin, H.; Shan, L.; Zhang, W. Total synthesis of Daphnodorin A. Tetrahedron, 2014, 70, 9084-9092.
[http://dx.doi.org/10.1016/j.tet.2014.10.010]
(c) Liang, J.; Hu, W.; Tao, P.; Jia, Y. Total synthesis of dictyodendrins B and E. J. Org. Chem., 2013, 78(11), 5810-5815.
[http://dx.doi.org/10.1021/jo400841d] [PMID: 23701029]
(d) Tao, P.; Liang, J.; Jia, Y. Total synthesis of dictyodendrins B and E, and formal synthesis of dictyodendrin C. Eur. J. Org. Chem., 2014, 5735-5748.
[http://dx.doi.org/10.1002/ejoc.201402672]
(e) Axelrod, A.; Eliasen, A.M.; Chin, M.R.; Zlotkowski, K.; Siegel, D. Syntheses of xanthofulvin and vinaxanthone, natural products enabling spinal cord regeneration. Angew. Chem. Int. Ed. Engl., 2013, 52(12), 3421-3424.
[http://dx.doi.org/10.1002/anie.201205837] [PMID: 23086682]
(f) Zhu, D.; Zhang, Z.; Mou, X.; Tu, Y.; Zhang, F.; Peng, J.; Wang, S.; Zhang, S. Gold(I)/Copper(II)-cocatalyzed tandem cyclization/semipinacol reaction: construction of 6-aza/oxa-spiro[4.5]decane skeletons and formal synthesis of (±)-halichlorine reactions of electron-deficient alkynes and allenes under phosphine catalysis. Adv. Synth. Catal., 2015, 357, 747-752.
[http://dx.doi.org/10.1002/adsc.201400932]
(g) O’Keefe, B.M.; Simmons, N.; Martin, S.F. Facile access to sterically hindered aryl ketones via carbonylative cross-coupling: application to the total synthesis of luteolin. Tetrahedron, 2011, 67(24), 4344-4351.
[http://dx.doi.org/10.1016/j.tet.2011.03.074] [PMID: 21712966]
(h) Ho, H.E.; James, M.J.; O’Brien, P.; Taylor, R.J.K.; Unsworth, W.P. Ag(I)-Catalyzed synthesis of azabicyclic alkaloid frameworks from ketimine-tethered ynones: total synthesis of indolizidine 209D. Org. Lett., 2018, 20(5), 1439-1443.
[http://dx.doi.org/10.1021/acs.orglett.8b00225] [PMID: 29425045]
(i) James, M.J.; Grant, N.D.; O’Brien, P.; Taylor, R.J.K.; Unsworth, W.P. Catalytic dearomatization approach to quinolizidine alkaloids: Five step total synthesis of (±)-lasubine II. Org. Lett., 2016, 18(24), 6256-6259.
[http://dx.doi.org/10.1021/acs.orglett.6b03017] [PMID: 27978692]
(j) Ciesielski, J.; Gandon, V.; Frontier, A.J. Cascade cyclizations of acyclic and macrocyclic alkynones: studies toward the synthesis of phomactin A. J. Org. Chem., 2013, 78(19), 9541-9552.
[http://dx.doi.org/10.1021/jo4007514] [PMID: 23724905]
(k) Unsworth, W.P.; Cuthbertson, J.D.; Taylor, R.J.K. Total synthesis of spirobacillene A. Org. Lett., 2013, 15(13), 3306-3309.
[http://dx.doi.org/10.1021/ol4013958] [PMID: 23786419]
[3]
(a) Nagode, S.B.; Chaturvedi, A.K.; Rastogi, N. Visible-light-catalyzed tandem difluoroacetylation-intramolecular cyclization of 1,3-diarylpropynones: access to difluoroacetylated indenone. Asian J. Org. Chem., 2017, 6, 453-457.
[http://dx.doi.org/10.1002/ajoc.201600549]
(b) Zhang, Y.; Guo, D.; Ye, S.; Liu, Z.; Zhu, G. Synthesis of trifluoromethylated naphthoquinones via copper-catalyzed cascade trifluoromethylation/cyclization of 2-(3-aryl propioloyl)benzaldehydes. Org. Lett., 2017, 19(6), 1302-1305.
[http://dx.doi.org/10.1021/acs.orglett.7b00095] [PMID: 28263604]
[4]
Yan, Z.; Xie, J.; Zhu, C. Copper-catalyzed radical silylarylation of ynones with silanes: en route to silyl-functionalized indenones. Adv. Synth. Catal., 2017, 359, 4153-4157.
[http://dx.doi.org/10.1002/adsc.201700926]
[5]
Pan, X.Q.; Zou, J.P.; Zhang, G.L.; Zhang, W. Manganese(III)-mediated direct phosphonation of arylalkenes and arylalkynes. Chem. Commun. (Camb.), 2010, 46(10), 1721-1723.
[http://dx.doi.org/10.1039/b925951a] [PMID: 20177628]
[6]
Chen, C.; Xiong, Q.; Wei, J. Synthesis of 2-sulfenylindenones by visible-light-mediated addition of sulfur-centered radicals to 1,3-diarylpropynones. Synth. Commun., 2019, 869-877.
[http://dx.doi.org/10.1080/00397911.2019.1580744]
[7]
Wen, J.; Shi, W.; Zhang, F.; Liu, D.; Tang, S.; Wang, H.; Lin, X.M.; Lei, A. Electrooxidative tandem cyclization of activated alkynes with sulfinic acids to access sulfonated indenones. Org. Lett., 2017, 19(12), 3131-3134.
[http://dx.doi.org/10.1021/acs.orglett.7b01256] [PMID: 28541702]
[8]
Song, Y.; Qian, P.; Chen, F.; Deng, C.; Zhang, X. Synthesis of 2-(trifluoromethylthio)-indenones by silver-mediated cascade trifluoromethylthiolation/cyclization of arylpropynones. Tetrahedron, 2016, 72, 7589-7593.
[http://dx.doi.org/10.1016/j.tet.2016.10.013]
[9]
Pan, C.; Huang, B.; Hu, W.; Feng, X.; Yu, J.T. Metal-free radical oxidative annulation of ynones with alkanes to access indenones. J. Org. Chem., 2016, 81(5), 2087-2093.
[http://dx.doi.org/10.1021/acs.joc.6b00072] [PMID: 26840747]
[10]
Zhang, Y.; Yu, Y.; Liang, B.B.; Pei, Y.Y.; Liu, X.; Yao, H.G.; Cao, H. Synthesis of pyrrolo[2,1,5-cd]indolizine rings via visible-light-induced intermolecular [3+2] cycloaddition of indolizines and alkynes. J. Org. Chem., 2020, 85(16), 10719-10727.
[http://dx.doi.org/10.1021/acs.joc.0c01253] [PMID: 32664733]
[11]
(a) Zhang, Y.; Ye, S.; Ji, M.; Li, L.; Guo, D.; Zhu, G. Copper-catalyzed radical cascade difluoromethylation/cyclization of 2-(3-arylpropioloyl) benzaldehydes: a route to difluoromethylated naphthoquinones. J. Org. Chem., 2017, 82(13), 6811-6818.
[http://dx.doi.org/10.1021/acs.joc.7b00964] [PMID: 28585823]
(b) Zhu, B.; Han, H.; Su, W.; Yu, C.; Jiang, X. Free-radical initialized cyclization of 2-(3-arylpropioloyl)benzaldehydes with toluene derivatives: access to benzylated 1,4-naphthoquinones via copper-catalyzed cascade reaction. Adv. Synth. Catal., 2020, 363, 484-489.
[http://dx.doi.org/10.1002/adsc.202000975]
[12]
Zhou, N.; Yan, Z.; Zhang, H.; Wu, Z.; Zhu, C. Metal-free radical oxidative cyclization of o-azidoaryl acetylenic ketones with sulfinic acids to access sulfone-containing 4-quinolones. J. Org. Chem., 2016, 81(24), 12181-12188.
[http://dx.doi.org/10.1021/acs.joc.6b01847] [PMID: 27978760]
[13]
(a) Zhang, Y.; Zhang, J.; Hu, B.; Ji, M.; Ye, S.; Zhu, G. Synthesis of difluoromethylated and phosphorated spiro[5.5]trienones via dearomative spirocyclization of biaryl ynones. Org. Lett., 2018, 20(10), 2988-2992.
[http://dx.doi.org/10.1021/acs.orglett.8b01027] [PMID: 29737173]
(b) Zhou, L.; Xia, Y.; Wang, Y.; Fang, J.; Liu, X. Mn(III)-promoted synthesis of spiroannular tricyclic scaffolds via sulfonylation/dearomatization of biaryl ynones. Tetrahedron, 2019, 75, 1267-1274.
[http://dx.doi.org/10.1016/j.tet.2019.01.041]
[14]
(a) Wang, L.; Wang, H.; Meng, W.; Xu, X.; Huang, Y. Facile syntheses of 3-trifluoromethylthio substituted thioflavones and benzothiophenes via the radical cyclization. Chin. Chem. Lett., 2020, 32, 389-392.
[http://dx.doi.org/10.1016/j.cclet.2020.02.040]
(b) Zheng, X.; Zhong, T.; Zhang, L.; Chen, J.; Chen, Z.; Jiang, X.; Yu, C. Radical-triggered cyclization of methylthio-substituted alkynones: Synthesis of diverse 3-alkylthiochromones. Eur. J. Org. Chem., 2020, 29, 4534-4541.
[http://dx.doi.org/10.1002/ejoc.202000663]
(c) Feng, Z.; Li, J.; Jiang, Y.; Tian, Y.; Xu, G.; Shi, X.; Ding, Q.; Li, W.; Ma, C.; Yu, B. Transition-metal-free sulfonylation of methylthiolated alkynones to synthesize 3-sulfonylated thioflavones. New J. Chem., 2020, 44, 14786-14790.
[http://dx.doi.org/10.1039/D0NJ03386C]
(d) Jiang, Y.; Li, J.; Feng, Z.; Xu, G. SXin Ding, Q.; Ma, C.; Yu, B. Ethylene glycol: A green solvent for visible light-promoted aerobic transition metal-Free cascade sulfonation/cyclization reaction. Adv. Synth. Catal., 2020, 362, 2609-2614.
[http://dx.doi.org/10.1002/adsc.202000233]
[15]
Sahoo, S.R.; Das, B.; Sarkar, D.; Henkel, F.; Reuter, H. Visible light assisted selenylative intramolecular dearomative carbo-spirocyclisation (IDCS) of homologated-ynones. Eur. J. Org. Chem., 2020, 7, 891-896.
[http://dx.doi.org/10.1002/ejoc.201901821]
[16]
Kanyiva, K.S.; Hamada, D.; Makino, S.; Takano, H.; Shibata, T. α-Amino acid sulfonamides as versatile sulfonylation reagents: silver-catalyzed synthesis of coumarins and oxindoles by radical cyclization. Eur. J. Org. Chem., 2018, 5905-5909.
[http://dx.doi.org/10.1002/ejoc.201800901]
[17]
(a) Liu, D.; Chen, J.; Wang, X.; Xu, P. Metal-free, visible-light-promoted synthesis of 3-phosphorylated coumarins via radical C-P/C-C bond formation. Adv. Synth. Catal., 2017, 359, 2773-2777.
[http://dx.doi.org/10.1002/adsc.201700293]
(b) Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Silver-catalyzed synthesis of 3-phosphorated coumarins via radical cyclization of alkynoates and dialkyl H-phosphonates. Org. Lett., 2014, 16(12), 3356-3359.
[http://dx.doi.org/10.1021/ol5013839] [PMID: 24921182]
[18]
Liu, W.; Chen, C.; Liu, H. Synthesis of polysubstituted thiophenes via base-induced [2+2+1] cycloaddition reaction of alkynes and elemental sulfur. Adv. Synth. Catal., 2015, 357, 4050-4054.
[http://dx.doi.org/10.1002/adsc.201500422]
[19]
Kumar, R.; Dwivedi, V.; Reddy, M.S. Metal-free iodosulfonylation of internal alkynes: stereo-defined access to tetrasubstituted olefins. Adv. Synth. Catal., 2017, 359, 2847-2856.
[http://dx.doi.org/10.1002/adsc.201700576]
[20]
Cui, H.; He, C.; Yang, D.; Yue, H.; Wei, W.; Wang, H. Direct iodosulfonylation of alkylynones with sulfonylhydrazides and iodine pentoxide leading to multisubstituted α, β-enones. Synlett, 2018, 29, 830-834.
[http://dx.doi.org/10.1055/s-0036-1589160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy