Research Article

Treatment of GM2 Gangliosidosis in Adult Sandhoff Mice Using an Intravenous Self-Complementary Hexosaminidase Vector

Author(s): Karlaina JL. Osmon, Patrick Thompson, Evan Woodley, Subha Karumuthil-Melethil, Cliff Heindel, John G. Keimel, William F. Kaemmerer, Steven J. Gray and Jagdeep S. Walia*

Volume 22, Issue 3, 2022

Published on: 24 November, 2021

Page: [262 - 276] Pages: 15

DOI: 10.2174/1566523221666210916153051

Price: $65

Abstract

Background: GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of β-hexosaminidase A enzyme (Hex A), an α/β-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEX M, has previously been shown to form a stable homodimer, Hex M, that hydrolyzes GM2 gangliosides (GM2) in vivo.

Materials & Methods: The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system.

Results: Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed.

Conclusion: These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.

Keywords: Sandhoff, tay sachs, gene therapy, AAV, adeno-associated virus, hexosaminidase A, GM2 gangliosidosis, GM2 ganglioside.

Graphical Abstract

[1]
Sandhoff K. My journey into the world of sphingolipids and sphingolipidoses. Proc Jpn Acad, Ser B, Phys Biol Sci 2012; 88(10): 554-82.
[http://dx.doi.org/10.2183/pjab.88.554] [PMID: 23229750]
[2]
Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 2013; 33(25): 10195-208.
[http://dx.doi.org/10.1523/JNEUROSCI.0822-13.2013] [PMID: 23785136]
[3]
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta BBA - Mol Basis Dis 1999; 1455(2): 105-38.
[http://dx.doi.org/10.1016/S0925-4439(99)00074-5]
[4]
Conzelmann E, Sandhoff K. Biochemical basis of late-onset neurolipidoses. Dev Neurosci 1991; 13(4-5): 197-204.
[http://dx.doi.org/10.1159/000112160] [PMID: 1817024]
[5]
Conzelmann E, Sandhoff K. Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev Neurosci 1984; 6(1): 58-71.
[6]
Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992; 88(5): 513-23.
[http://dx.doi.org/10.1007/BF00219337] [PMID: 1348043]
[7]
Weinberg MS, Samulski RJ, McCown TJ. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2013; 69: 82-8.
[http://dx.doi.org/10.1016/j.neuropharm.2012.03.004] [PMID: 22465202]
[8]
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther 2016; 27(7): 478-96.
[http://dx.doi.org/10.1089/hum.2016.087] [PMID: 27267688]
[9]
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14(3): 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009] [PMID: 16824801]
[10]
Sargeant TJ, Wang S, Bradley J, et al. Adeno-associated virus-mediated expression of β-hexosaminidase prevents neuronal loss in the Sandhoff mouse brain. Hum Mol Genet 2011; 20(22): 4371-80.
[http://dx.doi.org/10.1093/hmg/ddr364] [PMID: 21852247]
[11]
Cachón-González MB, Wang SZ, McNair R, et al. Gene transfer corrects acute GM2 gangliosidosis-potential therapeutic contribution of perivascular enzyme flow. Mol Ther 2012; 20(8): 1489-500.
[http://dx.doi.org/10.1038/mt.2012.44] [PMID: 22453766]
[12]
Cachón-González MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 2006; 103(27): 10373-8.
[http://dx.doi.org/10.1073/pnas.0603765103] [PMID: 16801539]
[13]
Bradbury AM, Cochran JN, McCurdy VJ, et al. Therapeutic response in feline sandhoff disease despite immunity to intracranial gene therapy. Mol Ther 2013; 21(7): 1306-15.
[http://dx.doi.org/10.1038/mt.2013.86] [PMID: 23689599]
[14]
Cachón-González MB, Wang SZ, Ziegler R, Cheng SH, Cox TM. Reversibility of neuropathology in Tay-Sachs-related diseases. Hum Mol Genet 2014; 23(3): 730-48.
[http://dx.doi.org/10.1093/hmg/ddt459] [PMID: 24057669]
[15]
Bourgoin C, Emiliani C, Kremer EJ, et al. Widespread distribution of beta-hexosaminidase activity in the brain of a Sandhoff mouse model after coinjection of adenoviral vector and mannitol. Gene Ther 2003; 10(21): 1841-9.
[http://dx.doi.org/10.1038/sj.gt.3302081] [PMID: 12960974]
[16]
Mastakov MY, Baer K, Xu R, Fitzsimons H, During MJ. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol Ther 2001; 3(2): 225-32.
[http://dx.doi.org/10.1006/mthe.2001.0246] [PMID: 11237679]
[17]
Brown RC, Egleton RD, Davis TP. Mannitol opening of the blood-brain barrier: regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res 2004; 1014(1-2): 221-7.
[http://dx.doi.org/10.1016/j.brainres.2004.04.034] [PMID: 15213006]
[18]
Carty N, Lee D, Dickey C, et al. Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 2010; 194(1): 144-53.
[http://dx.doi.org/10.1016/j.jneumeth.2010.10.010] [PMID: 20951738]
[19]
Walia JS, Altaleb N, Bello A, et al. Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol Ther 2015; 23(3): 414-22.
[http://dx.doi.org/10.1038/mt.2014.240] [PMID: 25515709]
[20]
Niemir N, Rouvière L, Besse A, et al. Intravenous administration of scAAV9-Hexb normalizes lifespan and prevents pathology in Sandhoff disease mice. Hum Mol Genet 2018; 27(6): 954-68.
[http://dx.doi.org/10.1093/hmg/ddy012] [PMID: 29325092]
[21]
Osmon KJ, Woodley E, Thompson P, et al. Systemic gene transfer of a hexosaminidase variant using an scAAV9.47 vector corrects GM2 gangliosidosis in sandhoff mice. Hum Gene Ther 2016; 27(7): 497-508.
[http://dx.doi.org/10.1089/hum.2016.015] [PMID: 27199088]
[22]
Tropak MB, Yonekawa S, Karumuthil-Melethil S, et al. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Mol Ther Methods Clin Dev 2016; 3: 15057.
[http://dx.doi.org/10.1038/mtm.2015.57] [PMID: 26966698]
[23]
Kyrkanides S, Miller JH, Brouxhon SM, Olschowka JA, Federoff HJ. beta-hexosaminidase lentiviral vectors: transfer into the CNS via systemic administration. Brain Res Mol Brain Res 2005; 133(2): 286-98.
[http://dx.doi.org/10.1016/j.molbrainres.2004.10.026] [PMID: 15710246]
[24]
Guidotti JE, Mignon A, Haase G, et al. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice. Hum Mol Genet 1999; 8(5): 831-8.
[http://dx.doi.org/10.1093/hmg/8.5.831] [PMID: 10196372]
[25]
Martino S, Marconi P, Tancini B, et al. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum Mol Genet 2005; 14(15): 2113-23.
[http://dx.doi.org/10.1093/hmg/ddi216] [PMID: 15961412]
[26]
Rockwell HE, McCurdy VJ, Eaton SC, et al. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro 2015; 7(2): 1759091415569908. Availalble from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720176/
[http://dx.doi.org/10.1177/1759091415569908] [PMID: 25873306]
[27]
McCurdy VJ, Rockwell HE, Arthur JR, et al. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease. Gene Ther 2015; 22(2): 181-9.
[http://dx.doi.org/10.1038/gt.2014.108] [PMID: 25474439]
[28]
Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF. Adeno-associated virus gene therapy in a sheep model of tay-sachs disease. Hum Gene Ther 2018; 29(3): 312-26.
[PMID: 28922945]
[29]
Karumuthil-Melethil S, Nagabhushan Kalburgi S, Thompson P. Novel vector design and hexosaminidase variant enabling self- complementary adeno-associated virus for the treatment of Tay-Sachs disease. Hum Gene Ther 2016; 27(7): 509-21.
[http://dx.doi.org/10.1089/hum.2016.013] [PMID: 27197548]
[30]
Woodley E, Osmon KJL, Thompson P, et al. Efficacy of a bicistronic vector for correction of Sandhoff disease in a mouse model. Mol Ther Methods Clin Dev 2018; 12: 47-57.
[http://dx.doi.org/10.1016/j.omtm.2018.10.011] [PMID: 30534578]
[31]
Arfi A, Bourgoin C, Basso L, et al. Bicistronic lentiviral vector corrects beta-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 2005; 20(2): 583-93.
[http://dx.doi.org/10.1016/j.nbd.2005.04.017] [PMID: 15953731]
[32]
Igdoura SA, Mertineit C, Trasler JM, Gravel RA. Sialidase-mediated depletion of GM2 ganglioside in Tay-Sachs neuroglia cells. Hum Mol Genet 1999; 8(6): 1111-6.
[http://dx.doi.org/10.1093/hmg/8.6.1111] [PMID: 10332044]
[33]
Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19(6): 1058-69.
[http://dx.doi.org/10.1038/mt.2011.72] [PMID: 21487395]
[34]
McCown TJ. Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 2005; 5(3): 333-8.
[http://dx.doi.org/10.2174/1566523054064995] [PMID: 15975010]
[35]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[36]
Duque S, Joussemet B, Riviere C, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17(7): 1187-96.
[http://dx.doi.org/10.1038/mt.2009.71] [PMID: 19367261]
[37]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[38]
Büning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med 2008; 10(7): 717-33.
[http://dx.doi.org/10.1002/jgm.1205] [PMID: 18452237]
[39]
Sango K, McDonald MP, Crawley JN, et al. Mice lacking both subunits of lysosomal β-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet 1996; 14(3): 348-52.
[http://dx.doi.org/10.1038/ng1196-348] [PMID: 8896570]
[40]
Sango K, Yamanaka S, Hoffmann A, et al. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 1995; 11(2): 170-6.
[http://dx.doi.org/10.1038/ng1095-170] [PMID: 7550345]
[41]
Jackson laboratory - B6;129S4-Hexb tm1Rlp/J. Availalble from: https://www.jax.org/strain/002914 [Cited 2019 Mar 6]
[42]
Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 2013; 20(4): 450-9.
[http://dx.doi.org/10.1038/gt.2012.101] [PMID: 23303281]
[43]
Osmon KJL, Vyas M, Woodley E, Thompson P, Walia JS. Battery of behavioral tests assessing general locomotion, muscular strength, and coordination in mice. J Vis Exp 2018; (131): e55491-1.
[http://dx.doi.org/10.3791/55491] [PMID: 29443024]
[44]
Maegawa GHB, Tropak M, Buttner J, et al. Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J Biol Chem 2007; 282(12): 9150-61.
[http://dx.doi.org/10.1074/jbc.M609304200] [PMID: 17237499]
[45]
Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran D. Pharmacological enhancement of β-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients. J Biol Chem 2004; 279(14): 13478-87.
[http://dx.doi.org/10.1074/jbc.M308523200] [PMID: 14724290]
[46]
Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 2010; 18(3): 570-8.
[http://dx.doi.org/10.1038/mt.2009.292] [PMID: 20040913]
[47]
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509.
[http://dx.doi.org/10.1016/S0021-9258(18)64849-5] [PMID: 13428781]
[48]
Folch J, Ascoli I, Lees M, Meath JA, LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem 1951; 191(2): 833-41.
[http://dx.doi.org/10.1016/S0021-9258(18)55987-1] [PMID: 14861228]
[49]
Tropak MB, Bukovac SW, Rigat BA, Yonekawa S, Wakarchuk W, Mahuran DJ. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates. Glycobiology 2010; 20(3): 356-65.
[http://dx.doi.org/10.1093/glycob/cwp183] [PMID: 19917668]
[50]
Wherrett JR, Cumings NJ. Detection and resolution of gangliosides in lipid extracts by thin-layer chromatography. Biochem J 1963; 86(2): 378-82.
[http://dx.doi.org/10.1042/bj0860378] [PMID: 14000254]
[51]
Yamada T, Bando H, Takeuchi S, et al. Genetically engineered humanized anti-ganglioside GM2 antibody against multiple organ metastasis produced by GM2-expressing small-cell lung cancer cells. Cancer Sci 2011; 102(12): 2157-63.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02093.x] [PMID: 21895875]
[52]
Suzuki K, Proia RL, Suzuki K. Mouse models of human lysosomal diseases. Brain Pathol 1998; 8(1): 195-215.
[http://dx.doi.org/10.1111/j.1750-3639.1998.tb00145.x] [PMID: 9458176]
[53]
Phaneuf D, Wakamatsu N, Huang J-Q, et al. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet 1996; 5(1): 1-14.
[http://dx.doi.org/10.1093/hmg/5.1.1] [PMID: 8789434]
[54]
Pulicherla N, Shen S, Yadav S, et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 2011; 19(6): 1070-8.
[http://dx.doi.org/10.1038/mt.2011.22] [PMID: 21364538]
[55]
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 2018; 29(3): 285-98.
[http://dx.doi.org/10.1089/hum.2018.015] [PMID: 29378426]
[56]
Golebiowski D, van der Bom IMJ, Kwon C-S, et al. Direct intracranial injection of AAVrh8 encoding monkey β-N-acetylhexosaminidase causes neurotoxicity in the primate brain. Hum Gene Ther 2017; 28(6): 510-22.
[http://dx.doi.org/10.1089/hum.2016.109] [PMID: 28132521]
[57]
Walkley SU, Vanier MT. Pathomechanisms in lysosomal storage disorders. Biochim Biophys Acta 2009; 1793(4): 726-36.
[http://dx.doi.org/10.1016/j.bbamcr.2008.11.014] [PMID: 19111580]
[58]
Fandino W. Understanding the physiological changes induced by mannitol: From the theory to the clinical practice in neuroanaesthesia. J Neuroanaesth Crit Care 2017; (4): 138-46.
[http://dx.doi.org/10.4103/jnacc.jnacc_31_17]
[59]
Archer DP, Freymond D, Ravussin P. Utilisation du mannitol en neuroanesthésie et neuroréanimation. Ann Fr Anesth Reanim 1995; 14(1): 77-82.
[http://dx.doi.org/10.1016/S0750-7658(05)80154-6] [PMID: 7677291]
[60]
Winkler SR, Munoz-Ruiz L. Mechanism of action of mannitol. Surg Neurol 1995; 43(1): 59.
[http://dx.doi.org/10.1016/0090-3019(95)80039-J] [PMID: 7701425]
[61]
McCarty DM, DiRosario J, Gulaid K, Muenzer J, Fu H. Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther 2009; 16(11): 1340-52.
[http://dx.doi.org/10.1038/gt.2009.85] [PMID: 19587708]
[62]
Foley CP, Rubin DG, Santillan A, et al. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J Control Release 2014; 196: 71-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.018] [PMID: 25270115]
[63]
Donsante A, Vogler C, Muzyczka N, et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther 2001; 8(17): 1343-6.
[http://dx.doi.org/10.1038/sj.gt.3301541] [PMID: 11571571]
[64]
Russell DW. AAV vectors, insertional mutagenesis, and cancer. Mol Ther 2007; 15(10): 1740-3.
[http://dx.doi.org/10.1038/sj.mt.6300299] [PMID: 17882145]
[65]
Bell P, Moscioni AD, McCarter RJ, et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther 2006; 14(1): 34-44.
[http://dx.doi.org/10.1016/j.ymthe.2006.03.008] [PMID: 16682254]
[66]
Chandler RJ, LaFave MC, Varshney GK, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 2015; 125(2): 870-80.
[http://dx.doi.org/10.1172/JCI79213] [PMID: 25607839]
[67]
Ruan C, Liu L, Wang Q, et al. Reactive oxygen species-biodegradable gene carrier for the targeting therapy of breast cancer. ACS Appl Mater Interfaces 2018; 10(12): 10398-408.
[http://dx.doi.org/10.1021/acsami.8b01712] [PMID: 29498264]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy