Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Lipid Behavior in Metabolic Syndrome Pathophysiology

Author(s): Basheer Marzoog*

Volume 18, Issue 6, 2022

Published on: 11 January, 2022

Article ID: e150921196497 Pages: 8

DOI: 10.2174/1573399817666210915101321

Price: $65

conference banner
Abstract

Undeniably, lipid plays an extremely important role in the homeostasis balance since lipid contributes to the regulation of the metabolic processes. The metabolic syndrome pathogenesis is multi-pathway that composes neurohormonal disorders, endothelial cell dysfunction, metabolic disturbance, genetic predisposition, in addition to gut commensal microbiota. The heterogenicity of the possible mechanisms gives the metabolic syndrome its complexity and limitation of therapeutic accesses. The main pathological link is that lipid contributes to the emergence of metabolic syndrome via central obesity and visceral obesity that consequently lead to oxidative stress and chronic inflammatory response promotion. Physiologically, a balance is kept between the adiponectin and adipokines levels to maintain the lipid level in the organism. Clinically, extremely important to define the borders of the lipid level in which the pathogenesis of the metabolic syndrome is reversible, otherwise it will be accompanied by irreversible complications and sequelae of the metabolic syndrome (cardiovascular, insulin resistance). The present paper is dedicated to providing novel insights into the role of lipid in the development of metabolic syndrome; hence dyslipidemia is the initiator of insulin resistance syndrome (metabolic syndrome).

Keywords: Pathogenesis, adaptation, metabolic syndrome, insulin resistance, lipid, homeostasis, diabetes mellitus, hypertension, cardiovascular.

[1]
Kasper Dennis, Fauci Anthony, Hauser Stephen, Longo Dan, Longo Dan, Jameson JL. Harrison principios de medicina interna. 20 Ed.. McGraw-Hill Medical 2018.
[2]
Monnerie S, Comte B, Ziegler D, Morais JA, Pujos-Guillot E, Gaudreau P. Metabolomic and lipidomic signatures of metabolic syndrome and its physiological components in adults: A systematic review. Sci Rep 2020; 10(1): 669.
[http://dx.doi.org/10.1038/s41598-019-56909-7] [PMID: 31959772]
[3]
Surowiec I, Noordam R, Bennett K, et al. Metabolomic and lipidomic assessment of the metabolic syndrome in Dutch middle-aged individuals reveals novel biological signatures separating health and disease. Metabolomics 2019; 15(2): 23.
[http://dx.doi.org/10.1007/s11306-019-1484-7] [PMID: 30830468]
[4]
González-Périz A, Horrillo R, Ferré N, et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: A role for resolvins and protectins. FASEB J 2009; 23(6): 1946-57.
[http://dx.doi.org/10.1096/fj.08-125674] [PMID: 19211925]
[5]
Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. prostaglandins and other lipid mediators. Elsevier Inc 2015; pp. 24-41.
[http://dx.doi.org/10.1016/j.prostaglandins.2015.07.003]
[6]
Weijers RN. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 2012; 8(5): 390-400.
[http://dx.doi.org/10.2174/157339912802083531] [PMID: 22698081]
[7]
Calder P C. Omega-3 fatty acids and inflammatory processes: from molecules to man. biochemical society transactions. Portland Press Ltd 2017; pp. 1105-15.
[http://dx.doi.org/10.1042/BST20160474]
[8]
Vázquez-Jiménez J G, Roura-Guiberna A, Jiménez-Mena L R, et al. Role of free fatty acids on insulin resistance. Gac Maxico 2019; 153(7): 773-83.
[9]
Lark DS, Fisher-Wellman KH, Neufer PD. High-fat load: mechanism(s) of insulin resistance in skeletal muscle. Int J Obes Suppl 2012; 2(S2)(Suppl. 2): S31-6.
[http://dx.doi.org/10.1038/ijosup.2012.20] [PMID: 26052434]
[10]
Cena H, Calder P C. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients 2020; 12(12): 334.
[http://dx.doi.org/10.3390/nu12020334]
[11]
Denisenko Y, Novgorodtseva T, Zhukova N, et al. Metabolic syndrome: modification of the fatty acid composition and glucose-insulin homeostasis. Br J Med Med Res 2015; 8(11): 975-87.
[http://dx.doi.org/10.9734/BJMMR/2015/18536]
[12]
Jiang J, Cai X, Pan Y, et al. Relationship of obesity to adipose tissue insulin resistance. BMJ Open Diabetes Res Care 2020; 8(1): 741.
[http://dx.doi.org/10.1136/bmjdrc-2019-000741] [PMID: 32245824]
[13]
Nagao K, Yanagita T. Functional lipids in metabolic syndrome. J Nutr Sci Vitaminol (Tokyo) 2015; 61(Suppl.): S159-61.
[http://dx.doi.org/10.3177/jnsv.61.S159] [PMID: 26598838]
[14]
Nagao K, Yanagita T. Bioactive lipids in metabolic syndrome. Prog Lipid Res 2008; 47(2): 127-46.
[http://dx.doi.org/10.1016/j.plipres.2007.12.002] [PMID: 18177744]
[15]
Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA. Lipid-induced mechanisms of metabolic syndrome. J Obes 2020; 2020: 5762395.
[http://dx.doi.org/10.1155/2020/5762395]
[16]
Wong SW, Kwon MJ, Choi AMK, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 2009; 284(40): 27384-92.
[http://dx.doi.org/10.1074/jbc.M109.044065] [PMID: 19648648]
[17]
Weijers R N M. Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J Diab Metab Disorders 2016; 15: 13.
[http://dx.doi.org/10.1186/s40200-016-0235-9]
[18]
Su X Q, Wang J, Sinclair A J. Plasmalogens and Alzheimer's disease: a review. Lipids Health Dis 2019; 18(1): 100.
[http://dx.doi.org/10.1186/s12944-019-1044-1]
[19]
Broniec A, Żądło A, Pawlak A, et al. Interaction of plasmenylcholine with free radicals in selected model systems. Free Radic Biol Med 2017; 106: 368-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.02.029] [PMID: 28232206]
[20]
West A, Zoni V, Teague WE Jr, et al. How do ethanolamine plasmalogens contribute to order and structure of neurological membranes? J Phys Chem B 2020; 124(5): 828-39.
[http://dx.doi.org/10.1021/acs.jpcb.9b08850] [PMID: 31916765]
[21]
Kytikova O, Novgorodtseva T, Antonyuk M, Denisenko Y, Gvozdenko T. Molecular Targets of Fatty Acid Ethanolamides in Asthma. Medicina (Lithuania) 2019; 55(4): 87.
[http://dx.doi.org/10.3390/medicina55040087]
[22]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[23]
Barchuk M, Dutour A, Ancel P, et al. Untargeted lipidomics reveals a specific enrichment in plasmalogens in epicardial adipose tissue and a specific signature in coronary artery disease. Arterioscler Thromb Vasc Biol 2020; 40(4): 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.120.313955] [PMID: 32102570]
[24]
Wallner S, Orsó E, Grandl M, Konovalova T, Liebisch G, Schmitz G. Phosphatidylcholine and phosphatidylethanolamine plasmalogens in lipid loaded human macrophages. PLoS One 2018; 13(10): e0205706.
[http://dx.doi.org/10.1371/journal.pone.0205706] [PMID: 30308051]
[25]
Pietiläinen KH, Sysi-Aho M, Rissanen A, et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects-a monozygotic twin study. PLoS One 2007; 2(2): e218.
[http://dx.doi.org/10.1371/journal.pone.0000218] [PMID: 17299598]
[26]
Dean J M, Lodhi I J. Structural and functional roles of ether lipids.Protein and Cell. Higher Education Press 2018; pp. 196-206.
[http://dx.doi.org/10.1007/s13238-017-0423-5]
[27]
Suiter C, Singha SK, Khalili R, Shariat-Madar Z. Free fatty acids: circulating contributors of metabolic syndrome. Cardiovasc Hematol Agents Med Chem 2018; 16(1): 20-34.
[http://dx.doi.org/10.2174/1871525716666180528100002] [PMID: 29804539]
[28]
Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci 2017; 24(1): 50.
[http://dx.doi.org/10.1186/s12929-017-0357-5] [PMID: 28750629]
[29]
Montgomery M K, Turner N. Mitochondrial dysfunction and insulin resistance: An update. Endocrine connections 2015; 4(1): R1-R15.
[http://dx.doi.org/10.1530/EC-14-0092]
[30]
Alicka M, Marycz K. The effect of chronic inflammation and oxidative and endoplasmic reticulum stress in the course of metabolic syndrome and its therapy. Stem Cells Int 2018; 2018: 4274361.
[http://dx.doi.org/10.1155/2018/4274361]
[31]
Ježek P, Jabůrek M, Holendová B, Plecitá-Hlavatá L. Fatty acid-stimulated insulin secretion vs. lipotoxicity. Molecules 2018; 23(6): 1483.
[http://dx.doi.org/10.3390/molecules23061483]
[32]
Holloszy JO. “Deficiency” of mitochondria in muscle does not cause insulin resistance. Diabetes 2013; 62(4): 1036-40.
[http://dx.doi.org/10.2337/db12-1107] [PMID: 23520283]
[33]
Martin SD, McGee SL. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochimica et biophysica acta - general subjects 2014; 1303-12.
[http://dx.doi.org/10.1016/j.bbagen.2013.09.019]
[34]
Zhenyukh O, González-Amor M, Rodrigues-Diez RR, et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J Cell Mol Med 2018; 22(10): 4948-62.
[http://dx.doi.org/10.1111/jcmm.13759] [PMID: 30063118]
[35]
Finelli C, Tarantino G. Have guidelines addressing physical activity been established in nonalcoholic fatty liver disease? World J Gastroenterol 2012; 18(46): 6790-800.
[http://dx.doi.org/10.3748/wjg.v18.i46.6790] [PMID: 23239917]
[36]
Bartoszek A, Moo E, Von , et al. Free fatty acid receptors as new potential therapeutic target in inflammatory bowel diseases. Pharma Res 2020; 153: 104604.
[http://dx.doi.org/10.1016/j.phrs.2019.104604]
[37]
Miyamoto J, Kasubuchi M, Nakajima A, Kimura I. Anti-inflammatory and insulin-sensitizing effects of free fatty acid receptors. In: Handbook of Experimental Pharmacology. 2016; pp. 221-31.
[http://dx.doi.org/10.1007/164_2016_47]
[38]
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev 2020; 100(1): 171-210.
[http://dx.doi.org/10.1152/physrev.00041.2018] [PMID: 31487233]
[39]
Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther 2016; 164: 144-51.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.007] [PMID: 27113407]
[40]
Hu J, Lin S, Zheng B, Cheung PCK. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr 2018; 58(8): 1243-9.
[http://dx.doi.org/10.1080/10408398.2016.1245650] [PMID: 27786539]
[41]
Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013; 145(2): 396-406.e1, 10.
[http://dx.doi.org/10.1053/j.gastro.2013.04.056] [PMID: 23665276]
[42]
Rogero M M, Calder P C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 2018; 10(4): 432.
[http://dx.doi.org/10.3390/nu10040432]
[43]
Phinney S D. Fatty acids, inflammation, and the metabolic syndrome. Amer J Clin Nutr 2005; 2005: 1151-2.
[http://dx.doi.org/10.1093/ajcn/82.6.1151]
[44]
Reddy P, Lent-Schochet D, Ramakrishnan N, McLaughlin M, Jialal I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clinica Chimica Acta 2019; 35-44.
[http://dx.doi.org/10.1016/j.cca.2019.06.019]
[45]
Minihane AM, Vinoy S, Russell WR, et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Brit J Nutr 2015; 114(7): 999-1012.
[http://dx.doi.org/10.1017/S0007114515002093]
[46]
Ruysschaert J M, Lonez C. Role of lipid microdomains in tlr-mediated signalling. Biochimica et biophysica acta - biomembranes 2015; 1848(9): 1860-7.
[http://dx.doi.org/10.1016/j.bbamem.2015.03.014]
[47]
Sidletskaya K, Vitkina T, Denisenko Y. The role of toll-like receptors 2 and 4 in the pathogenesis of chronic obstructive pulmonary disease. Int J COPD 2020; 15: 1481-93.
[http://dx.doi.org/10.2147/COPD.S249131]
[48]
Prajapati B, Jena PK, Rajput P, Purandhar K, Seshadri S. Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev 2014; 10(3): 190-200.
[http://dx.doi.org/10.2174/1573399810666140515112609] [PMID: 24828062]
[49]
DeConne TM, Muñoz ER, Sanjana F, Hobson JC, Martens CR. Cardiometabolic risk factors are associated with immune cell mitochondrial respiration in humans. Am J Physiol Heart Circ Physiol 2020; 319(2): H481-7.
[http://dx.doi.org/10.1152/ajpheart.00434.2020] [PMID: 32678706]
[50]
Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol 2016; 785: 24-35.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.024] [PMID: 27085899]
[51]
Huang S, Rutkowsky JM, Snodgrass RG, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 2012; 53(9): 2002-13.
[http://dx.doi.org/10.1194/jlr.D029546] [PMID: 22766885]
[52]
Li Y, Deng S-L, Lian Z-X, Yu K. Roles of toll-like receptors in nitroxidative stress in mammals. Cells 2019; 8(6): 576.
[http://dx.doi.org/10.3390/cells8060576] [PMID: 31212769]
[53]
Huang D, Zhao Q, Liu H, Guo Y, Xu H. PPAR-α Agonist wy-14643 inhibits lps-induced inflammation in synovial fibroblastsvianf-kb pathway. J Mol Neurosci 2016; 59(4): 544-53.
[http://dx.doi.org/10.1007/s12031-016-0775-y] [PMID: 27339772]
[54]
Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from nmr studies of model systems. Biochimica et biophysica acta - biomembranes 2015; 211-9.
[http://dx.doi.org/10.1016/j.bbamem.2014.04.020]
[55]
Wassall SR, Leng X, Canner SW, et al. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Biochim Biophys Acta Biomembr 2018; 1860(10): 1985-93.
[http://dx.doi.org/10.1016/j.bbamem.2018.04.016] [PMID: 29730243]
[56]
Gilroy D W, Bishop-Bailey D. Lipid mediators in immune regulation and resolution. Brit J Pharmacol 2019; 176(8): 1009-23.
[http://dx.doi.org/10.1111/bph.14587]
[57]
Barden AE, Mas E, Croft KD, Phillips M, Mori TA. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin. Am J Clin Nutr 2015; 102(6): 1357-64.
[http://dx.doi.org/10.3945/ajcn.115.116384] [PMID: 26561623]
[58]
Peebles RS. Prostaglandins in asthma and allergic diseases. Pharmacol Therap 2019; 193: 1-19.
[http://dx.doi.org/10.1016/j.pharmthera.2018.08.001]
[59]
Marcone S, Evans P, Fitzgerald DJ. 15-Deoxy-Δ12,14-Prostaglandin J2 Modifies components of the proteasome and inhibits inflammatory responses in human endothelial cells. Front Immunol 2016; 7(OCT): 459.
[http://dx.doi.org/10.3389/fimmu.2016.00459] [PMID: 27833612]
[60]
Kwon Y. Immuno-resolving ability of resolvins, protectins, and maresins derived from omega-3 fatty acids in metabolic syndrome. Molec Nutr Food Res 2020; 64(4): 1900824.
[http://dx.doi.org/10.1002/mnfr.201900824]
[61]
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64: 1-17.
[http://dx.doi.org/10.1016/j.mam.2017.08.002] [PMID: 28802833]
[62]
Aursnes M, Tungen JE, Vik A, et al. Total synthesis of the lipid mediator PD1n-3 DPA: configurational assignments and anti-inflammatory and pro-resolving actions. J Nat Prod 2014; 77(4): 910-6.
[http://dx.doi.org/10.1021/np4009865] [PMID: 24576195]
[63]
Doğan ESK, Doğan B, Fentoğlu Ö, Kırzıoğlu FY. The role of serum lipoxin A4 levels in the association between periodontal disease and metabolic syndrome. J Periodontal Implant Sci 2019; 49(2): 105-13.
[http://dx.doi.org/10.5051/jpis.2019.49.2.105] [PMID: 31098331]
[64]
Serhan C N, Levy B D. Resolvins in Inflammation: Emergence of the pro-Resolving Superfamily of Mediators. J Clin Inves 2018; 2657-69.
[http://dx.doi.org/10.1172/JCI97943]
[65]
Tortosa-Caparrós E, Navas-Carrillo D, Marín F, Orenes-Piñero E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit Rev Food Sci Nutr 2017; 57(16): 3421-9.
[http://dx.doi.org/10.1080/10408398.2015.1126549] [PMID: 26745681]
[66]
Albracht-Schulte K, Kalupahana NS, Ramalingam L, et al. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J Nutr Biochem 2018; 58: 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.012]
[67]
Kim YS, Xun P, He K. Fish consumption, long-chain omega-3 polyunsaturated fatty acid intake and risk of metabolic syndrome: A meta-analysis. Nutrients 2015; 7(4): 2085-100.
[http://dx.doi.org/10.3390/nu7042085] [PMID: 25811108]
[68]
Iwase Y, Kamei N, Takeda-Morishita M. Antidiabetic effects of omega-3 polyunsaturated fatty acids: from mechanism to therapeutic possibilities. Pharmacol Pharm 2015; 06(03): 190-200.
[http://dx.doi.org/10.4236/pp.2015.63020]
[69]
Kytikova OY, Perelman JM, Novgorodtseva TP, et al. Peroxisome proliferator-activated receptors as a therapeutic target in asthma. PPAR Res. 2020; 2020: 8906968.
[http://dx.doi.org/10.1155/2020/8906968] [PMID: 32395125]
[70]
Rieusset J. Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes. In: Advances in experimental medicine and biology. New York LLC: Springer 2017; 997: pp. 171-86.
[http://dx.doi.org/10.1007/978-981-10-4567-7_13]
[71]
Maiers JL, Malhi H. Endoplasmic reticulum stress in metabolic liver diseases and hepatic fibrosis. Semin Liver Dis 2019; 39(2): 235-48.
[http://dx.doi.org/10.1055/s-0039-1681032] [PMID: 30912096]
[72]
Ly LD, Xu S, Choi S-K, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49(2): e291-1.
[http://dx.doi.org/10.1038/emm.2016.157] [PMID: 28154371]
[73]
Glenn AJ, Hernández-Alonso P, Kendall CWC, et al. Longitudinal changes in adherence to the portfolio and DASH dietary patterns and cardiometabolic risk factors in the PREDIMED-Plus study. Clin Nutr 2021; 40(5): 2825-36.
[http://dx.doi.org/10.1016/j.clnu.2021.03.016] [PMID: 33933749]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy