Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

New Insights into Neuropeptides Regulation of the Immune System and Hemopoiesis: Effects on Hematologic Malignancies

Author(s): Alessandro Allegra, Emanuela Sant’Antonio, Caterina Musolino and Roberta Ettari*

Volume 29, Issue 14, 2022

Published on: 06 January, 2022

Page: [2412 - 2437] Pages: 26

DOI: 10.2174/0929867328666210914120228

Price: $65

Abstract

Several neurotransmitters and neuropeptides were reported to join in or cooperate with different cells of the immune system, bone marrow, and peripheral cells. Numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part in the leukemogenesis and lymphomagenesis process and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment, or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide’s role in haematological malignancies and their possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.

Keywords: Neurotransmitter, neuropeptides, hematopoiesis, immune system, hematological malignancies, central nervous system, peripheral nervous system, leukemia, lymphoma, multiple myeloma.

[1]
Plaut, M. Lymphocyte hormone receptors. Annu. Rev. Immunol., 1987, 5, 621-669.
[http://dx.doi.org/10.1146/annurev.iy.05.040187.003201] [PMID: 2885016]
[2]
Chambers, D.A.; Cohen, R.L.; Perlman, R.L. Neuroimmune modulation: signal transduction and catecholamines. Neurochem. Int., 1993, 22(2), 95-110.
[http://dx.doi.org/10.1016/0197-0186(93)90002-M] [PMID: 8439775]
[3]
Felten, D.L.; Felten, S.Y.; Bellinger, D.L.; Carlson, S.L.; Ackerman, K.D.; Madden, K.S.; Olschowki, J.A.; Livnat, S. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol. Rev., 1987, 100, 225-260.
[http://dx.doi.org/10.1111/j.1600-065X.1987.tb00534.x] [PMID: 3326822]
[4]
Felton, D.; Cohen, N.; Ader, R. Psychoneuroimmunology; Academic Press: New York, 1991.
[5]
Besser, M.J.; Ganor, Y.; Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J. Neuroimmunol., 2005, 169(1-2), 161-171.
[http://dx.doi.org/10.1016/j.jneuroim.2005.07.013] [PMID: 16150496]
[6]
Chen, A.; Ganor, Y.; Rahimipour, S.; Ben-Aroya, N.; Koch, Y.; Levite, M. The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs. Nat. Med., 2002, 8(12), 1421-1426.
[http://dx.doi.org/10.1038/nm1202-801] [PMID: 12447356]
[7]
Levite, M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol., 2008, 8(4), 460-471.
[http://dx.doi.org/10.1016/j.coph.2008.05.001] [PMID: 18579442]
[8]
Ganor, Y.; Teichberg, V.I.; Levite, M. TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J. Immunol., 2007, 178(2), 683-692.
[http://dx.doi.org/10.4049/jimmunol.178.2.683] [PMID: 17202328]
[9]
Johnson, D.L.; Ashmore, R.C.; Gordon, M.A. Effects of beta-adrenergic agents on the murine lymphocyte response to mitogen stimulation. J. Immunopharmacol., 1981, 3(2), 205-219.
[http://dx.doi.org/10.3109/08923978109026427] [PMID: 6121831]
[10]
Coffey, R.G.; Hadden, J.W. Neurotransmitters, hormones, and cyclic nucleotides in lymphocyte regulation. Fed. Proc., 1985, 44(1 Pt 1), 112-117.
[PMID: 2857137]
[11]
Boynton, A.L.; Whitfield, J.F. The role of cyclic amp in Cell proliferation: a critical assessment of the evidence. Adv Cyc Nucl Res., 1983, 15, 193.
[12]
Cook-Mills, J.M.; Cohen, R.L.; Perlman, R.L.; Chambers, D.A. Inhibition of lymphocyte activation by catecholamines: evidence for a non-classical mechanism of catecholamine action. Immunology, 1995, 85(4), 544-549.
[PMID: 7558147]
[13]
Levite, M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol. (Oxf.), 2016, 216(1), 42-89.
[http://dx.doi.org/10.1111/apha.12476] [PMID: 25728499]
[14]
Zhao, W.; Huang, Y.; Liu, Z.; Cao, B.B.; Peng, Y.P.; Qiu, Y.H. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One, 2013, 8(6) ,e65860.
[http://dx.doi.org/10.1371/journal.pone.0065860] [PMID: 23799052]
[15]
Li, F.; Tian, X.; Zhan, X.; Wang, B.; Ding, M.; Pang, H. Clathrin-dependent uptake of paraquat into SH-SY5Y cells and its internalization into different subcellular compartments. Neurotox. Res., 2017, 32(2), 204-217.
[http://dx.doi.org/10.1007/s12640-017-9722-0] [PMID: 28303546]
[16]
Paolillo, N.; Piccirilli, S.; Giardina, E.; Rispoli, V.; Colica, C.; Nisticò, S. Effects of paraquat and capsaicin on the expression of genes related to inflammatory, immune responses and cell death in immortalized human HaCat keratinocytes. Int. J. Immunopathol. Pharmacol., 2011, 24(4), 861-868.
[http://dx.doi.org/10.1177/039463201102400405] [PMID: 22230393]
[17]
Dinis-Oliveira, R.J.; Duarte, J.A.; Sánchez-Navarro, A.; Remião, F.; Bastos, M.L.; Carvalho, F. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit. Rev. Toxicol., 2008, 38(1), 13-71.
[http://dx.doi.org/10.1080/10408440701669959] [PMID: 18161502]
[18]
Ahmadian, E.; Eftekhari, A.; Kavetskyy, T.; Khosroushahi, A.Y.; Turksoy, V.A.; Khalilov, R. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic. Biochem. Physiol., 2020, 167 ,104586.
[http://dx.doi.org/10.1016/j.pestbp.2020.104586] [PMID: 32527420]
[19]
Imbesi, S.; Musolino, C.; Allegra, A.; Saija, A.; Morabito, F.; Calapai, G.; Gangemi, S. Oxidative stress in oncohematologic diseases: an update. Expert Rev. Hematol., 2013, 6(3), 317-325.
[http://dx.doi.org/10.1586/ehm.13.21] [PMID: 23782085]
[20]
Allegra, A.G.; Mannino, F.; Innao, V.; Musolino, C.; Allegra, A. Radioprotective agents and enhancers factors. Antioxidants (Basel), 2020, 9(11), 1116.
[21]
Allegra, A.; Pioggia, G.; Tonacci, A.; Casciaro, M.; Musolino, C.; Gangemi, S. Synergic crosstalk between inflammation, oxidative stress, and genomic alterations in BCR-ABL-negative myeloproliferative neoplasm. Antioxidants (Basel), 2020, 9(11), 1037.
[22]
Allegra, A.; Speciale, A.; Molonia, M.S.; Guglielmo, L.; Musolino, C.; Ferlazzo, G.; Costa, G.; Saija, A.; Cimino, F. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol. in vitro, 2018, 47, 186-194.
[http://dx.doi.org/10.1016/j.tiv.2017.12.001] [PMID: 29223572]
[23]
Musolino, C.; Allegra, A.; Saija, A.; Alonci, A.; Russo, S.; Spatari, G.; Penna, G.; Gerace, D.; Cristani, M.; David, A.; Saitta, S.; Gangemi, S. Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia. Clin. Biochem., 2012, 45(16-17), 1439-1443.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.07.100] [PMID: 22850610]
[24]
Allegra, A.; Sant’antonio, E.; Penna, G.; Alonci, A.; D’Angelo, A.; Russo, S.; Cannavò, A.; Gerace, D.; Musolino, C. Novel therapeutic strategies in multiple myeloma: role of the heat shock protein inhibitors. Eur. J. Haematol., 2011, 86(2), 93-110.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01558.x] [PMID: 21114539]
[25]
Rossetti, A.C.; Paladini, M.S.; Riva, M.A.; Molteni, R. Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol. Ther., 2020, 210 ,107520.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107520] [PMID: 32165136]
[26]
Ballaz, S.J.; Rebec, G.V. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol. Res., 2019, 146 ,104321.
[http://dx.doi.org/10.1016/j.phrs.2019.104321] [PMID: 31229562]
[27]
Yi, Q.Y.; Li, H.B.; Qi, J.; Yu, X.J.; Huo, C.J.; Li, X.; Bai, J.; Gao, H.L.; Kou, B.; Liu, K.L.; Zhang, D.D.; Chen, W.S.; Cui, W.; Zhu, G.Q.; Shi, X.L.; Kang, Y.M. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicol. Lett., 2016, 262, 105-113.
[http://dx.doi.org/10.1016/j.toxlet.2016.09.010] [PMID: 27659729]
[28]
Choe, H.; Lee, H.; Lee, J.; Kim, Y. Protective effect of gamma-aminobutyric acid against oxidative stress by inducing phase II enzymes in C2C12 myoblast cells. J. Food Biochem., 2021, 45(4) ,e13639.
[http://dx.doi.org/10.1111/jfbc.13639] [PMID: 33533516]
[29]
Azouzi, S.; Santuz, H.; Morandat, S.; Pereira, C.; Côté, F.; Hermine, O.; El Kirat, K.; Colin, Y.; Le Van Kim, C.; Etchebest, C.; Amireault, P. Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys. J., 2017, 112(9), 1863-1873.
[http://dx.doi.org/10.1016/j.bpj.2017.03.037] [PMID: 28494957]
[30]
Jackson, J.C.; Cross, R.J.; Walker, R.F.; Markesbery, W.R.; Brooks, W.H.; Roszman, T.L. Influence of serotonin on the immune response. Immunology, 1985, 54(3), 505-512.
[PMID: 3156091]
[31]
Ptak, W.; Geba, G.P.; Askenase, P.W. Initiation of delayed-type hypersensitivity by low doses of monoclonal IgE antibody. Mediation by serotonin and inhibition by histamine. J. Immunol., 1991, 146(11), 3929-3936.
[PMID: 2033262]
[32]
Aune, T.M.; Golden, H.W.; McGrath, K.M. Inhibitors of serotonin synthesis and antagonists of serotonin 1A receptors inhibit T lymphocyte function in vitro and cell-mediated immunity in vivo. J. Immunol., 1994, 153(2), 489-498.
[PMID: 8021490]
[33]
Hellstrand, K.; Hermodsson, S. Enhancement of human natural killer cell cytotoxicity by serotonin: role of non-T/CD16+ NK cells, accessory monocytes, and 5-HT1A receptors. Cell. Immunol., 1990, 127(1), 199-214.
[http://dx.doi.org/10.1016/0008-8749(90)90125-B] [PMID: 2138518]
[34]
Iken, K.; Chheng, S.; Fargin, A.; Goulet, A.C.; Kouassi, E. Serotonin upregulates mitogen-stimulated B lymphocyte proliferation through 5-HT1A receptors. Cell. Immunol., 1995, 163(1), 1-9.
[http://dx.doi.org/10.1006/cimm.1995.1092] [PMID: 7758118]
[35]
Arzt, E.; Costas, M.; Finkielman, S.; Nahmod, V.E. Serotonin inhibition of tumor necrosis factor-α synthesis by human monocytes. Life Sci., 1991, 48(26), 2557-2562.
[http://dx.doi.org/10.1016/0024-3205(91)90612-F] [PMID: 2046478]
[36]
Irwin, M.; Lacher, U.; Caldwell, C. Depression and reduced natural killer cytotoxicity: a longitudinal study of depressed patients and control subjects. Psychol. Med., 1992, 22(4), 1045-1050.
[http://dx.doi.org/10.1017/S0033291700038617] [PMID: 1488477]
[37]
Lauder, J.M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci., 1993, 16(6), 233-240.
[http://dx.doi.org/10.1016/0166-2236(93)90162-F] [PMID: 7688165]
[38]
Kawashima, K.; Fujii, T. Extraneuronal cholinergic system in lymphocytes. Pharmacol. Ther., 2000, 86(1), 29-48.
[http://dx.doi.org/10.1016/S0163-7258(99)00071-6] [PMID: 10760545]
[39]
Neumann, S.; Razen, M.; Habermehl, P.; Meyer, C.U.; Zepp, F.; Kirkpatrick, C.J.; Wessler, I. The non-neuronal cholinergic system in peripheral blood cells: effects of nicotinic and muscarinic receptor antagonists on phagocytosis, respiratory burst and migration. Life Sci., 2007, 80(24-25), 2361-2364.
[http://dx.doi.org/10.1016/j.lfs.2007.01.010] [PMID: 17286990]
[40]
Rinner, I.; Kawashima, K.; Schauenstein, K. Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation. J. Neuroimmunol., 1998, 81(1-2), 31-37.
[http://dx.doi.org/10.1016/S0165-5728(97)00155-0] [PMID: 9521603]
[41]
Fujii, T.; Tajima, S.; Yamada, S.; Watanabe, Y.; Sato, K.Z.; Matsui, M.; Misawa, H.; Kasahara, T.; Kawashima, K. Constitutive expression of mRNA for the same choline acetyltransferase as that in the nervous system, an acetylcholine-synthesizing enzyme, in human leukemic T-cell lines. Neurosci. Lett., 1999, 259(2), 71-74.
[http://dx.doi.org/10.1016/S0304-3940(98)00921-5] [PMID: 10025560]
[42]
Kawashima, K.; Yoshikawa, K.; Fujii, Y.X.; Moriwaki, Y.; Misawa, H. Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci., 2007, 80(24-25), 2314-2319.
[http://dx.doi.org/10.1016/j.lfs.2007.02.036] [PMID: 17383684]
[43]
Kawashima, K.; Fujii, T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci., 2003, 74(6), 675-696.
[http://dx.doi.org/10.1016/j.lfs.2003.09.037] [PMID: 14654162]
[44]
Izquierdo, M.; Leevers, S.J.; Williams, D.H.; Marshall, C.J.; Weiss, A.; Cantrell, D. The role of protein kinase C in the regulation of extracellular signal-regulated kinase by the T cell antigen receptor. Eur. J. Immunol., 1994, 24(10), 2462-2468.
[http://dx.doi.org/10.1002/eji.1830241031] [PMID: 7925576]
[45]
Sato, K.Z.; Fujii, T.; Watanabe, Y.; Yamada, S.; Ando, T.; Kazuko, F.; Kawashima, K. Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci. Lett., 1999, 266(1), 17-20.
[http://dx.doi.org/10.1016/S0304-3940(99)00259-1]
[46]
Fujii, T.; Takada-Takatori, Y.; Kawashima, K. Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J. Pharmacol. Sci., 2008, 106(2), 186-192.
[http://dx.doi.org/10.1254/jphs.FM0070109] [PMID: 18285654]
[47]
Nizri, E.; Hamra-Amitay, Y.; Sicsic, C.; Lavon, I.; Brenner, T. Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors. Neuropharmacology, 2006, 50(5), 540-547.
[http://dx.doi.org/10.1016/j.neuropharm.2005.10.013] [PMID: 16336980]
[48]
Fujii, Y.X.; Fujigaya, H.; Moriwaki, Y.; Misawa, H.; Kasahara, T.; Grando, S.A.; Kawashima, K. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. J. Neuroimmunol., 2007, 189(1-2), 69-74.
[http://dx.doi.org/10.1016/j.jneuroim.2007.07.003] [PMID: 17675251]
[49]
Fujii, T.; Tsuchiya, T.; Yamada, S.; Fujimoto, K.; Suzuki, T.; Kasahara, T.; Kawashima, K. Localization and synthesis of acetylcholine in human leukemic T cell lines. J. Neurosci. Res., 1996, 44(1), 66-72.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19960401)44:1<66:AID-JNR9>3.0.CO;2-G] [PMID: 8926632]
[50]
Kawashima, K.; Fujii, T. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front. Biosci., 2004, 9, 2063-2085.
[http://dx.doi.org/10.2741/1390] [PMID: 15353271]
[51]
Kimura, R.; Ushiyama, N.; Fujii, T.; Kawashima, K. Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sci., 2003, 72(18-19), 2155-2158.
[http://dx.doi.org/10.1016/S0024-3205(03)00077-8] [PMID: 12628473]
[52]
Peng, H.; Ferris, R.L.; Matthews, T.; Hiel, H.; Lopez-Albaitero, A.; Lustig, L.R. Characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) and alpha (alpha) 10 (CHRNA10) in lymphocytes. Life Sci., 2004, 76(3), 263-280.
[http://dx.doi.org/10.1016/j.lfs.2004.05.031] [PMID: 15531379]
[53]
Chernyavsky, A.I.; Arredondo, J.; Galitovskiy, V.; Qian, J.; Grando, S.A. Structure and function of the nicotinic arm of acetylcholine regulatory axis in human leukemic T cells. Int. J. Immunopathol. Pharmacol., 2009, 22(2), 461-472.
[http://dx.doi.org/10.1177/039463200902200223] [PMID: 19505399]
[54]
Levite, M.; Cahalon, L.; Hershkoviz, R.; Steinman, L.; Lider, O. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin. J. Immunol., 1998, 160(2), 993-1000.
[PMID: 9551939]
[55]
Levite, M. Neuropeptides, by direct interaction with T cells, induce cytokine secretion and break the commitment to a distinct T helper phenotype. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12544-12549.
[http://dx.doi.org/10.1073/pnas.95.21.12544] [PMID: 9770522]
[56]
Levite, M. Nervous immunity: neurotransmitters, extracellular K+ and T-cell function. Trends Immunol., 2001, 22(1), 2-5.
[http://dx.doi.org/10.1016/S1471-4906(00)01799-3] [PMID: 11286675]
[57]
Levite, M.; Chowers, Y.; Ganor, Y.; Besser, M.; Hershkovits, R.; Cahalon, L. Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur. J. Immunol., 2001, 31(12), 3504-3512.
[http://dx.doi.org/10.1002/1521-4141(200112)31:12<3504:AID-IMMU3504>3.0.CO;2-F] [PMID: 11745370]
[58]
Katayama, Y.; Battista, M.; Kao, W.M.; Hidalgo, A.; Peired, A.J.; Thomas, S.A.; Frenette, P.S. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 2006, 124(2), 407-421.
[http://dx.doi.org/10.1016/j.cell.2005.10.041] [PMID: 16439213]
[59]
Scheiermann, C.; Kunisaki, Y.; Lucas, D.; Chow, A.; Jang, J.E.; Zhang, D.; Hashimoto, D.; Merad, M.; Frenette, P.S. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity, 2012, 37(2), 290-301.
[http://dx.doi.org/10.1016/j.immuni.2012.05.021] [PMID: 22863835]
[60]
Maestroni, G.J.; Cosentino, M.; Marino, F.; Togni, M.; Conti, A.; Lecchini, S.; Frigo, G. Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp. Hematol., 1998, 26(12), 1172-1177.
[PMID: 9808057]
[61]
Frenette, P.S.W.L.; Weiss, L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood, 2000, 96(7), 2460-2468.
[http://dx.doi.org/10.1182/blood.V96.7.2460] [PMID: 11001898]
[62]
Katayama, Y.; Frenette, P.S. Galactocerebrosides are required postnatally for stromal-dependent bone marrow lymphopoiesis. Immunity, 2003, 18(6), 789-800.
[http://dx.doi.org/10.1016/S1074-7613(03)00150-X] [PMID: 12818160]
[63]
Méndez-Ferrer, S.; Lucas, D.; Battista, M.; Frenette, P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008, 452(7186), 442-447.
[http://dx.doi.org/10.1038/nature06685] [PMID: 18256599]
[64]
Ding, L.; Morrison, S.J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature, 2013, 495(7440), 231-235.
[http://dx.doi.org/10.1038/nature11885] [PMID: 23434755]
[65]
Szumilas, P.; Barcew, K.; Baśkiewicz-Masiuk, M.; Wiszniewska, B.; Ratajczak, M.Z.; Machaliński, B. Effect of stem cell mobilization with cyclophosphamide plus granulocyte colony-stimulating factor on morphology of haematopoietic organs in mice. Cell Prolif., 2005, 38(1), 47-61.
[http://dx.doi.org/10.1111/j.1365-2184.2005.00329.x] [PMID: 15679866]
[66]
Gonzalez-Nieto, D.; Li, L.; Kohler, A.; Ghiaur, G.; Ishikawa, E.; Sengupta, A.; Madhu, M.; Arnett, J.L.; Santho, R.A.; Dunn, S.K.; Fishman, G.I.; Gutstein, D.E.; Civitelli, R.; Barrio, L.C.; Gunzer, M.; Cancelas, J.A. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood, 2012, 119(22), 5144-5154.
[http://dx.doi.org/10.1182/blood-2011-07-368506] [PMID: 22498741]
[67]
Schajnovitz, A.; Itkin, T.; D’Uva, G.; Kalinkovich, A.; Golan, K.; Ludin, A.; Cohen, D.; Shulman, Z.; Avigdor, A.; Nagler, A.; Kollet, O.; Seger, R.; Lapidot, T. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol., 2011, 12(5), 391-398.
[http://dx.doi.org/10.1038/ni.2017] [PMID: 21441933]
[68]
Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; Milner, L.A.; Kronenberg, H.M.; Scadden, D.T. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425(6960), 841-846.
[http://dx.doi.org/10.1038/nature02040] [PMID: 14574413]
[69]
Kunisaki, Y.; Bruns, I.; Scheiermann, C.; Ahmed, J.; Pinho, S.; Zhang, D.; Mizoguchi, T.; Wei, Q.; Lucas, D.; Ito, K.; Mar, J.C.; Bergman, A.; Frenette, P.S. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502(7473), 637-643.
[http://dx.doi.org/10.1038/nature12612] [PMID: 24107994]
[70]
Morrison, S.J.; Scadden, D.T. The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505(7483), 327-334.
[http://dx.doi.org/10.1038/nature12984] [PMID: 24429631]
[71]
Frenette, P.S.; Pinho, S.; Lucas, D.; Scheiermann, C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol., 2013, 31, 285-316.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095919] [PMID: 23298209]
[72]
Gao, X.; Zhang, D.; Xu, C.; Li, H.; Caron, K.M.; Frenette, P.S. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature, 2021, 589(7843), 591-596.
[http://dx.doi.org/10.1038/s41586-020-03057-y] [PMID: 33361809]
[73]
Choudhuri, A.; Han, T.; Zon, L.I. From development toward therapeutics, a collaborative effort on blood progenitors. Stem Cell Reports, 2021, 16(7), 1674-1685.
[http://dx.doi.org/10.1016/j.stemcr.2021.05.010] [PMID: 34115985]
[74]
Wilson, A.; Laurenti, E.; Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev., 2009, 19(5), 461-468.
[http://dx.doi.org/10.1016/j.gde.2009.08.005] [PMID: 19811902]
[75]
Yamazaki, S.; Ema, H.; Karlsson, G.; Yamaguchi, T.; Miyoshi, H.; Shioda, S.; Taketo, M.M.; Karlsson, S.; Iwama, A.; Nakauchi, H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell, 2011, 147(5), 1146-1158.
[http://dx.doi.org/10.1016/j.cell.2011.09.053] [PMID: 22118468]
[76]
Méndez-Ferrer, S.; Michurina, T.V.; Ferraro, F.; Mazloom, A.R.; Macarthur, B.D.; Lira, S.A.; Scadden, D.T.; Ma’ayan, A.; Enikolopov, G.N.; Frenette, P.S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466(7308), 829-834.
[http://dx.doi.org/10.1038/nature09262] [PMID: 20703299]
[77]
Lucas, D.; Scheiermann, C.; Chow, A.; Kunisaki, Y.; Bruns, I.; Barrick, C.; Tessarollo, L.; Frenette, P.S. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med., 2013, 19(6), 695-703.
[http://dx.doi.org/10.1038/nm.3155] [PMID: 23644514]
[78]
Méndez-Ferrer, S.; Battista, M.; Frenette, P.S. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann. N. Y. Acad. Sci., 2010, 1192, 139-144.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05390.x] [PMID: 20392229]
[79]
Lucas, D.; Battista, M.; Shi, P.A.; Isola, L.; Frenette, P.S. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell, 2008, 3(4), 364-366.
[http://dx.doi.org/10.1016/j.stem.2008.09.004] [PMID: 18940728]
[80]
Gratwohl, A.; Baldomero, H.; Passweg, J. Hematopoietic stem cell transplantation activity in Europe. Curr. Opin. Hematol., 2013, 20(6), 485-493.
[http://dx.doi.org/10.1097/MOH.0b013e328364f573] [PMID: 24104408]
[81]
Spiegel, A.; Shivtiel, S.; Kalinkovich, A.; Ludin, A.; Netzer, N.; Goichberg, P.; Azaria, Y.; Resnick, I.; Hardan, I.; Ben-Hur, H.; Nagler, A.; Rubinstein, M.; Lapidot, T. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol., 2007, 8(10), 1123-1131.
[http://dx.doi.org/10.1038/ni1509] [PMID: 17828268]
[82]
Derocq, J.M.; Ségui, M.; Marchand, J.; Le Fur, G.; Casellas, P. Cannabinoids enhance human B-cell growth at low nanomolar concentrations. FEBS Lett., 1995, 369(2-3), 177-182.
[http://dx.doi.org/10.1016/0014-5793(95)00746-V] [PMID: 7544292]
[83]
Martin, B.R.; Mechoulam, R.; Razdan, R.K. Discovery and characterization of endogenous cannabinoids. Life Sci., 1999, 65(6-7), 573-595.
[http://dx.doi.org/10.1016/S0024-3205(99)00281-7] [PMID: 10462059]
[84]
Janda, S.S.; Boranić, M.; Skodlar, J.; Petrovecki, M.; Nemet, D.; Labar, B. Effect of opioid peptide methionine-enkephalin in long-term cultures of human bone marrow. Acta Med. Croatica, 2000, 54(3), 99-105.
[PMID: 11268793]
[85]
Ricardo, M.; Trzaska, K.A.; Rameshwar, P. Neurokinin-A inhibits cell cycle activators in K562 cells and activates Smad 4 through a non-canonical pathway: a novel method in neural-hematopoietic axis. J. Neuroimmunol., 2008, 204(1-2), 85-91.
[http://dx.doi.org/10.1016/j.jneuroim.2008.07.013] [PMID: 18760489]
[86]
van Eekelen, J.A.; Bradley, C.K.; Göthert, J.R.; Robb, L.; Elefanty, A.G.; Begley, C.G.; Harvey, A.R. Expression pattern of the stem cell leukaemia gene in the CNS of the embryonic and adult mouse. Neuroscience, 2003, 122(2), 421-436.
[http://dx.doi.org/10.1016/S0306-4522(03)00571-2] [PMID: 14614907]
[87]
Achim, K.; Peltopuro, P.; Lahti, L.; Tsai, H.H.; Zachariah, A.; Astrand, M.; Salminen, M.; Rowitch, D.; Partanen, J. The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol. Open, 2013, 2(10), 990-997.
[http://dx.doi.org/10.1242/bio.20135041] [PMID: 24167708]
[88]
Lee, B.; Lee, M.; Song, S.; Loi, L.D.; Lam, D.T.; Yoon, J.; Baek, K.; Curtis, D.J.; Jeong, Y. Specification of neurotransmitter identity by Tal1 in thalamic nuclei. Dev. Dyn., 2017, 246(10), 749-758.
[http://dx.doi.org/10.1002/dvdy.24546] [PMID: 28685891]
[89]
Robb, L.; Lyons, I.; Li, R.; Hartley, L.; Köntgen, F.; Harvey, R.P.; Metcalf, D.; Begley, C.G. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA, 1995, 92(15), 7075-7079.
[http://dx.doi.org/10.1073/pnas.92.15.7075] [PMID: 7624372]
[90]
Curtis, D.J.; Hall, M.A.; Van Stekelenburg, L.J.; Robb, L.; Jane, S.M.; Begley, C.G. SCL is required for normal function of short-term repopulating hematopoietic stem cells. Blood, 2004, 103(9), 3342-3348.
[http://dx.doi.org/10.1182/blood-2003-09-3202] [PMID: 14726374]
[91]
Krause, D.S.; Van Etten, R.A. Right on target: eradicating leukemic stem cells. Trends Mol. Med., 2007, 13(11), 470-481.
[http://dx.doi.org/10.1016/j.molmed.2007.09.003] [PMID: 17981087]
[92]
Arranz, L.; Sánchez-Aguilera, A.; Martín-Pérez, D.; Isern, J.; Langa, X.; Tzankov, A.; Lundberg, P.; Muntión, S.; Tzeng, Y-S.; Lai, D-M.; Schwaller, J.; Skoda, R.C.; Méndez-Ferrer, S. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 2014, 512(7512), 78-81.
[http://dx.doi.org/10.1038/nature13383] [PMID: 25043017]
[93]
Schepers, K.; Pietras, E.M.; Reynaud, D.; Flach, J.; Binnewies, M.; Garg, T.; Wagers, A.J.; Hsiao, E.C.; Passegué, E. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell, 2013, 13(3), 285-299.
[http://dx.doi.org/10.1016/j.stem.2013.06.009] [PMID: 23850243]
[94]
Hanoun, M.; Zhang, D.; Mizoguchi, T.; Pinho, S.; Pierce, H.; Kunisaki, Y.; Lacombe, J.; Armstrong, S.A.; Dührsen, U.; Frenette, P.S. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell, 2014, 15(3), 365-375.
[http://dx.doi.org/10.1016/j.stem.2014.06.020] [PMID: 25017722]
[95]
Hanoun, M.; Maryanovich, M.; Arnal-Estapé, A.; Frenette, P.S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron, 2015, 86(2), 360-373.
[http://dx.doi.org/10.1016/j.neuron.2015.01.026] [PMID: 25905810]
[96]
Kawase, M.; Motohashi, N.; Kurihara, T.; Inagaki, M.; Satoh, K.; Sakagami, H. Relationship between radical intensity and cytotoxic activity of dopamine-related compounds. Anticancer Res., 1998, 18(2A), 1069-1074.
[PMID: 9615767]
[97]
Wick, M.M. 3,4-Dihydroxybenzylamine: a dopamine analog with enhanced antitumor activity against B16 melanoma. J. Natl. Cancer Inst., 1979, 63(6), 1465-1467.
[PMID: 292814]
[98]
He, Q.; Yuan, L.B. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells. Chin. Med. J. (Engl.), 2007, 120(11), 970-974.
[http://dx.doi.org/10.1097/00029330-200706010-00006] [PMID: 17624264]
[99]
Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J.H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012, 149(6), 1284-1297.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
[100]
Aslostovar, L.; Boyd, A.L.; Almakadi, M.; Collins, T.J.; Leong, D.P.; Tirona, R.G.; Kim, R.B.; Julian, J.A.; Xenocostas, A.; Leber, B.; Levine, M.N.; Foley, R.; Bhatia, M. A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Adv., 2018, 2(15), 1935-1945.
[http://dx.doi.org/10.1182/bloodadvances.2018015677] [PMID: 30093531]
[101]
Du, Y.; Li, K.; Wang, X.; Kaushik, A.C.; Junaid, M.; Wei, D. Identification of chlorprothixene as a potential drug that induces apoptosis and autophagic cell death in acute myeloid leukemia cells. FEBS J., 2020, 287(8), 1645-1665.
[http://dx.doi.org/10.1111/febs.15102] [PMID: 31625692]
[102]
Krummel, T.M.; Neifeld, J.P.; Taub, R.N. Effects of dopamine agonists and antagonists on murine melanoma: correlation with dopamine binding activity. Cancer, 1982, 49(6), 1178-1184.
[http://dx.doi.org/10.1002/1097-0142(19820315)49:6<1178:AID-CNCR2820490619>3.0.CO;2-H] [PMID: 7059943]
[103]
Mistry, H.; Hsieh, G.; Buhrlage, S.J.; Huang, M.; Park, E.; Cuny, G.D.; Galinsky, I.; Stone, R.M.; Gray, N.S.; D’Andrea, A.D.; Parmar, K. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol. Cancer Ther., 2013, 12(12), 2651-2662.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0103-T] [PMID: 24130053]
[104]
Nelson, E.A.; Walker, S.R.; Xiang, M.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Liu, S.; Kharbanda, S.; Christie, A.L.; Nicolais, M.; Griffin, J.D.; Stone, R.M.; Kung, A.L.; Frank, D.A. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations. Genes Cancer, 2012, 3(7-8), 503-511.
[http://dx.doi.org/10.1177/1947601912466555] [PMID: 23264850]
[105]
Elmaci, I.; Altinoz, M.A. Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma. Crit. Rev. Oncol. Hematol., 2018, 128, 96-109.
[http://dx.doi.org/10.1016/j.critrevonc.2018.06.004] [PMID: 29958636]
[106]
Nogami, A.; Oshikawa, G.; Okada, K.; Fukutake, S.; Umezawa, Y.; Nagao, T.; Kurosu, T.; Miura, O. FLT3-ITD confers resistance to the PI3K/Akt pathway inhibitors by protecting the mTOR/4EBP1/Mcl-1 pathway through STAT5 activation in acute myeloid leukemia. Oncotarget, 2015, 6(11), 9189-9205.
[http://dx.doi.org/10.18632/oncotarget.3279] [PMID: 25826077]
[107]
Bar-Natan, M.; Nelson, E.A.; Walker, S.R.; Kuang, Y.; Distel, R.J.; Frank, D.A. Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells. Leukemia, 2012, 26(6), 1407-1410.
[http://dx.doi.org/10.1038/leu.2011.338] [PMID: 22134716]
[108]
Etxabe, A.; Lara-Castillo, M.C.; Cornet-Masana, J.M.; Banús-Mulet, A.; Nomdedeu, M.; Torrente, M.A.; Pratcorona, M.; Díaz-Beyá, M.; Esteve, J.; Risueño, R.M. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target. Leukemia, 2017, 31(11), 2288-2302.
[http://dx.doi.org/10.1038/leu.2017.52] [PMID: 28193998]
[109]
Prada, J.; Long, H. Significant decreases of interleukin-1α gene expression after application of the serotonin receptor antagonist ondansetron are found to correlate with antiproliferative properties in the acute lymphoblastic leukemia cell line REH. Leuk. Lymphoma, 2015, 56(4), 1157-1159.
[http://dx.doi.org/10.3109/10428194.2014.951850] [PMID: 25098424]
[110]
Sibella-Argüelles, C. The proliferation of human T lymphoblastic cells induced by 5-HT1B receptors activation is regulated by 5-HT-moduline. C. R. Acad. Sci. III, 2001, 324(4), 365-372.
[http://dx.doi.org/10.1016/S0764-4469(00)01300-7] [PMID: 11386084]
[111]
Ye, Y.; Liang, Z.; Xue, L. Neuromedin U: potential roles in immunity and inflammation. Immunology, 2021, 162(1), 17-29.
[http://dx.doi.org/10.1111/imm.13257] [PMID: 32888314]
[112]
Shetzline, S.E.; Rallapalli, R.; Dowd, K.J.; Zou, S.; Nakata, Y.; Swider, C.R.; Kalota, A.; Choi, J.K.; Gewirtz, A.M. Neuromedin U: a Myb-regulated autocrine growth factor for human myeloid leukemias. Blood, 2004, 104(6), 1833-1840.
[http://dx.doi.org/10.1182/blood-2003-10-3577] [PMID: 15187020]
[113]
Mosevitsky, M.I. Nerve ending “signal” proteins GAP-43, MARCKS, and BASP1. Int. Rev. Cytol., 2005, 245, 245-325.
[http://dx.doi.org/10.1016/S0074-7696(05)45007-X] [PMID: 16125549]
[114]
Ohsawa, S.; Watanabe, T.; Katada, T.; Nishina, H.; Miura, M. Novel antibody to human BASP1 labels apoptotic cells post-caspase activation. Biochem. Biophys. Res. Commun., 2008, 371(4), 639-643.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.056] [PMID: 18457665]
[115]
Green, L.M.; Wagner, K.J.; Campbell, H.A.; Addison, K.; Roberts, S.G.E. Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation. Nucleic Acids Res., 2009, 37(2), 431-440.
[http://dx.doi.org/10.1093/nar/gkn955] [PMID: 19050011]
[116]
Hartl, M.; Nist, A.; Khan, M.I.; Valovka, T.; Bister, K. Inhibition of Myc-induced cell transformation by brain acid-soluble protein 1 (BASP1). Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5604-5609.
[http://dx.doi.org/10.1073/pnas.0812101106] [PMID: 19297618]
[117]
Moribe, T.; Iizuka, N.; Miura, T.; Stark, M.; Tamatsukuri, S.; Ishitsuka, H.; Hamamoto, Y.; Sakamoto, K.; Tamesa, T.; Oka, M. Identification of novel aberrant methylation of BASP1 and SRD5A2 for early diagnosis of hepatocellular carcinoma by genome-wide search. Int. J. Oncol., 2008, 33(5), 949-958.
[PMID: 18949357]
[118]
Goodfellow, S.J.; Rebello, M.R.; Toska, E.; Zeef, L.A.; Rudd, S.G.; Medler, K.F.; Roberts, S.G. WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line. Biochem. J., 2011, 435(1), 113-125.
[http://dx.doi.org/10.1042/BJ20101734] [PMID: 21269271]
[119]
Yeoh, E.J.; Ross, M.E.; Shurtleff, S.A.; Williams, W.K.; Patel, D.; Mahfouz, R.; Behm, F.G.; Raimondi, S.C.; Relling, M.V.; Patel, A.; Cheng, C.; Campana, D.; Wilkins, D.; Zhou, X.; Li, J.; Liu, H.; Pui, C.H.; Evans, W.E.; Naeve, C.; Wong, L.; Downing, J.R. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002, 1(2), 133-143.
[http://dx.doi.org/10.1016/S1535-6108(02)00032-6] [PMID: 12086872]
[120]
Wang, J.; Coombes, K.R.; Highsmith, W.E.; Keating, M.J.; Abruzzo, L.V. Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-analysis of three microarray studies. Bioinformatics, 2004, 20(17), 3166-3178.
[http://dx.doi.org/10.1093/bioinformatics/bth381] [PMID: 15231529]
[121]
Todd, A.J.; Spike, R.C.; Chong, D.; Neilson, M. The relationship between glycine and gephyrin in synapses of the rat spinal cord. Eur. J. Neurosci., 1995, 7(1), 1-11.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb01014.x] [PMID: 7711926]
[122]
Sabatini, D.M.; Barrow, R.K.; Blackshaw, S.; Burnett, P.E.; Lai, M.M.; Field, M.E.; Bahr, B.A.; Kirsch, J.; Betz, H.; Snyder, S.H. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science, 1999, 284(5417), 1161-1164.
[http://dx.doi.org/10.1126/science.284.5417.1161] [PMID: 10325225]
[123]
Choii, G.; Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med., 2015, 47 ,e158.
[http://dx.doi.org/10.1038/emm.2015.5] [PMID: 25882190]
[124]
Yagi, H.; Deguchi, K.; Aono, A.; Tani, Y.; Kishimoto, T.; Komori, T. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood, 1998, 92(1), 108-117.
[http://dx.doi.org/10.1182/blood.V92.1.108.413k11_108_117] [PMID: 9639506]
[125]
Rowley, J.D. The role of chromosome translocations in leukemogenesis. Semin. Hematol., 1999, 36(4)(Suppl. 7), 59-72.
[PMID: 10595755]
[126]
Felix, C.A. Secondary leukemias induced by topoisomerase-targeted drugs. Biochim. Biophys. Acta, 1998, 1400(1-3), 233-255.
[http://dx.doi.org/10.1016/S0167-4781(98)00139-0] [PMID: 9748598]
[127]
Hunger, S.P.; McGavran, L.; Meltesen, L.; Parker, N.B.; Kassenbrock, C.K.; Bitter, M.A. Oncogenesis in utero: fetal death due to acute myelogenous leukaemia with an MLL translocation. Br. J. Haematol., 1998, 103(2), 539-542.
[http://dx.doi.org/10.1046/j.1365-2141.1998.00994.x] [PMID: 9827932]
[128]
Eguchi, M.; Eguchi-Ishimae, M.; Seto, M.; Morishita, K.; Suzuki, K.; Ueda, R.; Ueda, K.; Kamada, N.; Greaves, M. GPHN, a novel partner gene fused to MLL in a leukemia with t(11;14)(q23;q24). Genes Chromosomes Cancer, 2001, 32(3), 212-221.
[http://dx.doi.org/10.1002/gcc.1185] [PMID: 11579461]
[129]
Nelson, E.A.; Walker, S.R.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Gashin, L.B.; Terrell, S.; Klitgaard, J.L.; Santo, L.; Addorio, M.R.; Ebert, B.L.; Griffin, J.D.; Frank, D.A. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood, 2011, 117(12), 3421-3429.
[http://dx.doi.org/10.1182/blood-2009-11-255232] [PMID: 21233313]
[130]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[http://dx.doi.org/10.1182/blood-2004-08-3097] [PMID: 15618470]
[131]
Guo, C.C.; Tong, R.B.; Li, K.L. Chloroalkyl piperazine and nitrogen mustard porphyrins: synthesis and anticancer activity. Bioorg. Med. Chem., 2004, 12(9), 2469-2475.
[http://dx.doi.org/10.1016/j.bmc.2004.01.045] [PMID: 15080942]
[132]
Weigel, M.T.; Dahmke, L.; Schem, C.; Bauerschlag, D.O.; Weber, K.; Niehoff, P.; Bauer, M.; Strauss, A.; Jonat, W.; Maass, N.; Mundhenke, C. In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells. BMC Cancer, 2010, 10, 412-412.
[http://dx.doi.org/10.1186/1471-2407-10-412] [PMID: 20691121]
[133]
Neves, G.; Antonio, C.B.; Betti, A.H.; Pranke, M.A.; Fraga, C.A.M.; Barreiro, E.J.; Noël, F.; Rates, S.M.K. New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia. Behav. Brain Res., 2013, 237, 86-95.
[http://dx.doi.org/10.1016/j.bbr.2012.09.016] [PMID: 23000351]
[134]
Costa, F.B.; Cortez, A.P.; de Ávila, R.I.; de Carvalho, F.S.; Andrade, W.M.; da Cruz, A.F.; Reis, K.B.; Menegatti, R.; Lião, L.M.; Romeiro, L.A.S.; Noël, F.; Fraga, C.A.M.; Barreiro, E.J.; Sanz, G.; Rodrigues, M.F.; Vaz, B.G.; Valadares, M.C. The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment. Biomed. Pharmacother., 2018, 102, 481-493.
[http://dx.doi.org/10.1016/j.biopha.2018.02.120] [PMID: 29579709]
[135]
Musolino, C.; Allegra, A.; Mannucci, C.; Russo, S.; Alonci, A.; Maisano, V.; Calapai, G.; Gangemi, S. Possible role of interleukin-31/33 axis in imatinib mesylate-associated skin toxicity. Turk. J. Haematol., 2015, 32(2), 168-171.
[http://dx.doi.org/10.4274/Tjh.2014.0021] [PMID: 26316486]
[136]
Alonci, A.; Allegra, A.; Russo, S.; Penna, G.; Bellomo, G.; D’Angelo, A.; Campo, S.; Cannavò, A.; Centorrino, R.; Musolino, C. Imatinib mesylate therapy induces reduction in neutrophil gelatinase-associated lipocalin serum levels and increase in leptin concentrations in chronic myeloid leukemia patients in molecular remission. Acta Haematol., 2012, 127(1), 1-6.
[http://dx.doi.org/10.1159/000330948] [PMID: 21986252]
[137]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[138]
Davies, A.; Rodriguez-Vicente, A.E.; Austin, G.; Loaiza, S.; Foroni, L.; Clark, R.E.; Pirmohamed, M. Serotonin re-uptake transporter gene polymorphisms are associated with imatinib-induced diarrhoea in chronic myeloid leukaemia patients. Sci. Rep., 2020, 10(1), 8394.
[139]
Musolino, C.; Sant’antonio, E.; Penna, G.; Alonci, A.; Russo, S.; Granata, A.; Allegra, A. Epigenetic therapy in myelodysplastic syndromes. Eur. J. Haematol., 2010, 84(6), 463-473.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01433.x] [PMID: 20192987]
[140]
Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016, 127(20), 2391-2405.
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[141]
Fleischmann, K.K.; Pagel, P.; Schmid, I.; Roscher, A.A. RNAi-mediated silencing of MLL-AF9 reveals leukemia-associated downstream targets and processes. Mol. Cancer, 2014, 13, 27.
[http://dx.doi.org/10.1186/1476-4598-13-27] [PMID: 24517546]
[142]
Banús-Mulet, A.; Etxabe, A.; Cornet-Masana, J.M.; Torrente, M.Á.; Lara-Castillo, M.C.; Palomo, L.; Nomdedeu, M.; Díaz-Beyá, M.; Solé, F.; Nomdedeu, B.; Esteve, J.; Risueño, R.M. Serotonin receptor type 1B constitutes a therapeutic target for MDS and CMML. Sci. Rep., 2018, 8(1), 13883.
[http://dx.doi.org/10.1038/s41598-018-32306-4] [PMID: 30224768]
[143]
Liberante, F.G.; Pouryahya, T.; McMullin, M.F.; Zhang, S.D.; Mills, K.I. Identification and validation of the dopamine agonist bromocriptine as a novel therapy for high-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Oncotarget, 2016, 7(6), 6609-6619.
[http://dx.doi.org/10.18632/oncotarget.6773] [PMID: 26735888]
[144]
Derissen, E.J.; Beijnen, J.H.; Schellens, J.H. Concise drug review: azacitidine and decitabine. Oncologist, 2013, 18(5), 619-624.
[http://dx.doi.org/10.1634/theoncologist.2012-0465] [PMID: 23671007]
[145]
Rhyasen, G.W.; Wunderlich, M.; Tohyama, K.; Garcia-Manero, G.; Mulloy, J.C.; Starczynowski, D.T. An MDS xenograft model utilizing a patient-derived cell line. Leukemia, 2014, 28(5), 1142-1145.
[http://dx.doi.org/10.1038/leu.2013.372] [PMID: 24326684]
[146]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[147]
Berenbaum, M.C. Criteria for analyzing interactions between biologically active agents. Adv. Cancer Res., 1981, 35, 269-335.
[http://dx.doi.org/10.1016/S0065-230X(08)60912-4] [PMID: 7041539]
[148]
Ek, S.; Högerkorp, C.M.; Dictor, M.; Ehinger, M.; Borrebaeck, C.A. Mantle cell lymphomas express a distinct genetic signature affecting lymphocyte trafficking and growth regulation as compared with subpopulations of normal human B cells. Cancer Res., 2002, 62(15), 4398-4405.
[PMID: 12154046]
[149]
Mössner, R.; Lesch, K.P. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun., 1998, 12(4), 249-271.
[http://dx.doi.org/10.1006/brbi.1998.0532] [PMID: 10080856]
[150]
Kolan, S.S.; Lidström, T.; Mediavilla, T.; Dernstedt, A.; Degerman, S.; Hultdin, M.; Björk, K.; Marcellino, D.; Forsell, M.N.E. Growth-inhibition of cell lines derived from B cell lymphomas through antagonism of serotonin receptor signaling. Sci. Rep., 2019, 9(1), 4276.
[http://dx.doi.org/10.1038/s41598-019-40825-x] [PMID: 30862884]
[151]
Frick, L.R.; Rapanelli, M.; Arcos, M.L.; Cremaschi, G.A.; Genaro, A.M. Oral administration of fluoxetine alters the proliferation/apoptosis balance of lymphoma cells and up-regulates T cell immunity in tumor-bearing mice. Eur. J. Pharmacol., 2011, 659(2-3), 265-272.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.037] [PMID: 21497159]
[152]
Di Rosso, M.E.; Sterle, H.A.; Cremaschi, G.A.; Genaro, A.M. Beneficial effect of fluoxetine and sertraline on chronic stress-induced tumor growth and cell dissemination in a mouse model of lymphoma: Crucial role of antitumor immunity. Front. Immunol., 2018, 9, 1341.
[http://dx.doi.org/10.3389/fimmu.2018.01341] [PMID: 29971064]
[153]
Pagnano, K.B.; Vassallo, J.; Lorand-Metze, I.; Costa, F.F.; Saad, S.T. p53, Mdm2, and c-Myc overexpression is associated with a poor prognosis in aggressive non-Hodgkin’s lymphomas. Am. J. Hematol., 2001, 67(2), 84-92.
[http://dx.doi.org/10.1002/ajh.1084] [PMID: 11343379]
[154]
Zeng, J.; Liu, D.; Qiu, Z.; Huang, Y.; Chen, B.; Wang, L.; Xu, H.; Huang, N.; Liu, L.; Li, W. GSK3β overexpression indicates poor prognosis and its inhibition reduces cell proliferation and survival of non-small cell lung cancer cells. PLoS One, 2014, 9(3) ,e91231.
[http://dx.doi.org/10.1371/journal.pone.0091231] [PMID: 24618715]
[155]
Polter, A.M.; Li, X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell. Signal., 2010, 22(10), 1406-1412.
[http://dx.doi.org/10.1016/j.cellsig.2010.03.019] [PMID: 20363322]
[156]
Kramer, M.H.; Hermans, J.; Wijburg, E.; Philippo, K.; Geelen, E.; van Krieken, J.H.; de Jong, D.; Maartense, E.; Schuuring, E.; Kluin, P.M. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood, 1998, 92(9), 3152-3162.
[http://dx.doi.org/10.1182/blood.V92.9.3152] [PMID: 9787151]
[157]
Serafeim, A.; Holder, M.J.; Grafton, G.; Chamba, A.; Drayson, M.T.; Luong, Q.T.; Bunce, C.M.; Gregory, C.D.; Barnes, N.M.; Gordon, J. Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood, 2003, 101(8), 3212-3219.
[http://dx.doi.org/10.1182/blood-2002-07-2044] [PMID: 12515726]
[158]
Meredith, E.J.; Holder, M.J.; Chamba, A.; Challa, A.; Drake-Lee, A.; Bunce, C.M.; Drayson, M.T.; Pilkington, G.; Blakely, R.D.; Dyer, M.J.; Barnes, N.M.; Gordon, J. The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics. FASEB J., 2005, 19(9), 1187-1189.
[http://dx.doi.org/10.1096/fj.04-3477fje] [PMID: 15870169]
[159]
He, D.; Lasek, A.W. Anaplastic Lymphoma kinase regulates internalization of the dopamine D2 receptor. Mol. Pharmacol., 2020, 97(2), 123-131.
[http://dx.doi.org/10.1124/mol.119.117473] [PMID: 31734646]
[160]
Prabhu, V.V.; Morrow, S.; Rahman Kawakibi, A.; Zhou, L.; Ralff, M.; Ray, J.; Jhaveri, A.; Ferrarini, I.; Lee, Y.; Parker, C.; Zhang, Y.; Borsuk, R.; Chang, W.I.; Honeyman, J.N.; Tavora, F.; Carneiro, B.; Raufi, A.; Huntington, K.; Carlsen, L.; Louie, A.; Safran, H.; Seyhan, A.A.; Tarapore, R.S.; Schalop, L.; Stogniew, M.; Allen, J.E.; Oster, W.; El-Deiry, W.S. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia, 2020, 22(12), 725-744.
[http://dx.doi.org/10.1016/j.neo.2020.09.005] [PMID: 33142238]
[161]
Talekar, M.K.; Allen, J.E.; Dicker, D.T.; El-Deiry, W.S. ONC201 induces cell death in pediatric non-Hodgkin’s lymphoma cells. Cell Cycle, 2015, 14(15), 2422-2428.
[http://dx.doi.org/10.1080/15384101.2015.1054086] [PMID: 26030065]
[162]
Ni, X.; Zhang, X.; Hu, C.H.; Langridge, T.; Tarapore, R.S.; Allen, J.E.; Oster, W.; Duvic, M. ONC201 selectively induces apoptosis in cutaneous T-cell lymphoma cells via activating pro-apoptotic integrated stress response and inactivating JAK/STAT and NF-κB pathways. Oncotarget, 2017, 8(37), 61761-61776.
[http://dx.doi.org/10.18632/oncotarget.18688] [PMID: 28977902]
[163]
Ishizawa, J.; Kojima, K.; Chachad, D.; Ruvolo, P.; Ruvolo, V.; Jacamo, R.O.; Borthakur, G.; Mu, H.; Zeng, Z.; Tabe, Y.; Allen, J.E.; Wang, Z.; Ma, W.; Lee, H.C.; Orlowski, R.; Sarbassov, D.; Lorenzi, P.L.; Huang, X.; Neelapu, S.S.; McDonnell, T.; Miranda, R.N.; Wang, M.; Kantarjian, H.; Konopleva, M.; Davis, R.E.; Andreeff, M. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies. Sci. Signal., 2016, 9(415), ra17.
[http://dx.doi.org/10.1126/scisignal.aac4380] [PMID: 26884599]
[164]
Prabhu, V.V.; Talekar, M.K.; Lulla, A.R.; Kline, C.L.B.; Zhou, L.; Hall, J.; Van den Heuvel, A.P.J.; Dicker, D.T.; Babar, J.; Grupp, S.A.; Garnett, M.J.; McDermott, U.; Benes, C.H.; Pu, J.J.; Claxton, D.F.; Khan, N.; Oster, W.; Allen, J.E.; El-Deiry, W.S. Single agent and synergistic combinatorial efficacy of first-in-class small molecule imipridone ONC201 in hematological malignancies. Cell Cycle, 2018, 17(4), 468-478.
[http://dx.doi.org/10.1080/15384101.2017.1403689] [PMID: 29157092]
[165]
Ishizawa, J.; Zarabi, S.F.; Davis, R.E.; Halgas, O.; Nii, T.; Jitkova, Y.; Zhao, R.; St-Germain, J.; Heese, L.E.; Egan, G.; Ruvolo, V.R.; Barghout, S.H.; Nishida, Y.; Hurren, R.; Ma, W.; Gronda, M.; Link, T.; Wong, K.; Mabanglo, M.; Kojima, K.; Borthakur, G.; MacLean, N.; Ma, M.C.J.; Leber, A.B.; Minden, M.D.; Houry, W.; Kantarjian, H.; Stogniew, M.; Raught, B.; Pai, E.F.; Schimmer, A.D.; Andreeff, M. Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell, 2019, 35(5), 721-737.e9.
[http://dx.doi.org/10.1016/j.ccell.2019.03.014] [PMID: 31056398]
[166]
Allen, J.E.; Krigsfeld, G.; Mayes, P.A.; Patel, L.; Dicker, D.T.; Patel, A.S.; Dolloff, N.G.; Messaris, E.; Scata, K.A.; Wang, W.; Zhou, J.Y.; Wu, G.S.; El-Deiry, W.S. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci. Transl. Med., 2013, 5(171) ,171ra17.
[http://dx.doi.org/10.1126/scitranslmed.3004828] [PMID: 23390247]
[167]
Tu, Y.S.; He, J.; Liu, H.; Lee, H.C.; Wang, H.; Ishizawa, J.; Allen, J.E.; Andreeff, M.; Orlowski, R.Z.; Davis, R.E.; Yang, J. The imipridone ONC201 induces apoptosis and overcomes chemotherapy resistance by up-regulation of bim in multiple myeloma. Neoplasia, 2017, 19(10), 772-780.
[http://dx.doi.org/10.1016/j.neo.2017.07.009] [PMID: 28863346]
[168]
Haas, H.S.; Pfragner, R.; Siegl, V.; Ingolic, E.; Heintz, E.; Schauenstein, K. Glutamate receptor-mediated effects on growth and morphology of human histiocytic lymphoma cells. Int. J. Oncol., 2005, 27(3), 867-874.
[PMID: 16077940]
[169]
Ganor, Y.; Besser, M.; Ben-Zakay, N.; Unger, T.; Levite, M. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol., 2003, 170(8), 4362-4372.
[http://dx.doi.org/10.4049/jimmunol.170.8.4362] [PMID: 12682273]
[170]
Ganor, Y.; Grinberg, I.; Reis, A.; Cooper, I.; Goldstein, R.S.; Levite, M. Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemia in vivo. Leuk. Lymphoma, 2009, 50(6), 985-997.
[http://dx.doi.org/10.1080/10428190902878448] [PMID: 19391040]
[171]
Demers, M.; Magnaldo, T.; St-Pierre, Y. A novel function for galectin-7: promoting tumorigenesis by up-regulating MMP-9 gene expression. Cancer Res., 2005, 65(12), 5205-5210.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0134] [PMID: 15958565]
[172]
Arlt, M.; Kopitz, C.; Pennington, C.; Watson, K.L.; Krell, H.W.; Bode, W.; Gansbacher, B.; Khokha, R.; Edwards, D.R.; Krüger, A. Increase in gelatinase-specificity of matrix metalloproteinase inhibitors correlates with antimetastatic efficacy in a T-cell lymphoma model. Cancer Res., 2002, 62(19), 5543-5550.
[PMID: 12359766]
[173]
Rzeski, W.; Turski, L.; Ikonomidou, C. Glutamate antagonists limit tumor growth. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6372-6377.
[http://dx.doi.org/10.1073/pnas.091113598] [PMID: 11331750]
[174]
Kawano, N.; Ishikawa, F.; Shimoda, K.; Yasukawa, M.; Nagafuji, K.; Miyamoto, T.; Baba, E.; Tanaka, T.; Yamasaki, S.; Gondo, H.; Otsuka, T.; Ohshima, K.; Shultz, L.D.; Akashi, K.; Harada, M. Efficient engraftment of primary adult T-cell leukemia cells in newborn NOD/SCID/beta2-microglobulin(null) mice. Leukemia, 2005, 19(8), 1384-1390.
[http://dx.doi.org/10.1038/sj.leu.2403829] [PMID: 15959532]
[175]
Ettari, R.; Zappalà, M.; Grasso, S.; Musolino, C.; Innao, V.; Allegra, A. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. Pharmacol. Ther., 2018, 182, 176-192.
[http://dx.doi.org/10.1016/j.pharmthera.2017.09.001] [PMID: 28911826]
[176]
Allegra, A.; Innao, V.; Gerace, D.; Vaddinelli, D.; Musolino, C. Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol. Dis., 2016, 62, 49-63.
[http://dx.doi.org/10.1016/j.bcmd.2016.11.001] [PMID: 27865176]
[177]
Allegra, A.; Innao, V.; Allegra, A.G.; Pulvirenti, N.; Pugliese, M.; Musolino, C. Antitumorigenic action of nelfinavir: Effects on multiple myeloma and hematologic malignancies. (Review). Oncol. Rep., 2020, 43(6), 1729-1736. [Review]
[http://dx.doi.org/10.3892/or.2020.7562] [PMID: 32236596]
[178]
Allegra, A.; Penna, G.; Alonci, A.; Russo, S.; Greve, B.; Innao, V.; Minardi, V.; Musolino, C. Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. Eur. J. Haematol., 2013, 90(6), 441-468.
[http://dx.doi.org/10.1111/ejh.12107] [PMID: 23506222]
[179]
Caserta, S.; Innao, V.; Musolino, C.; Allegra, A. Immune checkpoint inhibitors in multiple myeloma: A review of the literature. Pathol. Res. Pract., 2020, 216(10) ,153114.
[http://dx.doi.org/10.1016/j.prp.2020.153114] [PMID: 32853951]
[180]
Liu, Y.; Yu, X.; Zhuang, J. Epinephrine stimulates cell proliferation and induces chemoresistance in myeloma cells through the β-adrenoreceptor in vitro. Acta Haematol., 2017, 138(2), 103-110.
[http://dx.doi.org/10.1159/000478517] [PMID: 28848082]
[181]
da Silva, I.D.C.G.; de Castro Levatti, E.V.; Pedroso, A.P.; Marchioni, D.M.L.; Carioca, A.A.F.; Colleoni, G.W.B. Biochemical phenotyping of multiple myeloma patients at diagnosis reveals a disorder of mitochondrial complexes I and II and a Hartnup-like disturbance as underlying conditions, also influencing different stages of the disease. Sci. Rep., 2020, 10(1), 21836.
[http://dx.doi.org/10.1038/s41598-020-75862-4] [PMID: 33318510]
[182]
Ocio, E.M. Serotonin receptor antagonists have an in vitro and in vivo anti-myeloma effect that is mainly mediated by caspase dependent apoptosis. Blood, 2006, 108(11), 2597.
[http://dx.doi.org/10.1182/blood.V108.11.2597.2597]
[183]
Sang, Y.; Yan, F.; Ren, X. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications. Oncotarget, 2015, 6(40), 42590-42602.
[http://dx.doi.org/10.18632/oncotarget.6052] [PMID: 26460955]
[184]
Aizawa, M.; Abe, Y.; Ito, T.; Handa, H.; Nawa, H. mRNA distribution of the thalidomide binding protein cereblon in adult mouse brain. Neurosci. Res., 2011, 69(4), 343-347.
[http://dx.doi.org/10.1016/j.neures.2010.12.019] [PMID: 21241746]
[185]
Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science, 2010, 327(5971), 1345-1350.
[http://dx.doi.org/10.1126/science.1177319] [PMID: 20223979]
[186]
Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; Ciarlo, C.; Hartman, E.; Munshi, N.; Schenone, M.; Schreiber, S.L.; Carr, S.A.; Ebert, B.L. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science, 2014, 343(6168), 301-305.
[http://dx.doi.org/10.1126/science.1244851] [PMID: 24292625]
[187]
Mittrücker, H-W.; Matsuyama, T.; Grossman, A.; Kündig, T.M.; Potter, J.; Shahinian, A.; Wakeham, A.; Patterson, B.; Ohashi, P.S.; Mak, T.W. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science, 1997, 275(5299), 540-543.
[http://dx.doi.org/10.1126/science.275.5299.540] [PMID: 8999800]
[188]
Sciammas, R.; Shaffer, A.L.; Schatz, J.H.; Zhao, H.; Staudt, L.M.; Singh, H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity, 2006, 25(2), 225-236.
[http://dx.doi.org/10.1016/j.immuni.2006.07.009] [PMID: 16919487]
[189]
Allegra, A.; Innao, V.; Basile, G.; Pugliese, M.; Allegra, A.G.; Pulvirenti, N.; Musolino, C. Post-chemotherapy cognitive impairment in hematological patients: current understanding of chemobrain in hematology. Expert Rev. Hematol., 2020, 13(4), 393-404.
[http://dx.doi.org/10.1080/17474086.2020.1738213] [PMID: 32129131]
[190]
Rollin-Sillaire, A.; Delbeuck, X.; Pollet, M.; Mackowiak, M.A.; Lenfant, P.; Noel, M.P.; Facon, T.; Leleu, X.; Pasquier, F.; Le Rhun, E. Memory loss during lenalidomide treatment: a report on two cases. BMC Pharmacol. Toxicol., 2013, 14, 41.
[http://dx.doi.org/10.1186/2050-6511-14-41] [PMID: 23937917]
[191]
Hockenberry, M.J.; Hooke, M.C.; Rodgers, C.; Taylor, O.; Koerner, K.M.; Mitby, P.; Moore, I.; Scheurer, M.E.; Pan, W. W. Symptom trajectories in children receiving treatment for leukemia: a latent class growth analysis with multitrajectory modeling. J Pain Symptom Manage, 2017.54, 1e8..
[http://dx.doi.org/10.1016/j.jpainsymman.2017.03.002]
[192]
Zeller, B.; Loge, J.H.; Kanellopoulos, A.; Hamre, H.; Wyller, V.B.; Ruud, E. Chronic fatigue in long-term survivors of childhood lymphomas and leukemia: persistence and associated clinical factors. J. Pediatr. Hematol. Oncol., 2014, 36, 438e444.
[http://dx.doi.org/10.1097/MPH.0000000000000051]
[193]
Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics. CA Cancer J. Clin., 2014, 64, 83e103.
[194]
Do, K.Q.; Lauer, C.J.; Schreiber, W.; Zollinger, M.; Gutteck-Amsler, U.; Cuénod, M.; Holsboer, F. gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J. Neurochem., 1995, 65(6), 2652-2662.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65062652.x] [PMID: 7595563]
[195]
Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Viña, J.R. Structure of the blood-brain barrier and its role in the transport of amino acids. J. Nutr., 2006, 136(1)(Suppl.), 218S-226S.
[http://dx.doi.org/10.1093/jn/136.1.218S] [PMID: 16365086]
[196]
Brown, A.L.; Sok, P.; Taylor, O.; Woodhouse, J.P.; Bernhardt, M.B.; Raghubar, K.P.; Kahalley, L.S.; Lupo, P.J.; Hockenberry, M.J.; Scheurer, M.E. Cerebrospinal fluid metabolomic profiles associated with fatigue during treatment for pediatric acute lymphoblastic leukemia. J. Pain Symptom Manage., 2021, 61(3), 464-473.
[http://dx.doi.org/10.1016/j.jpainsymman.2020.08.030] [PMID: 32889041]
[197]
Ravikumar, A.; Deepadevi, K.V.; Arun, P.; Manojkumar, V.; Kurup, P.A. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders. Neurol. India, 2000, 48(3), 231-238.
[PMID: 11025626]
[198]
Levite, M. Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system; Springer: Berlin, 2012.
[http://dx.doi.org/10.1007/978-3-7091-0888-8]
[199]
Jiang, S.H.; Zhang, X.X.; Hu, L.P.; Wang, X.; Li, Q.; Zhang, X.L.; Li, J.; Gu, J.R.; Zhang, Z.G. Systemic regulation of cancer development by neuro-endocrine-immune signaling network at multiple levels. Front. Cell Dev. Biol., 2020, 8 ,586757.
[http://dx.doi.org/10.3389/fcell.2020.586757] [PMID: 33117814]
[200]
Hodo, T.W.; de Aquino, M.T.P.; Shimamoto, A.; Shanker, A. Critical neurotransmitters in the neuroimmune network. Front. Immunol., 2020, 11, 1869.
[http://dx.doi.org/10.3389/fimmu.2020.01869] [PMID: 32973771]
[201]
Broxmeyer, H.E.; Yoder, K.K.; Wu, Y.C.; Hutchins, G.D.; Cooper, S.H.; Farag, S.S. The brain: Is it a next frontier to better understand the regulation and control of hematopoiesis for future modulation and treatment? Stem Cell Rev. Rep., 2021, 17(4), 1083-1090.
[http://dx.doi.org/10.1007/s12015-021-10203-0] [PMID: 34255283]
[202]
Tian, J.; Middleton, B.; Kaufman, D.L. GABAA-receptor agonists limit pneumonitis and death in murine coronavirus-infected mice. Viruses, 2021, 13(6), 966.
[http://dx.doi.org/10.3390/v13060966] [PMID: 34071034]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy