Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

The Role of miR-129-5p in Cancer: A Novel Therapeutic Target

Author(s): Shan Xu, Wei Li, Jing Wu, Yuru Lu, Ming Xie, Yanlan Li, Juan Zou, Tiebing Zeng* and Hui Ling*

Volume 15, Issue 4, 2022

Published on: 12 January, 2022

Article ID: e140921196477 Pages: 11

DOI: 10.2174/1874467214666210914122010

Price: $65

Abstract

miRNA-129-5p belongs to the microRNA-129 (miRNA-129) family. miRNA-129-5p is expressed in many tissues and organs of the human body, and it regulates a wide range of biological functions. The abnormal expression of miRNA-129-5p is related to the occurrence and development of a variety of malignant tumors. miRNA-129-5p plays an important role in the tumorigenesis process and functions by promoting or inhibiting tumors. However, the role of miRNA-129-5p in cancer remains controversial. This article reviews the different biological functions of miRNA- 129-5p in cancer and provides ideas for research in this field to guide the development of targeted therapies and drugs for malignant tumors.

Keywords: miR-129-5p, cancer, growth, development, clinical implications, therapeutic target, chemotheraptic drugs.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Qu, Y.; Rompilla, D.B.; Wang, Q.; Ng, F.F. Youth’s negative stereotypes of teen emotionality: Reciprocal relations with emotional functioning in Hong Kong and Mainland China. J. Youth Adolesc., 2020, 49(10), 2003-2019.
[http://dx.doi.org/10.1007/s10964-020-01303-0] [PMID: 32852693]
[3]
Tavazoie, S.F.; Alarcón, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massagué, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175), 147-152.
[http://dx.doi.org/10.1038/nature06487] [PMID: 18185580]
[4]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[5]
Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; Croce, C.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2999-3004.
[http://dx.doi.org/10.1073/pnas.0307323101] [PMID: 14973191]
[6]
Dyrskjøt, L.; Ostenfeld, M.S.; Bramsen, J.B.; Silahtaroglu, A.N.; Lamy, P.; Ramanathan, R.; Fristrup, N.; Jensen, J.L.; Andersen, C.L.; Zieger, K.; Kauppinen, S.; Ulhøi, B.P.; Kjems, J.; Borre, M.; Orntoft, T.F. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res., 2009, 69(11), 4851-4860.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4043] [PMID: 19487295]
[7]
Bishop, K.S.; Xu, H.; Marlow, G. Epigenetic regulation of gene expression induced by butyrate in colorectal cancer: Involvement of microRNA. Genet Epigenet, 2017, 9, 1179237x17729900.
[http://dx.doi.org/10.1177/1179237X17729900] [PMID: 28979170]
[8]
Kunej, T.; Godnic, I.; Horvat, S.; Zorc, M.; Calin, G.A. Cross talk between microRNA and coding cancer genes. Cancer J., 2012, 18(3), 223-231.
[http://dx.doi.org/10.1097/PPO.0b013e318258b771] [PMID: 22647358]
[9]
Lytle, J.R.; Yario, T.A.; Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9667-9672.
[http://dx.doi.org/10.1073/pnas.0703820104] [PMID: 17535905]
[10]
Tay, Y.; Zhang, J.; Thomson, A.M.; Lim, B.; Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216), 1124-1128.
[http://dx.doi.org/10.1038/nature07299] [PMID: 18806776]
[11]
Grishok, A.; Pasquinelli, A.E.; Conte, D.; Li, N.; Parrish, S.; Ha, I.; Baillie, D.L.; Fire, A.; Ruvkun, G.; Mello, C.C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 2001, 106(1), 23-34.
[http://dx.doi.org/10.1016/S0092-8674(01)00431-7] [PMID: 11461699]
[12]
Finnerty, J.R.; Wang, W.X.; Hébert, S.S.; Wilfred, B.R.; Mao, G.; Nelson, P.T. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J. Mol. Biol., 2010, 402(3), 491-509.
[http://dx.doi.org/10.1016/j.jmb.2010.07.051] [PMID: 20678503]
[13]
Baradaran, B.; Shahbazi, R.; Khordadmehr, M. Dysregulation of key microRNAs in pancreatic cancer development. Biomed. Pharmacother., 2019, 109, 1008-1015.
[http://dx.doi.org/10.1016/j.biopha.2018.10.177] [PMID: 30551350]
[14]
Fesler, A.; Zhai, H.; Ju, J. miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer. OncoTargets Ther., 2014, 7, 1481-1485.
[PMID: 25187728]
[15]
Lu, C.Y.; Lin, K.Y.; Tien, M.T.; Wu, C.T.; Uen, Y.H.; Tseng, T.L. Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer, 2013, 52(7), 636-643.
[http://dx.doi.org/10.1002/gcc.22059] [PMID: 23580407]
[16]
Zhang, Y.; Wang, Y.; Wei, Y.; Li, M.; Yu, S.; Ye, M.; Zhang, H.; Chen, S.; Liu, W.; Zhang, J. MiR-129-3p promotes docetaxel resistance of breast cancer cells via CP110 inhibition. Sci. Rep., 2015, 5, 15424.
[http://dx.doi.org/10.1038/srep15424] [PMID: 26487539]
[17]
Yu, Y.; Zhao, Y.; Sun, X.H.; Ge, J.; Zhang, B.; Wang, X.; Cao, X.C. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer. Oncotarget, 2015, 6(33), 34423-34436.
[http://dx.doi.org/10.18632/oncotarget.5406] [PMID: 26460733]
[18]
Wu, Q.; Yang, Z.; Xia, L.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget, 2014, 5(22), 11552-11563.
[http://dx.doi.org/10.18632/oncotarget.2594] [PMID: 25344911]
[19]
Tsai, K.W.; Wu, C.W.; Hu, L.Y.; Li, S.C.; Liao, Y.L.; Lai, C.H.; Kao, H.W.; Fang, W.L.; Huang, K.H.; Chan, W.C.; Lin, W.C. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int. J. Cancer, 2011, 129(11), 2600-2610.
[http://dx.doi.org/10.1002/ijc.25919] [PMID: 21960261]
[20]
Karaayvaz, M.; Zhai, H.; Ju, J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis., 2013, 4, e659.
[http://dx.doi.org/10.1038/cddis.2013.193] [PMID: 23744359]
[21]
Yu, X.; Song, H.; Xia, T.; Han, S.; Xiao, B.; Luo, L.; Xi, Y.; Guo, J. Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene, 2013, 532(1), 87-93.
[http://dx.doi.org/10.1016/j.gene.2013.09.048] [PMID: 24055727]
[22]
Liu, Y.; Hei, Y.; Shu, Q.; Dong, J.; Gao, Y.; Fu, H.; Zheng, X.; Yang, G. VCP/p97, down-regulated by microRNA-129-5p, could regulate the progression of hepatocellular carcinoma. PLoS One, 2012, 7(4), e35800.
[http://dx.doi.org/10.1371/journal.pone.0035800] [PMID: 22536440]
[23]
Gu, L.P.; Jin, S.; Xu, R.C.; Zhang, J.; Geng, Y.C.; Shao, X.Y.; Qin, L.B. Long non-coding RNA PCAT-1 promotes tumor progression by inhibiting miR-129-5p in human ovarian cancer. Arch. Med. Sci., 2019, 15(2), 513-521.
[http://dx.doi.org/10.5114/aoms.2018.75534] [PMID: 30899305]
[24]
Duan, L.; Hao, X.; Liu, Z.; Zhang, Y.; Zhang, G. MiR-129-5p is down-regulated and involved in the growth, apoptosis and migration of medullary thyroid carcinoma cells through targeting RET. FEBS Lett., 2014, 588(9), 1644-1651.
[http://dx.doi.org/10.1016/j.febslet.2014.03.002] [PMID: 24631532]
[25]
Ferretti, E.; De Smaele, E.; Po, A.; Di Marcotullio, L.; Tosi, E.; Espinola, M.S.; Di Rocco, C.; Riccardi, R.; Giangaspero, F.; Farcomeni, A.; Nofroni, I.; Laneve, P.; Gioia, U.; Caffarelli, E.; Bozzoni, I.; Screpanti, I.; Gulino, A. MicroRNA profiling in human medulloblastoma. Int. J. Cancer, 2009, 124(3), 568-577.
[http://dx.doi.org/10.1002/ijc.23948] [PMID: 18973228]
[26]
Gaur, A.; Jewell, D.A.; Liang, Y.; Ridzon, D.; Moore, J.H.; Chen, C.; Ambros, V.R.; Israel, M.A. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res., 2007, 67(6), 2456-2468.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2698] [PMID: 17363563]
[27]
Kang, M.; Li, Y.; Liu, W.; Wang, R.; Tang, A.; Hao, H.; Liu, Z.; Ou, H. miR-129-2 suppresses proliferation and migration of esophageal carcinoma cells through downregulation of SOX4 expression. Int. J. Mol. Med., 2013, 32(1), 51-58.
[http://dx.doi.org/10.3892/ijmm.2013.1384] [PMID: 23677061]
[28]
Bandrés, E.; Cubedo, E.; Agirre, X.; Malumbres, R.; Zárate, R.; Ramirez, N.; Abajo, A.; Navarro, A.; Moreno, I.; Monzó, M.; García-Foncillas, J. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer, 2006, 5, 29.
[http://dx.doi.org/10.1186/1476-4598-5-29] [PMID: 16854228]
[29]
Ho, C.Y.; Bar, E.; Giannini, C.; Marchionni, L.; Karajannis, M.A.; Zagzag, D.; Gutmann, D.H.; Eberhart, C.G.; Rodriguez, F.J. MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2. Neuro-oncol., 2013, 15(1), 69-82.
[http://dx.doi.org/10.1093/neuonc/nos269] [PMID: 23161775]
[30]
Birks, D.K.; Barton, V.N.; Donson, A.M.; Handler, M.H.; Vibhakar, R.; Foreman, N.K. Survey of MicroRNA expression in pediatric brain tumors. Pediatr. Blood Cancer, 2011, 56(2), 211-216.
[http://dx.doi.org/10.1002/pbc.22723] [PMID: 21157891]
[31]
Døssing, K.B.; Binderup, T.; Kaczkowski, B.; Jacobsen, A.; Rossing, M.; Winther, O.; Federspiel, B.; Knigge, U.; Kjær, A.; Friis-Hansen, L. Down-regulation of miR-129-5p and the let-7 family in neuroendocrine tumors and metastases leads to up-regulation of their targets Egr1, G3bp1, Hmga2 and Bach1. Genes (Basel), 2014, 6(1), 1-21.
[http://dx.doi.org/10.3390/genes6010001] [PMID: 25546138]
[32]
Li, M.; Tian, L.; Wang, L.; Yao, H.; Zhang, J.; Lu, J.; Sun, Y.; Gao, X.; Xiao, H.; Liu, M. Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS One, 2013, 8(10), e77829.
[http://dx.doi.org/10.1371/journal.pone.0077829] [PMID: 24194897]
[33]
Zhi, F.; Cao, X.; Xie, X.; Wang, B.; Dong, W.; Gu, W.; Ling, Y.; Wang, R.; Yang, Y.; Liu, Y. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS One, 2013, 8(2), e56718.
[http://dx.doi.org/10.1371/journal.pone.0056718] [PMID: 23437222]
[34]
Chen, L.; Ma, H.; Hu, H.; Gao, L.; Wang, X.; Ma, J.; Gao, Q.; Liu, B.; Zhou, G.; Liang, C. Special role of Foxp3 for the specifically altered microRNAs in regulatory T cells of HCC patients. BMC Cancer, 2014, 14, 489.
[http://dx.doi.org/10.1186/1471-2407-14-489] [PMID: 25000974]
[35]
Wang, H.C.; Greene, W.A.; Kaini, R.R.; Shen-Gunther, J.; Chen, H.I.; Cai, H.; Wang, Y. Profiling the microRNA expression in human iPS and iPS-derived retinal pigment epithelium. Cancer Inform., 2014, 13(Suppl. 5), 25-35.
[http://dx.doi.org/10.4137/CIN.S14074] [PMID: 25392691]
[36]
Gao, Y.; Feng, B.; Han, S.; Lu, L.; Chen, Y.; Chu, X.; Wang, R.; Chen, L. MicroRNA-129 in human cancers: From tumorigenesis to clinical treatment. Cell. Physiol. Biochem., 2016, 39(6), 2186-2202.
[http://dx.doi.org/10.1159/000447913] [PMID: 27802440]
[37]
Feng, J.; Guo, J.; Wang, J.P.; Chai, B.F. MiR-129-5p inhibits proliferation of gastric cancer cells through targeted inhibition on HMGB1 expression. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 3665-3673.
[PMID: 32329842]
[38]
Liu, Q.; Jiang, J.; Fu, Y.; Liu, T.; Yu, Y.; Zhang, X. MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9. Biomed. Pharmacother., 2018, 105, 420-427.
[http://dx.doi.org/10.1016/j.biopha.2018.05.105] [PMID: 29879625]
[39]
Wang, Q.; Yu, J. MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem. Cell Biol., 2018, 96(1), 19-25.
[http://dx.doi.org/10.1139/bcb-2016-0254] [PMID: 28482162]
[40]
Chen, D.; Wang, H.; Chen, J.; Li, Z.; Li, S.; Hu, Z.; Huang, S.; Zhao, Y.; He, X. MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front. Pharmacol., 2018, 9, 502.
[http://dx.doi.org/10.3389/fphar.2018.00502] [PMID: 29867504]
[41]
Wu, J.; Qian, J.; Li, C.; Kwok, L.; Cheng, F.; Liu, P.; Perdomo, C.; Kotton, D.; Vaziri, C.; Anderlind, C.; Spira, A.; Cardoso, W.V.; Lü, J. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle, 2010, 9(9), 1809-1818.
[http://dx.doi.org/10.4161/cc.9.9.11535] [PMID: 20404570]
[42]
Tan, G.; Cao, X.; Dai, Q.; Zhang, B.; Huang, J.; Xiong, S.; Zhang, Yy.; Chen, W.; Yang, J.; Li, H. A novel role for microRNA-129-5p in inhibiting ovarian cancer cell proliferation and survival via direct suppression of transcriptional co-activators YAP and TAZ. Oncotarget, 2015, 6(11), 8676-8686.
[http://dx.doi.org/10.18632/oncotarget.3254] [PMID: 25895125]
[43]
Han, C.; Wang, W. MicroRNA-129-5p suppresses cell proliferation, migration and invasion via targeting ROCK1 in osteosarcoma. Mol. Med. Rep., 2018, 17(3), 4777-4784.
[http://dx.doi.org/10.3892/mmr.2018.8374] [PMID: 29328417]
[44]
Zhang, Y.; Cai, W.; Zou, Y.; Zhang, H. Knockdown of KCNQ1OT1 inhibits proliferation, invasion, and drug resistance by regulating miR-129-5p-mediated LARP1 in osteosarcoma. BioMed Res. Int., 2020, 2020, 7698767.
[PMID: 32953888]
[45]
Wan, P.; Bai, X.; Yang, C.; He, T.; Luo, L.; Wang, Y.; Fan, M.; Wang, Z.; Lu, L.; Yin, Y.; Li, S.; Guo, Q.; Song, Z. miR-129-5p inhibits proliferation, migration, and invasion in rectal adenocarcinoma cells through targeting E2F7. J. Cell. Physiol., 2020, 235(7-8), 5689-5701.
[http://dx.doi.org/10.1002/jcp.29501] [PMID: 32052431]
[46]
Wang, Q.Y.; Tang, J.; Zhou, C.X.; Zhao, Q. The down-regulation of miR-129 in breast cancer and its effect on breast cancer migration and motility. Sheng Li Xue Bao, 2012, 64(4), 403-411.
[PMID: 22907300]
[47]
Luo, J.; Chen, J.; He, L. mir-129-5p Attenuates Irradiation-Induced Autophagy and Decreases Radioresistance of Breast Cancer Cells by Targeting HMGB1. Med. Sci. Monit., 2015, 21, 4122-4129.
[http://dx.doi.org/10.12659/MSM.896661] [PMID: 26720492]
[48]
Wu, D. LncRNA HOTAIR promotes breast cancer progression through regulating the miR-129-5p/FZD7 axis. Cancer Biomark., 2020, 30(2), 203-212.
[http://dx.doi.org/10.3233/CBM-190913] [PMID: 33104019]
[49]
Ma, N.; Chen, F.; Shen, S.L.; Chen, W.; Chen, L.Z.; Su, Q.; Zhang, L.J.; Bi, J.; Zeng, W.T.; Li, W.; Huang, X.H.; Wang, Q. MicroRNA-129-5p inhibits hepatocellular carcinoma cell metastasis and invasion via targeting ETS1. Biochem. Biophys. Res. Commun., 2015, 461(4), 618-623.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.075] [PMID: 25912876]
[50]
Zhai, J.; Qu, S.; Li, X.; Zhong, J.; Chen, X.; Qu, Z.; Wu, D. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2015, 464(1), 161-167.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.108] [PMID: 26116538]
[51]
Jiang, Z.; Wang, H.; Li, Y.; Hou, Z.; Ma, N.; Chen, W.; Zong, Z.; Chen, S. MiR-129-5p is down-regulated and involved in migration and invasion of gastric cancer cells by targeting interleukin-8. Neoplasma, 2016, 63(5), 673-680.
[http://dx.doi.org/10.4149/neo_2016_503] [PMID: 27468870]
[52]
Qiu, Z.; Wang, X.; Shi, Y.; Da, M. miR-129-5p suppresses proliferation, migration, and induces apoptosis in pancreatic cancer cells by targeting PBX3. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(10), 997-1007.
[http://dx.doi.org/10.1093/abbs/gmz096] [PMID: 31518383]
[53]
Diao, Y.; Jin, B.; Huang, L.; Zhou, W. MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J. Cell. Mol. Med., 2018, 22(4), 2357-2367.
[http://dx.doi.org/10.1111/jcmm.13529] [PMID: 29431269]
[54]
Wang, Y.F.; Yang, H.Y.; Shi, X.Q.; Wang, Y. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol. Ther., 2018, 19(12), 1162-1173.
[http://dx.doi.org/10.1080/15384047.2018.1491497] [PMID: 30260270]
[55]
Shen, N.; Huang, X.; Li, J. Upregulation of miR-129-5p affects laryngeal cancer cell proliferation, invasiveness, and migration by affecting STAT3 expression. Tumour Biol., 2016, 37(2), 1789-1796.
[http://dx.doi.org/10.1007/s13277-015-3969-y] [PMID: 26318305]
[56]
Xiao, Y.; Li, X.; Wang, H.; Wen, R.; He, J.; Tang, J. Epigenetic regulation of miR-129-2 and its effects on the proliferation and invasion in lung cancer cells. J. Cell. Mol. Med., 2015, 19(9), 2172-2180.
[http://dx.doi.org/10.1111/jcmm.12597] [PMID: 26081366]
[57]
Wang, R.T.; Zhang, Y.; Yao, S.Y.; Tan, X.G. LINC00501 inhibits the gowth and metastasis of lung cancer by mediating miR-129-5p/HMGB1. OncoTargets Ther., 2020, 13, 7137-7149.
[http://dx.doi.org/10.2147/OTT.S254735] [PMID: 32801746]
[58]
Zhang, P.; Li, J.; Song, Y.; Wang, X. MiR-129-5p inhibits proliferation and invasion of chondrosarcoma cells by regulating SOX4/Wnt/β-catenin signaling pathway. Cell. Physiol. Biochem., 2017, 42(1), 242-253.
[http://dx.doi.org/10.1159/000477323] [PMID: 28535514]
[59]
Liu, Y.; Liang, G.; Wang, H.; Liu, Z. MicroRNA-129-5p suppresses proliferation, migration and invasion of retinoblastoma cells through PI3K/AKT signaling pathway by targeting PAX6. Pathol. Res. Pract., 2019, 215(12), 152641.
[http://dx.doi.org/10.1016/j.prp.2019.152641] [PMID: 31727502]
[60]
Liu, X.; Choy, E.; Hornicek, F.J.; Yang, S.; Yang, C.; Harmon, D.; Mankin, H.; Duan, Z. ROCK1 as a potential therapeutic target in osteosarcoma. J. Orthop. Res., 2011, 29(8), 1259-1266.
[http://dx.doi.org/10.1002/jor.21403] [PMID: 21387396]
[61]
Wang, Y.; Zhao, W.; Fu, Q. miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Mol. Cell. Biochem., 2013, 384(1-2), 105-111.
[http://dx.doi.org/10.1007/s11010-013-1786-4] [PMID: 23975506]
[62]
Ma, H-B.; Yao, Y.N.; Yu, J.J.; Chen, X.X.; Li, H.F. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am. J. Transl. Res., 2018, 10(2), 592-604.
[PMID: 29511454]
[63]
Wang, S.; Chen, Y.; Yu, X.; Lu, Y.; Wang, H.; Wu, F.; Teng, L. miR-129-5p attenuates cell proliferation and epithelial mesenchymal transition via HMGB1 in gastric cancer. Pathol. Res. Pract., 2019, 215(4), 676-682.
[http://dx.doi.org/10.1016/j.prp.2018.12.024] [PMID: 30635217]
[64]
Chung, H.W.; Jang, S.; Kim, H.; Lim, J.B. Combined targeting of high-mobility group box-1 and interleukin-8 to control micrometastasis potential in gastric cancer. Int. J. Cancer, 2015, 137(7), 1598-1609.
[http://dx.doi.org/10.1002/ijc.29539] [PMID: 25821182]
[65]
Luan, Q.X.; Zhang, B.G.; Li, X.J.; Guo, M.Y. MiR-129-5p is downregulated in breast cancer cells partly due to promoter H3K27m3 modification and regulates epithelial-mesenchymal transition and multi-drug resistance. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(20), 4257-4265.
[PMID: 27831649]
[66]
Li, Y.; An, H.; Pang, J.; Huang, L.; Li, J.; Liu, L. MicroRNA profiling identifies miR-129-5p as a regulator of EMT in tubular epithelial cells. Int. J. Clin. Exp. Med., 2015, 8(11), 20610-20616.
[PMID: 26884980]
[67]
Zhang, Y.; An, J.; Lv, W.; Lou, T.; Liu, Y.; Kang, W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol. Lett., 2016, 12(6), 5163-5169.
[http://dx.doi.org/10.3892/ol.2016.5372] [PMID: 28105223]
[68]
Carew, J.S.; Kelly, K.R.; Nawrocki, S.T. Autophagy as a target for cancer therapy: new developments. Cancer Manag. Res., 2012, 4, 357-365.
[PMID: 23091399]
[69]
Yun, C.W.; Jeon, J.; Go, G.; Lee, J.H.; Lee, S.H. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int. J. Mol. Sci., 2020, 22(1), E179.
[http://dx.doi.org/10.3390/ijms22010179] [PMID: 33375363]
[70]
Lim, J.; Murthy, A. Targeting autophagy to treat cancer: Challenges and opportunities. Front. Pharmacol., 2020, 11, 590344.
[http://dx.doi.org/10.3389/fphar.2020.590344] [PMID: 33381037]
[71]
Shan, C.; Chen, X.; Cai, H.; Hao, X.; Li, J.; Zhang, Y.; Gao, J.; Zhou, Z.; Li, X.; Liu, C.; Li, P.; Wang, K. The emerging roles of autophagy-related microRNAs in cancer. Int. J. Biol. Sci., 2021, 17(1), 134-150.
[http://dx.doi.org/10.7150/ijbs.50773] [PMID: 33390839]
[72]
Bustos, S.O.; Antunes, F.; Rangel, M.C.; Chammas, R. Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression - implications for cancer therapy. Front. Oncol., 2020, 10, 606436.
[http://dx.doi.org/10.3389/fonc.2020.606436] [PMID: 33324568]
[73]
Xiao, W.; Dai, B.; Zhu, Y.; Ye, D. Norcantharidin induces autophagy-related prostate cancer cell death through Beclin-1 upregulation by miR-129-5p suppression. Tumour Biol., 2015. Online ahead of print
[http://dx.doi.org/10.1007/s13277-015-4488-6] [PMID: 26638170]
[74]
Brest, P.; Lassalle, S.; Hofman, V.; Bordone, O.; Gavric Tanga, V.; Bonnetaud, C.; Moreilhon, C.; Rios, G.; Santini, J.; Barbry, P.; Svanborg, C.; Mograbi, B.; Mari, B.; Hofman, P. MiR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr. Relat. Cancer, 2011, 18(6), 711-719.
[http://dx.doi.org/10.1530/ERC-10-0257] [PMID: 21946411]
[75]
You, B.R.; Park, W.H. Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Mol. Carcinog., 2017, 56(12), 2566-2577.
[http://dx.doi.org/10.1002/mc.22701] [PMID: 28667779]
[76]
Zhang, H.; Zhang, X.; Zhang, J. MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochem. Biophys. Res. Commun., 2018, 506(1), 272-277.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.085] [PMID: 30348524]
[77]
Li, W.; Ren, Y.; Meng, T.; Yang, W.; Zhang, W. miR-129-5p attenuates hypoxia-induced apoptosis in rat H9c2 cardiomyocytes by activating autophagy. J. Gene Med., 2020, 22(8), e3200.
[http://dx.doi.org/10.1002/jgm.3200] [PMID: 32298509]
[78]
Xu, C.; Du, Z.; Ren, S.; Liang, X.; Li, H. MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J. Cancer, 2020, 11(4), 858-866.
[http://dx.doi.org/10.7150/jca.35410] [PMID: 31949489]
[79]
Yuan, C.; Yang, L. Long non-coding RNA PITPNA-AS1 accelerates the progression of colorectal cancer through miR-129-5p/HMGB1 axis. Cancer Manag. Res., 2020, 12, 12497-12507.
[http://dx.doi.org/10.2147/CMAR.S267844] [PMID: 33312000]
[80]
Chen, Y.F.; Yang, C.C.; Kao, S.Y.; Liu, C.J.; Lin, S.C.; Chang, K.W. MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res., 2016, 76(16), 4872-4886.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1664] [PMID: 27221705]
[81]
Xu, Y.; Zhu, H.; Ma, H.; Yuan, L.; Hu, Q.; Yang, L. LINC01305 inhibits malignant progression of cervical cancer via miR-129-5p/Sox4 axis. Am. J. Transl. Res., 2020, 12(11), 7581-7592.
[PMID: 33312390]
[82]
Liao, C.; Long, Z.; Zhang, X.; Cheng, J.; Qi, F.; Wu, S.; Huang, T. LncARSR sponges miR-129-5p to promote proliferation and metastasis of bladder cancer cells through increasing SOX4 expression. Int. J. Biol. Sci., 2020, 16(1), 1-11.
[http://dx.doi.org/10.7150/ijbs.39461] [PMID: 31892841]
[83]
Chen, H.; Wu, G.; Chen, G.; Wang, W.; Ruan, F. Circular RNA THBS1 promotes proliferation and apoptosis of non-small cell lung cancer cells by sponging miR-129-5p and regulating SOX4 expression. J. BUON, 2020, 25(4), 1721-1727.
[PMID: 33099906]
[84]
Hirata, Y.; Kurobe, H.; Higashida, M.; Fukuda, D.; Shimabukuro, M.; Tanaka, K.; Higashikuni, Y.; Kitagawa, T.; Sata, M. HMGB1 plays a critical role in vascular inflammation and lesion formation via toll-like receptor 9. Atherosclerosis, 2013, 231(2), 227-233.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.09.010] [PMID: 24267232]
[85]
Zhang, W.; An, F.; Xia, M.; Zhan, Q.; Tian, W.; Jiao, Y. Increased HMGB1 expression correlates with higher expression of c-IAP2 and pERK in colorectal cancer. Medicine (Baltimore), 2019, 98(3), e14069.
[http://dx.doi.org/10.1097/MD.0000000000014069] [PMID: 30653121]
[86]
Wu, Q.; Meng, W.Y.; Jie, Y.; Zhao, H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J. Cell. Physiol., 2018, 233(9), 6750-6757.
[http://dx.doi.org/10.1002/jcp.26383] [PMID: 29226325]
[87]
Shi, Y.; Gong, W.; Lu, L.; Wang, Y.; Ren, J. Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz. J. Med. Biol. Res., 2019, 52(11), e8657.
[http://dx.doi.org/10.1590/1414-431x20198657] [PMID: 31664305]
[88]
Liu, K.; Huang, J.; Ni, J.; Song, D.; Ding, M.; Wang, J.; Huang, X.; Li, W. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle, 2017, 16(6), 578-587.
[http://dx.doi.org/10.1080/15384101.2017.1288324] [PMID: 28346809]
[89]
Zhang, D.; Cao, J.; Zhong, Q.; Zeng, L.; Cai, C.; Lei, L.; Zhang, W.; Liu, F. Long noncoding RNA PCAT-1 promotes invasion and metastasis via the miR-129-5p-HMGB1 signaling pathway in hepatocellular carcinoma. Biomed. Pharmacother., 2017, 95, 1187-1193.
[http://dx.doi.org/10.1016/j.biopha.2017.09.045] [PMID: 28931210]
[90]
He, J.; Ge, Q.; Lin, Z.; Shen, W.; Lin, R.; Wu, J.; Wang, B.; Lu, Y.; Chen, L.; Liu, X.; Zheng, W.; Zhang, Y.; Wang, L.; Wang, K.; Wang, L.; Zhuo, W.; Chen, S. MiR-129-5p induces cell cycle arrest through modulating HOXC10/Cyclin D1 to inhibit gastric cancer progression. FASEB J., 2020, 34(6), 8544-8557.
[http://dx.doi.org/10.1096/fj.201903217R] [PMID: 32356314]
[91]
Yang, W.; Pan, Y.; Guan, P.; Li, X.; You, C. Bioinformatics analysis of COL1A1 regulated by miR-129-5p as a potential therapeutic target for gastric cancer. Nan Fang Yi Ke Da Xue Xue Bao, 2019, 39(5), 540-546.
[PMID: 31140417]
[92]
Yan, L.; Sun, K.; Liu, Y.; Liang, J.; Cai, K.; Gui, J. MiR-129-5p influences the progression of gastric cancer cells through interacting with SPOCK1. Tumour Biol., 2017, 39(6), 1010428317706916.
[http://dx.doi.org/10.1177/1010428317706916] [PMID: 28653880]
[93]
Zhong, Q.; Huang, J.; Wei, J.; Wu, R. Circular RNA CDR1as sponges miR-7-5p to enhance E2F3 stability and promote the growth of nasopharyngeal carcinoma. Cancer Cell Int., 2019, 19(1), 252.
[http://dx.doi.org/10.1186/s12935-019-0959-y] [PMID: 31582908]
[94]
Li, Q.; Wang, Y.; Wu, S.; Zhou, Z.; Ding, X.; Shi, R.; Thorne, R.F.; Zhang, X.D.; Hu, W.; Wu, M. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab., 2019, 30(1), 157-173.e7.
[http://dx.doi.org/10.1016/j.cmet.2019.05.009] [PMID: 31155494]
[95]
Meng, R.; Fang, J.; Yu, Y.; Hou, L.K.; Chi, J.R.; Chen, A.X.; Zhao, Y.; Cao, X.C. miR-129-5p suppresses breast cancer proliferation by targeting CBX4. Neoplasma, 2018, 65(4), 572-578.
[http://dx.doi.org/10.4149/neo_2018_170814N530] [PMID: 29940764]
[96]
Ma, Z.; Cai, H.; Zhang, Y.; Chang, L.; Cui, Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem. Biophys. Res. Commun., 2017, 490(2), 309-316.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.041] [PMID: 28619508]
[97]
Wu, C.; Miao, C.; Tang, Q.; Zhou, X.; Xi, P.; Chang, P.; Hua, L.; Ni, H. MiR-129-5p promotes docetaxel resistance in prostate cancer by down-regulating CAMK2N1 expression. J. Cell. Mol. Med., 2020, 24(3), 2098-2108.
[http://dx.doi.org/10.1111/jcmm.14050] [PMID: 31876385]
[98]
Zeng, H.; Wang, L.; Wang, J.; Chen, T.; Li, H.; Zhang, K.; Chen, J.; Zhen, S.; Tuluhong, D.; Li, J.; Wang, S. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch. Biochem. Biophys., 2018, 651, 52-60.
[http://dx.doi.org/10.1016/j.abb.2018.05.018] [PMID: 29802821]
[99]
Lu, X.; Ma, J.; Chu, J.; Shao, Q.; Zhang, Y.; Lu, G.; Li, J.; Huang, X.; Li, W.; Li, Y.; Ling, Y.; Zhao, T. MiR-129-5p sensitizes the response of Her-2 positive breast cancer to trastuzumab by reducing Rps6. Cell. Physiol. Biochem., 2017, 44(6), 2346-2356.
[http://dx.doi.org/10.1159/000486122] [PMID: 29258115]
[100]
Yao, N.; Fu, Y.; Chen, L.; Liu, Z.; He, J.; Zhu, Y.; Xia, T.; Wang, S. Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene, 2019, 38(47), 7216-7233.
[http://dx.doi.org/10.1038/s41388-019-0904-5] [PMID: 31444414]
[101]
Cao, J.; Wang, Q.; Wu, G.; Li, S.; Wang, Q. miR-129-5p inhibits gemcitabine resistance and promotes cell apoptosis of bladder cancer cells by targeting Wnt5a. Int. Urol. Nephrol., 2018, 50(10), 1811-1819.
[http://dx.doi.org/10.1007/s11255-018-1959-x] [PMID: 30117016]
[102]
Yu, J.; Zhang, X.; Ma, Y.; Li, Z.; Tao, R.; Chen, W.; Xiong, S.; Han, X. MiR-129-5p restrains apatinib resistance in human gastric cancer cells via downregulating HOXC10. Cancer Biother. Radiopharm., 2020, 36(1), 95-105.
[http://dx.doi.org/10.1089/cbr.2019.3107] [PMID: 32552008]
[103]
Liu, S.; Wu, M.; Peng, M. Circ_0000260 regulates the development and deterioration of gastric adenocarcinoma with cisplatin resistance by upregulating MMP11 via targeting MiR-129-5p. Cancer Manag. Res., 2020, 12, 10505-10519.
[http://dx.doi.org/10.2147/CMAR.S272324] [PMID: 33122949]
[104]
Yi, H.; Liu, L.; Sheng, N.; Li, P.; Pan, H.; Cai, L.; Ma, Y. Synergistic therapy of doxorubicin and miR-129-5p with self-cross-linked bioreducible polypeptide nanoparticles reverses multidrug resistance in cancer cells. Biomacromolecules, 2016, 17(5), 1737-1747.
[http://dx.doi.org/10.1021/acs.biomac.6b00141] [PMID: 27029378]
[105]
Shen, C.J.; Cheng, Y.M.; Wang, C.L. LncRNA PVT1 epigenetically silences miR-195 and modulates EMT and chemoresistance in cervical cancer cells. J. Drug Target., 2017, 25(7), 637-644.
[http://dx.doi.org/10.1080/1061186X.2017.1307379] [PMID: 28296507]
[106]
Long, X.H.; Zhou, Y.F.; Peng, A.F.; Zhang, Z.H.; Chen, X.Y.; Chen, W.Z.; Liu, J.M.; Huang, S.H.; Liu, Z.L. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP). Tumour Biol., 2015, 36(5), 3799-3806.
[http://dx.doi.org/10.1007/s13277-014-3021-7] [PMID: 25566966]
[107]
Huang, Y.W.; Liu, J.C.; Deatherage, D.E.; Luo, J.; Mutch, D.G.; Goodfellow, P.J.; Miller, D.S.; Huang, T.H. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res., 2009, 69(23), 9038-9046.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1499] [PMID: 19887623]
[108]
Wang, D.; Fan, Z.; Liu, F.; Zuo, J. Hsa-miR-21 and Hsa-miR-29 in tissue as potential diagnostic and prognostic biomarkers for gastric cancer. Cell. Physiol. Biochem., 2015, 37(4), 1454-1462.
[http://dx.doi.org/10.1159/000438514] [PMID: 26509997]
[109]
Liu, Z.; Sun, J.; Wang, X.; Cao, Z. MicroRNA-129-5p promotes proliferation and metastasis of hepatocellular carcinoma by regulating the BMP2 gene. Exp. Ther. Med., 2021, 21(3), 257.
[http://dx.doi.org/10.3892/etm.2021.9688] [PMID: 33603864]
[110]
Xu, C.; Shao, Y.; Xia, T.; Yang, Y.; Dai, J.; Luo, L.; Zhang, X.; Sun, W.; Song, H.; Xiao, B.; Guo, J. lncRNA-AC130710 targeting by miR-129-5p is upregulated in gastric cancer and associates with poor prognosis. Tumour Biol., 2014, 35(10), 9701-9706.
[http://dx.doi.org/10.1007/s13277-014-2274-5] [PMID: 24969565]
[111]
Liu, Y.; Xu, J.; Jiang, M.; Ni, L.; Chen, Y.; Ling, Y. Association between functional PSMD10 Rs111638916 variant regulated by MiR-505 and gastric cancer risk in a Chinese population. Cell. Physiol. Biochem., 2015, 37(3), 1010-1017.
[http://dx.doi.org/10.1159/000430227] [PMID: 26394032]
[112]
Hedström, G.; Thunberg, U.; Berglund, M.; Simonsson, M.; Amini, R.M.; Enblad, G. Low expression of microRNA-129-5p predicts poor clinical outcome in diffuse large B cell lymphoma (DLBCL). Int. J. Hematol., 2013, 97(4), 465-471.
[http://dx.doi.org/10.1007/s12185-013-1303-2] [PMID: 23463124]
[113]
Zhu, X.; Fu, C.; Zhang, L.; Xu, G.; Wang, S. MiRNAs associated polymorphisms in the 3'UTR of MET promote the risk of non-small cell lung cancer. Cell. Physiol. Biochem., 2015, 37(3), 1159-1167.
[http://dx.doi.org/10.1159/000430239] [PMID: 26402720]
[114]
Xi, Y.; Nakajima, G.; Gavin, E.; Morris, C.G.; Kudo, K.; Hayashi, K.; Ju, J. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA, 2007, 13(10), 1668-1674.
[http://dx.doi.org/10.1261/rna.642907] [PMID: 17698639]
[115]
Cho, W.C. Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Front. Genet., 2011, 2, 7.
[http://dx.doi.org/10.3389/fgene.2011.00007] [PMID: 22303306]
[116]
Fesler, A.; Jiang, J.; Zhai, H.; Ju, J. Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Mol. Diagn. Ther., 2014, 18(3), 303-308.
[http://dx.doi.org/10.1007/s40291-014-0089-0] [PMID: 24566942]
[117]
Song, C.J.; Chen, H.; Chen, L.Z.; Ru, G.M.; Guo, J.J.; Ding, Q.N. The potential of microRNAs as human prostate cancer biomarkers: A meta-analysis of related studies. J. Cell. Biochem., 2018, 119(3), 2763-2786.
[http://dx.doi.org/10.1002/jcb.26445] [PMID: 29095529]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy