Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery

Author(s): Martina Veit-Acosta and Walter Filgueira de Azevedo Junior*

Volume 29, Issue 14, 2022

Published on: 06 August, 2021

Page: [2438 - 2455] Pages: 18

DOI: 10.2174/0929867328666210806105810

Price: $65

Abstract

Background: CDK2 participates in the control of eukaryotic cell-cycle progression. Due to the great interest in CDK2 for drug development and the relative easiness in crystallizing this enzyme, we have over 400 structural studies focused on this protein target. This structural data is the basis for the development of computational models to estimate CDK2-ligand binding affinity.

Objective: This work focuses on the recent developments in the application of supervised machine learning modeling to develop scoring functions to predict the binding affinity of CDK2.

Method: We employed the structures available at the protein data bank and the ligand information accessed from the BindingDB, Binding MOAD, and PDBbind to evaluate the predictive performance of machine learning techniques combined with physical modeling used to calculate binding affinity. We compared this hybrid methodology with classical scoring functions available in docking programs.

Results: Our comparative analysis of previously published models indicated that a model created using a combination of a mass-spring system and cross-validated Elastic Net to predict the binding affinity of CDK2-inhibitor complexes outperformed classical scoring functions available in AutoDock4 and AutoDock Vina.

Conclusion: All studies reviewed here suggest that targeted machine learning models are superior to classical scoring functions to calculate binding affinities. Specifically for CDK2, we see that the combination of physical modeling with supervised machine learning techniques exhibits improved predictive performance to calculate the protein-ligand binding affinity. These results find theoretical support in the application of the concept of scoring function space.

Keywords: chemical space, physical modeling, CDK2, scoring function space, drug design, crystal structure, machine learning

[1]
Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of protein binding by a nucleopeptide based on a thymine-decorated L-diaminopropanoic acid through CD and in silico studies. Curr. Med. Chem., 2021, 28(24), 5004-5015.
[http://dx.doi.org/10.2174/0929867328666210201152326] [PMID: 33593247]
[2]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Electrostatic potential energy in protein-drug complexes. Curr. Med. Chem., 2021, 28(24), 4954-4971.
[http://dx.doi.org/10.2174/0929867328666210201150842] [PMID: 33593246]
[3]
Bondžić, A.M.; Vasić Anićijević, D.D.; Janjić, G.V.; Zeković, I.; Momić, T.; Nikezić, A.V.; Vasić, V.M. Na, K-ATPase as a biological target for gold(III) complexes: a theoretical and experimental approach. Curr. Med. Chem., 2021, 28(23), 4742-4798.
[http://dx.doi.org/10.2174/0929867328999210101233801] [PMID: 33397227]
[4]
Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in docking. Curr. Med. Chem., 2019, 26(42), 7555-7580.
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[5]
Veit-Acosta, M.; de Azevedo, W.F. Jr. The impact of crystallographicdata for the development of machine learning models to predict protein-ligand binding affinity. Curr. Med. Chem., 2021. Online ahead of print.
[http://dx.doi.org/10.2174/0929867328666210210121320] [PMID: 33568025]
[6]
Berman, H.M.; Vallat, B.; Lawson, C.L. The data universe of structural biology. IUCrJ, 2020, 7(Pt 4), 630-638.
[http://dx.doi.org/10.1107/S205225252000562X] [PMID: 32695409]
[7]
Westbrook, J.D.; Soskind, R.; Hudson, B.P.; Burley, S.K. Impact of the protein data bank on antineoplastic approvals. Drug Discov. Today, 2020, 25(5), 837-850.
[http://dx.doi.org/10.1016/j.drudis.2020.02.002] [PMID: 32068073]
[8]
Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction domains and post-translational modifications: structural features and drug discovery applications. Curr. Med. Chem., 2020, 27(37), 6306-6355.
[http://dx.doi.org/10.2174/0929867326666190620101637] [PMID: 31250750]
[9]
Heck, G.S.; Pintro, V.O.; Pereira, R.R.; de Ávila, M.B.; Levin, N.M.B.; de Azevedo, W.F. Supervised machine learning methods applied to predict ligand-binding affinity.Curr. Med. Chem., 2017, 24(23), 2459-2470..
[http://dx.doi.org/10.2174/0929867324666170623092503] [PMID: 28641555]
[10]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F. Jr. Van der Waals potential in protein complexes. Methods Mol. Biol., 2019, 2053, 79-91.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_6] [PMID: 31452100]
[11]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F. Jr. Electrostatic energy in protein-ligand complexes. Methods Mol. Biol., 2019, 2053, 67-77.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_5] [PMID: 31452099]
[12]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F. Jr. Hydrogen bonds in protein-ligand complexes. Methods Mol. Biol., 2019, 2053, 93-107.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_7] [PMID: 31452101]
[13]
Cozzini, P.; Fornabaio, M.; Marabotti, A.; Abraham, D.J.; Kellogg, G.E.; Mozzarelli, A. Free energy of ligand binding to protein: evaluation of the contribution of water molecules by computational methods. Curr. Med. Chem., 2004, 11(23), 3093-3118.
[http://dx.doi.org/10.2174/0929867043363929] [PMID: 15579003]
[14]
Peters, M.B.; Raha, K.; Merz, K.M. Jr. Quantum mechanics in structure-based drug design. Curr. Opin. Drug Discov. Devel., 2006, 9(3), 370-379.
[PMID: 16729734]
[15]
Gupta, A.; Kumar, V.; Aparoy, P. Role of topological, electronic, geometrical, constitutional and quantum chemical based descriptors in QSAR: mPGES-1 as a case study. Curr. Top. Med. Chem., 2018, 18(13), 1075-1090.
[http://dx.doi.org/10.2174/1568026618666180719164149] [PMID: 30027847]
[16]
Cavasotto, C.N.; Adler, N.S.; Aucar, M.G. Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem., 2018, 6, 188.
[http://dx.doi.org/10.3389/fchem.2018.00188] [PMID: 29896472]
[17]
Crespo, A.; Rodriguez-Granillo, A.; Lim, V.T. Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization. Curr. Top. Med. Chem., 2017, 17(23), 2663-2680.
[http://dx.doi.org/10.2174/1568026617666170707120609] [PMID: 28685695]
[18]
Barbault, F.; Maurel, F. Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin. Drug Discov., 2015, 10(10), 1047-1057.
[http://dx.doi.org/10.1517/17460441.2015.1076389] [PMID: 26289577]
[19]
Habgood, M.; James, T.; Heifetz, A. Conformational searching with quantum mechanics. Methods Mol. Biol., 2020, 2114, 207-229.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_14] [PMID: 32016896]
[20]
Heifetz, A.; Townsend-Nicholson, A. Characterizing rhodopsin-arrestin interactions with the fragment molecular orbital (FMO) method. Methods Mol. Biol., 2020, 2114, 177-186.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_12] [PMID: 32016894]
[21]
Świderek, K.; Tuñón, I.; Moliner, V.; Bertran, J. Computational strategies for the design of new enzymatic functions. Arch. Biochem. Biophys., 2015, 582, 68-79.
[http://dx.doi.org/10.1016/j.abb.2015.03.013] [PMID: 25797438]
[22]
Morao, I.; Heifetz, A.; Fedorov, D.G. Accurate scoring in seconds with the fragment molecular orbital and density-functional tight-binding methods. Methods Mol. Biol., 2020, 2114, 143-148.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_9] [PMID: 32016891]
[23]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[24]
de Azevedo, W.F. Jr. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[25]
Sforça, M.L.; Oyama, S., Jr; Canduri, F.; Lorenzi, C.C.; Pertinhez, T.A.; Konno, K.; Souza, B.M.; Palma, M.S.; Ruggiero Neto, J.; Azevedo, W.F. Jr.; Spisni, A. How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry, 2004, 43(19), 5608-5617.
[http://dx.doi.org/10.1021/bi0360915] [PMID: 15134435]
[26]
Hernández-Rodríguez, M.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E.; Martínez-Archundia, M.; Basurto, J.C. Current tools and methods in molecular dynamics (MD) simulations for drug design. Curr. Med. Chem., 2016, 23(34), 3909-3924.
[http://dx.doi.org/10.2174/0929867323666160530144742] [PMID: 27237821]
[27]
de Azevedo, W.F. Jr.; Canduri, F.; Fadel, V.; Teodoro, L.G.; Hial, V.; Gomes, R.A. Molecular model for the binary complex of uropepsin and pepstatin. Biochem. Biophys. Res. Commun., 2001, 287(1), 277-281.
[http://dx.doi.org/10.1006/bbrc.2001.5555] [PMID: 11549287]
[28]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[29]
Santos, L.H.S.; Ferreira, R.S.; Caffarena, E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol., 2019, 2053, 13-34.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_2] [PMID: 31452096]
[30]
Singh, A.V.; Rosenkranz, D.; Ansari, M.H.D.; Singh, R.; Kanase, A.; Singh, S.P.; Johnston, B.; Tentschert, J.; Laux, P.; Luch, A. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv. Intell. Syst, 2020, 2 ,2000084.
[http://dx.doi.org/10.1002/aisy.202000084]
[31]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[32]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17) ,e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[33]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F. Jr. Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[34]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F. Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[35]
Pintro, V.O.; de Azevedo, W.F. Optimized virtual screening workflow: towards target-based polynomial scoring functions for HIV-1 protease. Comb. Chem. High Throughput Screen., 2017, 20(9), 820-827.
[http://dx.doi.org/10.2174/1386207320666171121110019] [PMID: 29165067]
[36]
Yang, Y.; Lu, J.; Yang, C.; Zhang, Y. Exploring fragment-based target-specific ranking protocol with machine learning on cathepsin S. J. Comput. Aided Mol. Des., 2019, 33(12), 1095-1105.
[http://dx.doi.org/10.1007/s10822-019-00247-3] [PMID: 31729618]
[37]
Li, F.; Wang, Y.; Li, C.; Marquez-Lago, T.T.; Leier, A.; Rawlings, N.D.; Haffari, G.; Revote, J.; Akutsu, T.; Chou, K.C.; Purcell, A.W.; Pike, R.N.; Webb, G.I.; Ian Smith, A.; Lithgow, T.; Daly, R.J.; Whisstock, J.C.; Song, J. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Brief. Bioinform., 2019, 20(6), 2150-2166.
[http://dx.doi.org/10.1093/bib/bby077] [PMID: 30184176]
[38]
Pethe, M.A.; Rubenstein, A.B.; Khare, S.D. Large-scale structure-based prediction and identification of novel protease substrates using computational protein design. J. Mol. Biol., 2017, 429(2), 220-236.
[http://dx.doi.org/10.1016/j.jmb.2016.11.031] [PMID: 27932294]
[39]
Kabra, R.; Singh, S. Evolutionary artificial intelligence based peptide discoveries for effective Covid-19 therapeutics. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(1) ,165978.
[http://dx.doi.org/10.1016/j.bbadis.2020.165978] [PMID: 32980462]
[40]
Batra, R.; Chan, H.; Kamath, G.; Ramprasad, R.; Cherukara, M.J.; Sankaranarayanan, S.K.R.S. Screening of therapeutic agents for COVID-19 using machine learning and ensemble docking studies. J. Phys. Chem. Lett., 2020, 11(17), 7058-7065.
[http://dx.doi.org/10.1021/acs.jpclett.0c02278] [PMID: 32787328]
[41]
Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900.
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[42]
Gao, K.; Nguyen, D.D.; Chen, J.; Wang, R.; Wei, G.W. Repositioning of 8565 existing drugs for COVID-19. J. Phys. Chem. Lett., 2020, 11(13), 5373-5382.
[http://dx.doi.org/10.1021/acs.jpclett.0c01579] [PMID: 32543196]
[43]
Onawole, A.T.; Sulaiman, K.O.; Kolapo, T.U.; Akinde, F.O.; Adegoke, R.O. COVID-19: CADD to the rescue. Virus Res., 2020, 285 ,198022.
[http://dx.doi.org/10.1016/j.virusres.2020.198022] [PMID: 32417181]
[44]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F. Jr. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[45]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. SAnDReS: a computational tool for docking. Methods Mol. Biol., 2019, 2053, 51-65.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_4] [PMID: 31452098]
[46]
da Silva, A.D.; Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Taba: a tool to analyze the binding affinity. J. Comput. Chem., 2020, 41(1), 69-73.
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[47]
Bitencourt-Ferreira, G.; Duarte da Silva, A.; Filgueira de Azevedo, W., Jr Application of machine learning techniques to predict binding affinity for drug targets: a study of cyclin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 253-265.
[http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[48]
Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics, 2018, 34(21), 3666-3674.
[http://dx.doi.org/10.1093/bioinformatics/bty374] [PMID: 29757353]
[49]
Das, S.; Krein, M.P.; Breneman, C.M. Binding affinity prediction with property-encoded shape distribution signatures. J. Chem. Inf. Model., 2010, 50(2), 298-308.
[http://dx.doi.org/10.1021/ci9004139] [PMID: 20095526]
[50]
Durrant, J.D.; McCammon, J.A. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J. Chem. Inf. Model., 2010, 50(10), 1865-1871.
[http://dx.doi.org/10.1021/ci100244v] [PMID: 20845954]
[51]
Durrant, J.D.; McCammon, J.A. NNScore 2.0: a neural-network receptor-ligand scoring function. J. Chem. Inf. Model., 2011, 51(11), 2897-2903.
[http://dx.doi.org/10.1021/ci2003889] [PMID: 22017367]
[52]
Durrant, J.D.; Friedman, A.J.; Rogers, K.E.; McCammon, J.A. J.A. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J. Chem. Inf. Model., 2013, 53(7), 1726-1735.
[http://dx.doi.org/10.1021/ci400042y] [PMID: 23734946]
[53]
Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics, 2010, 26(9), 1169-1175.
[http://dx.doi.org/10.1093/bioinformatics/btq112] [PMID: 20236947]
[54]
Ballester, P.J.; Schreyer, A.; Blundell, T.L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J. Chem. Inf. Model., 2014, 54(3), 944-955.
[http://dx.doi.org/10.1021/ci500091r] [PMID: 24528282]
[55]
Li, H.; Leung, K-S.; Wong, M-H. The impact of docking pose generation error on the prediction of binding affinity.In: Computational Intelligence Methods for Bioinformatics and Biostatistics; DI Serio, C; Liò, P.; Nonis, A.; Tagliaferri, R., Eds.; Springer: Cham, 2015, pp. 231-241.
[http://dx.doi.org/10.1007/978-3-319-24462-4_20]
[56]
Li, H.; Leung, K.S.; Ballester, P.J.; Wong, M.H. Istar: A web platform for large-scale protein-ligand docking. PLoS One, 2014, 9(1) ,e85678.
[http://dx.doi.org/10.1371/journal.pone.0085678] [PMID: 24475049]
[57]
Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity.Methods Mol. Biol., 2019, 2053, 1-12.,
[http://dx.doi.org/10.1007/978-1-4939-9752-7_1] [PMID: 31452095]
[58]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Exploring the scoring function space. Methods Mol. Biol., 2019, 2053, 275-281.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_17] [PMID: 31452111]
[59]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Machine learning to predict binding affinity. Methods Mol. Biol., 2019, 2053, 251-273.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_16] [PMID: 31452110]
[60]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K.; Binding, DB A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[61]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[62]
Smith, R.D.; Clark, J.J.; Ahmed, A.; Orban, Z.J.; Dunbar, J.B. Jr.; Carlson, H.A. Updates to binding MOAD (mother of all databases): polypharmacology tools and their utility in drug repurposing. J. Mol. Biol., 2019, 431(13), 2423-2433.
[http://dx.doi.org/10.1016/j.jmb.2019.05.024] [PMID: 31125569]
[63]
Benson, M.L.; Smith, R.D.; Khazanov, N.A.; Dimcheff, B.; Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H.A. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res., 2008, 36(Database issue), D674-D678.
[http://dx.doi.org/10.1093/nar/gkm911] [PMID: 18055497]
[64]
Ahmed, A.; Smith, R.D.; Clark, J.J.; Dunbar, J.B. Jr.; Carlson, H.A. Recent improvements to binding MOAD: a resource for protein-ligand binding affinities and structures. Nucleic Acids Res., 2015, 43(Database issue), D465-D469..
[http://dx.doi.org/10.1093/nar/gku1088] [PMID: 25378330]
[65]
Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics, 2015, 31(3), 405-412.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[66]
Liu, Z.; Li, J.; Liu, J.; Liu, Y.; Nie, W.; Han, L.; Li, Y.; Wang, R. Cross-mapping of protein - ligand binding data between ChEMBL and PDBbind. Mol. Inform., 2015, 34(8), 568-576.
[http://dx.doi.org/10.1002/minf.201500010] [PMID: 27490502]
[67]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. .AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[68]
Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F. Jr. Docking with AutoDock4. Methods Mol. Biol., 2019, 2053, 125-148.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_9] [PMID: 31452103]
[69]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[70]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[71]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Verplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikitlearn: machine learning in python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[72]
Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol., 2005, 67(2), 301-220.
[http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x]
[73]
de Azevedo, W.F., Jr; Dias, R. Evaluation of ligand-binding affinity using polynomial empirical scoring functions. Bioorg. Med. Chem., 2008, 16(20), 9378-9382.
[http://dx.doi.org/10.1016/j.bmc.2008.08.014] [PMID: 18829335]
[74]
Dias, R.; Timmers, L.F.; Caceres, R.A.; de Azevedo, W.F. Jr. Evaluation of molecular docking using polynomial empirical scoring functions. Curr. Drug Targets, 2008, 9(12), 1062-1070.
[http://dx.doi.org/10.2174/138945008786949450] [PMID: 19128216]
[75]
Ducati, R.G.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F. Jr. Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Bioorg. Med. Chem., 2010, 18(13), 4769-4774.
[http://dx.doi.org/10.1016/j.bmc.2010.05.009] [PMID: 20570524]
[76]
de Azevedo, W.F. Jr.; Dias, R. Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr. Drug Targets, 2008, 9(12), 1071-1076.
[http://dx.doi.org/10.2174/138945008786949441] [PMID: 19128217]
[77]
Zar, J.H. Significance testing of the Spearman rank correlation coefficient. J. Am. Stat. Assoc., 1972, 67(339), 578-580.
[http://dx.doi.org/10.1080/01621459.1972.10481251]
[78]
Cichero, E.; Cesarini, S.; Mosti, L.; Fossa, P. .CoMFA and CoMSIA analyses on 1,2,3,4-tetrahydropyrrolo[3,4- b]indole and benzimidazole derivatives as selective CB2 receptor agonists. J. Mol. Model., 2010, 16(9), 1481-1498..
[http://dx.doi.org/10.1007/s00894-010-0664-1] [PMID: 20174844]
[79]
Wang, S.; Griffiths, G.; Midgley, C.A.; Barnett, A.L.; Cooper, M.; Grabarek, J.; Ingram, L.; Jackson, W.; Kontopidis, G.; McClue, S.J.; McInnes, C.; McLachlan, J.; Meades, C.; Mezna, M.; Stuart, I.; Thomas, M.P.; Zheleva, D.I.; Lane, D.P.; Jackson, R.C.; Glover, D.M.; Blake, D.G.; Fischer, P.M. Discovery and characterization of 2-anilino-4-(thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. Chem. Biol., 2010, 17(10), 1111-1121.
[http://dx.doi.org/10.1016/j.chembiol.2010.07.016] [PMID: 21035734]
[80]
Tadesse, S.; Anshabo, A.T.; Portman, N.; Lim, E.; Tilley, W.; Caldon, C.E.; Wang, S. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov. Today, 2020, 25(2), 406-413.
[http://dx.doi.org/10.1016/j.drudis.2019.12.001] [PMID: 31839441]
[81]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Cyclin-dependent Kinase 2 in cellular senescence and cancer. A structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[82]
Levin, N.M.B.; Pintro, V.O.; de Ávila, M.B.; de Mattos, B.B.; De Azevedo, W.F. Jr. Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[83]
de Azevedo, W.F. Jr. Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): a new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[84]
Pondé, N.; Wildiers, H.; Awada, A.; de Azambuja, E.; Deliens, C.; Lago, L.D. Targeted therapy for breast cancer in older patients. J. Geriatr. Oncol., 2020, 11(3), 380-388.
[http://dx.doi.org/10.1016/j.jgo.2019.05.012] [PMID: 31171494]
[85]
Schoninger, S.F.; Blain, S.W. The ongoing search for biomarkers of CDK4/6 inhibitor responsiveness in breast cancer. Mol. Cancer Ther., 2020, 19(1), 3-12.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0253] [PMID: 31909732]
[86]
Yuan, L.; Alexander, P.B.; Wang, X.F. Cellular senescence: from anti-cancer weapon to anti-aging target. Sci. China Life Sci., 2020, 63(3), 332-342.
[http://dx.doi.org/10.1007/s11427-019-1629-6] [PMID: 32060861]
[87]
Frassoldati, A.; Biganzoli, L.; Bordonaro, R.; Cinieri, S.; Conte, P.; Laurentis, M.; Mastro, L.D.; Gori, S.; Lauria, R.; Marchetti, P.; Michelotti, A.; Montemurro, F.; Naso, G.; Pronzato, P.; Puglisi, F.; Tondini, C.A. Endocrine therapy for hormone receptor-positive, HER2-negative metastatic breast cancer: extending endocrine sensitivity. Future Oncol., 2020, 16(5), 129-145.
[http://dx.doi.org/10.2217/fon-2018-0942] [PMID: 31849236]
[88]
Tamura, K. Differences of cyclin-dependent kinase 4/6 inhibitor, palbociclib and abemaciclib, in breast cancer. Jpn. J. Clin. Oncol., 2019, 49(11), 993-998.
[http://dx.doi.org/10.1093/jjco/hyz151] [PMID: 31665472]
[89]
Rozeboom, B.; Dey, N.; De, P.ER + metastatic breast cancer: past, present, and a prescription for an apoptosis-targeted future. Am. J. Cancer Res., 2019, 9(12), 2821-2831.
[PMID: 31911865]
[90]
Bonelli, M.; La Monica, S.; Fumarola, C.; Alfieri, R. Multiple effects of CDK4/6 inhibition in cancer: from cell cycle arrest to immunomodulation. Biochem. Pharmacol., 2019, 170 ,113676.
[http://dx.doi.org/10.1016/j.bcp.2019.113676] [PMID: 31647925]
[91]
Grizzi, G.; Ghidini, M.; Botticelli, A.; Tomasello, G.; Ghidini, A.; Grossi, F.; Fusco, N.; Cabiddu, M.; Savio, T.; Petrelli, F. Strategies for increasing the effectiveness of aromatase inhibitors in locally advanced breast cancer: an evidence-based review on current options. Cancer Manag. Res., 2020, 12, 675-686.
[http://dx.doi.org/10.2147/CMAR.S202965] [PMID: 32099464]
[92]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[93]
Heberlé, G.; de Azevedo, W.F. Jr. Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem., 2011, 18(9), 1339-1352.
[http://dx.doi.org/10.2174/092986711795029573] [PMID: 21366530]
[94]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 149-167.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10] [PMID: 31452104]
[95]
de Azevedo, W.F. Jr. Moldock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334.
[http://dx.doi.org/10.2174/138945010790711941] [PMID: 20210757]
[96]
de Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[97]
Krystof, V.; Cankar, P.; Frysová, I.; Slouka, J.; Kontopidis, G.; Dzubák, P.; Hajdúch, M.; Srovnal, J.; de Azevedo, W.F. Jr.; Orság, M.; Paprskárová, M.; Rolcík, J.; Látr, A.; Fischer, P.M.; Strnad, M. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J. Med. Chem., 2006, 49(22), 6500-6509.
[http://dx.doi.org/10.1021/jm0605740] [PMID: 17064068]
[98]
Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, W.F. Jr. CDK9 a potential target for drug development. Med. Chem., 2008, 4(3), 210-218.
[http://dx.doi.org/10.2174/157340608784325205] [PMID: 18473913]
[99]
Canduri, F.; de Azevedo, W.F. Jr. Structural basis for interaction of inhibitors with cyclin-dependent kinase 2. Curr. Comput. Aided Drug Des, 2005, 1(1), 53-64.
[http://dx.doi.org/10.2174/1573409052952233]
[100]
Canduri, F.; Uchoa, H.B.; de Azevedo, W.F. Jr. Molecular models of cyclin-dependent kinase 1 complexed with inhibitors. Biochem. Biophys. Res. Commun., 2004, 324(2), 661-666.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.109] [PMID: 15474478]
[101]
De Azevedo, W.F. Jr.; Mueller-Dieckmann, H.J.; Schulze-Gahmen, U.; Worland, P.J.; Sausville, E.; Kim, S.H. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2735-2740.
[http://dx.doi.org/10.1073/pnas.93.7.2735] [PMID: 8610110]
[102]
Kim, S.H.; Schulze-Gahmen, U.; Brandsen, J.; de Azevedo Júnior, W.F. Structural basis for chemical inhibition of CDK2. Prog. Cell Cycle Res., 1996, 2, 137-145.
[http://dx.doi.org/10.1007/978-1-4615-5873-6_14] [PMID: 9552391]
[103]
Schulze-Gahmen, U.; De Bondt, H.L.; Kim, S.H. High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J. Med. Chem., 1996, 39(23), 4540-4546.
[http://dx.doi.org/10.1021/jm960402a] [PMID: 8917641]
[104]
Schulze-Gahmen, U.; Brandsen, J.; Jones, H.D.; Morgan, D.O.; Meijer, L.; Vesely, J.; Kim, S.H. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins, 1995, 22(4), 378-391.
[http://dx.doi.org/10.1002/prot.340220408] [PMID: 7479711]
[105]
Oudah, K.H.; Najm, M.A.A.; Samir, N.; Serya, R.A.T.; Abouzid, K.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg. Chem., 2019, 92 ,103239.
[http://dx.doi.org/10.1016/j.bioorg.2019.103239] [PMID: 31513938]
[106]
Ikwu, F.A.; Isyaku, Y.; Obadawo, B.S.; Lawal, H.A.; Ajibowu, S.A. In silico design and molecular docking study of CDK2 inhibitors with potent cytotoxic activity against HCT116 colorectal cancer cell line. J. Genet. Eng. Biotechnol., 2020, 18(1), 51.
[http://dx.doi.org/10.1186/s43141-020-00066-2] [PMID: 32930901]
[107]
Teng, M.; Jiang, J.; He, Z.; Kwiatkowski, N.P.; Donovan, K.A.; Mills, C.E.; Victor, C.; Hatcher, J.M.; Fischer, E.S.; Sorger, P.K.; Zhang, T.; Gray, N.S. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew. Chem. Int. Ed. Engl., 2020, 59(33), 13865-13870.
[http://dx.doi.org/10.1002/anie.202004087] [PMID: 32415712]
[108]
Shawky, A.M.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, A.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur. J. Med. Chem., 2020, 185 ,111780.
[http://dx.doi.org/10.1016/j.ejmech.2019.111780] [PMID: 31655429]
[109]
Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res., 2019, 172 ,104621.
[http://dx.doi.org/10.1016/j.antiviral.2019.104621] [PMID: 31634495]
[110]
Zhu, J.; Wu, Y.; Xu, L.; Jin, J. Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3β (GSK3β) with pyrazine ATP-competitive inhibitors by 3DQSAR, molecular docking, molecular dynamics simulation and free energy calculations. Curr. Computeraided Drug Des., 2020, 16(1), 17-30.
[http://dx.doi.org/10.2174/1573409915666190708102459] [PMID: 31284868]
[111]
Fassio, A.V.; Santos, L.H.; Silveira, S.A.; Ferreira, R.S.; de Melo-Minardi, R.C. nAPOLI: a graph-based strategy to detect and visualize conserved protein-ligand interactions in large-scale. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2020, 17(4), 1317-1328.
[http://dx.doi.org/10.1109/TCBB.2019.2892099] [PMID: 30629512]
[112]
Zhang, X.; Shi, G.; Wu, X.; Zhao, Y. Gypensapogenin H from hydrolyzate of total Gynostemma pentaphyllum saponins induces apoptosis in human breast carcinoma cells. Nat. Prod. Res., 2020, 34(11), 1642-1646.
[http://dx.doi.org/10.1080/14786419.2018.1525370] [PMID: 30470142]
[113]
Lohning, A.E.; Levonis, S.M.; Williams-Noonan, B.; Schweiker, S.S. A practical guide to molecular docking and homology modelling for medicinal chemists. Curr. Top. Med. Chem., 2017, 17(18), 2023-2040.
[http://dx.doi.org/10.2174/1568026617666170130110827] [PMID: 28137238]
[114]
Cardamone, F.; Pizzi, S.; Iacovelli, F.; Falconi, M.; Desideri, A. Virtual screening for the development of dual-inhibitors targeting topoisomerase IB and tyrosyl-DNA phosphodiesterase 1. Curr. Drug Targets, 2017, 18(5), 544-555.
[http://dx.doi.org/10.2174/1389450116666150727114742] [PMID: 26212266]
[115]
Biesiada, J.; Porollo, A.; Velayutham, P.; Kouril, M.; Meller, J. Survey of public domain software for docking simulations and virtual screening. Hum. Genomics, 2011, 5(5), 497-505.
[http://dx.doi.org/10.1186/1479-7364-5-5-497] [PMID: 21807604]
[116]
Bitencourt-Ferreira, G.; Rizzotto, C.; de Azevedo, W.F. Jr. Machine learning-based scoring functions. Development and applications with SAnDReS. Curr. Med. Chem., 2021, 28(9), 1746-1756.
[http://dx.doi.org/10.2174/0929867327666200515101820] [PMID: 32410551]
[117]
Fresnais, L.; Ballester, P.J. The impact of compound library size on the performance of scoring functions for structure-based virtual screening. Brief. Bioinform., 2021, 22(3), bbaa095.,
[http://dx.doi.org/10.1093/bib/bbaa095] [PMID: 32568385]
[118]
Ballester, P.J. Machine Learning for Molecular Modelling in Drug Design. Biomolecules, 2019, 9(6), 216.
[http://dx.doi.org/10.3390/biom9060216] [PMID: 31167503]
[119]
Azevedo, L.S.; Moraes, F.P.; Xavier, M.M.; Pantoja, E.O.; Villavicencio, B.; Finck, J.A.; Proenca, A.M.; Rocha, K.B.; de Azevedo, W.F. Recent progress of molecular docking simulations applied to development of drugs. Curr. Bioinform., 2012, 7(4), 352-365.
[http://dx.doi.org/10.2174/157489312803901063]
[120]
Figueroa-Villar, J.D.; Petronilho, E.C.; Kuca, K.; Franca, T.C.C. Review about structure and evaluation of reactivators of acetylcholinesterase inhibited with neurotoxic organophosphorus compounds. Curr. Med. Chem., 2021, 28(7), 1422-1442.
[http://dx.doi.org/10.2174/0929867327666200425213215] [PMID: 32334495]
[121]
Russo, S.; de Azevedo, W.F. Computational analysis of dipyrone metabolite 4-aminoantipyrine as a cannabinoid receptor 1 agonist. Curr. Med. Chem., 2020, 27(28), 4741-4749.
[http://dx.doi.org/10.2174/0929867326666190906155339] [PMID: 31490743]
[122]
Scotti, M.T.; Monteiro, A.F.M.; de Oliveira Viana, J.; Mendonça, F.J.B. Jr.; Ishiki, H.M.; Tchouboun, E.N.; De Araújo, R.S.A.; Scotti, L. Recent theoretical studies concerning important tropical infections. Curr. Med. Chem., 2020, 27(5), 795-834.
[http://dx.doi.org/10.2174/0929867326666190711121418] [PMID: 31296154]
[123]
Lungu, C.N.; Bratanovici, B.I.; Grigore, M.M.; Antoci, V.; Mangalagiu, I.I. Hybrid imidazole-pyridine derivatives: an approach to novel anticancer DNA intercalators. Curr. Med. Chem., 2020, 27(1), 154-169.
[http://dx.doi.org/10.2174/0929867326666181220094229] [PMID: 30569842]
[124]
Halder, A.K.; Dias Soeiro Cordeiro, M.N. Advanced in silico methods for the development of anti- leishmaniasis and anti-trypanosomiasis agents. Curr. Med. Chem., 2020, 27(5), 697-718.
[http://dx.doi.org/10.2174/0929867325666181031093702] [PMID: 30378482]
[125]
Zhu, Y.; Liang, M.; Li, H.; Ni, H.; Li, L.; Li, Q.; Jiang, Z. A mutant of Pseudoalteromonas carrageenovora arylsulfatase with enhanced enzyme activity and its potential application in improvement of the agar quality. Food Chem., 2020, 320 ,126652.
[http://dx.doi.org/10.1016/j.foodchem.2020.126652] [PMID: 32229399]
[126]
Taguchi, A.T.; Boyd, J.; Diehnelt, C.W.; Legutki, J.B.; Zhao, Z.G.; Woodbury, N.W. Comprehensive prediction of molecular recognition in a combinatorial chemical space using machine learning. ACS Comb. Sci., 2020, 22(10), 500-508.
[http://dx.doi.org/10.1021/acscombsci.0c00003] [PMID: 32786325]
[127]
Jehangir, I.; Ahmad, S.F.; Jehangir, M.; Jamal, A.; Khan, M. Integration of bioinformatics and in vitro analysis reveal anti-leishmanial effects of azithromycin and nystatin. Curr. Bioinform., 2019, 14(5), 450-459.
[http://dx.doi.org/10.2174/1574893614666181217142344]
[128]
Lushington, G.H. Chemistry, Screening, and the democracy of publishing. Comb. Chem. High Throughput Screen., 2019, 22(5), 288-289.
[http://dx.doi.org/10.2174/1386207322999190715161959] [PMID: 31446889]
[129]
Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct. Biotechnol. J., 2020, 18, 417-426.
[http://dx.doi.org/10.1016/j.csbj.2020.02.008] [PMID: 32140203]
[130]
Zhang, W.; Li, W.; Zhang, J.; Wang, N. Data integration of hybrid microarray and single cell expression data to enhance gene network inference. Curr. Bioinform., 2019, 14(3), 255-268.
[http://dx.doi.org/10.2174/1574893614666190104142228]
[131]
Wu, Y.; Guo, Y.; Xiao, Y.; Lao, S. AAE-SC: a scRNA-Seq clustering framework based on adversarial autoencoder. IEEE Access, 2020, 8, 178962-178975.
[http://dx.doi.org/10.1109/ACCESS.2020.3027481]
[132]
Li, M.; Zhang, S.; Yang, B. Urea transporters identified as novel diuretic drug targets. Curr. Drug Targets, 2020, 21(3), 279-287.
[http://dx.doi.org/10.2174/1389450120666191129101915] [PMID: 31782365]
[133]
Safarizadeh, H.; Garkani-Nejad, Z. Investigation of MI-2 analogues as MALT1 inhibitors to treat of diffuse large B-cell lymphoma through combined molecular dynamics simulation, molecular docking and QSAR techniques and design of new inhibitors. J. Mol. Struct., 2019, 1180, 708-722.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.022]
[134]
Lawal, M.M.; Sanusi, Z.K.; Govender, T.; Maguire, G.E.M.; Honarparvar, B.; Kruger, H.G. From recognition to reaction mechanism: an overview on the interactions between HIV-1 protease and its natural targets. Curr. Med. Chem., 2020, 27(15), 2514-2549.
[http://dx.doi.org/10.2174/0929867325666181113122900] [PMID: 30421668]
[135]
Sun, B.; Wang, W.; He, Z.; Zhang, M.; Kong, F.; Sain, M. Biopolymer substrates in buccal drug delivery: current status and future trend. Curr. Med. Chem., 2020, 27(10), 1661-1669.
[http://dx.doi.org/10.2174/0929867325666181001114750] [PMID: 30277141]
[136]
Aleksandrov, A.; Myllykallio, H. Advances and challenges in drug design against tuberculosis: application of in silico approaches. Expert Opin. Drug Discov., 2019, 14(1), 35-46.
[http://dx.doi.org/10.1080/17460441.2019.1550482] [PMID: 30477360]
[137]
Cavada, B.S.; Osterne, V.J.S.; Lossio, C.F.; Pinto-Junior, V.R.; Oliveira, M.V.; Silva, M.T.L.; Leal, R.B.; Nascimento, K.S. One century of ConA and 40 years of ConBr research: a structural review. Int. J. Biol. Macromol., 2019, 134, 901-911.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.100] [PMID: 31108148]
[138]
Jiang, M.; Li, Z.; Bian, Y.; Wei, Z. A novel protein descriptor for the prediction of drug binding sites. BMC Bioinformatics, 2019, 20(1), 478.
[http://dx.doi.org/10.1186/s12859-019-3058-0] [PMID: 31533611]
[139]
Cavada, B.S.; Araripe, D.A.; Silva, I.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Neco, A.H.B.; Laranjeira, E.P.P.; Lossio, C.F.; Correia, J.L.A.; Pires, A.F.; Assreuy, A.M.S.; Nascimento, K.S. .Structural studies and nociceptive activity of a native lectin from Platypodium elegans seeds (nPELa). Int. J. Biol. Macromol., 2018, 107(Pt A), 236-246..
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.174] [PMID: 28867234]
[140]
Abbasi, W.A.; Asif, A.; Ben-Hur, A.; Minhas, F.U.A.A. Learning protein binding affinity using privileged information. BMC Bioinformatics, 2018, 19(1), 425.
[http://dx.doi.org/10.1186/s12859-018-2448-z] [PMID: 30442086]
[141]
Ribeiro, F.F.; Mendonca, Junior, F.J.B.; Ghasemi, J.B.; Ishiki, H.M.; Scotti, M.T.; Scotti, L. Docking of natural products against neurodegenerative diseases: general concepts. Comb. Chem. High Throughput Screen., 2018, 21(3), 152-160.
[http://dx.doi.org/10.2174/1386207321666180313130314] [PMID: 29532756]
[142]
Lemos, A.; Melo, R.; Preto, A.J.; Almeida, J.G.; Moreira, I.S.; Dias Soeiro Cordeiro, M.N.D.S. In silico studies targeting G-protein coupled receptors for drug research against Parkinson’s disease. Curr. Neuropharmacol., 2018, 16(6), 786-848.
[http://dx.doi.org/10.2174/1570159X16666180308161642] [PMID: 29521236]
[143]
Leal, R.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Wolin, I.A.V.; Nascimento, A.P.M.; Neco, A.H.B.; Araripe, D.A.; Welter, P.G.; Neto, C.C.; Correia, J.L.A.; Rocha, C.R.C.; Nascimento, K.S.; Cavada, B.S. Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol., 2018, 114, 64-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.080] [PMID: 29559315]
[144]
de Ávila, M.B.; Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Structural basis for inhibition of enoyl-[Acyl carrier protein] reductase (InhA) from Mycobacterium tuberculosis. Curr. Med. Chem., 2020, 27(5), 745-759..
[http://dx.doi.org/10.2174/0929867326666181203125229] [PMID: 30501592]
[145]
Freitas, P.G.; Elias, T.C.; Pinto, I.A.; Costa, L.T.; de Carvalho, P.V.S.D.; Omote, D.Q.; Camps, I.; Ishikawa, T.; Arcuri, H.A.; Vinga, S.; Oliveira, A.L.; Junior, W.F.A.; da Silveira, N.J.F. Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein. Lett. Drug Des. Discov., 2018, 15(5), 488-499.
[http://dx.doi.org/10.2174/1570180814666170810120150]
[146]
Russo, S.; de Azevedo, W.F. Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions. Curr. Med. Chem., 2019, 26(10), 1908-1919.
[http://dx.doi.org/10.2174/0929867325666180417165247] [PMID: 29667549]
[147]
Wolin, I.A.V.; Heinrich, I.A.; Nascimento, A.P.M.; Welter, P.G.; Sosa, L.D.V.; De Paul, A.L.; Zanotto-Filho, A.; Nedel, C.B.; Lima, L.D.; Osterne, V.J.S.; Pinto-Junior, V.R.; Nascimento, K.S.; Cavada, B.S.; Leal, R.B. ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation. Biochimie, 2021, 180, 186-204.
[http://dx.doi.org/10.1016/j.biochi.2020.11.003] [PMID: 33171216]
[148]
de Ávila, M.B.; de Azevedo, W.F. Jr. Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem. Biol. Drug Des., 2018, 92(2), 1468-1474.
[http://dx.doi.org/10.1111/cbdd.13312] [PMID: 29676519]
[149]
Pinto-Junior, V.R.; Osterne, V.J.; Santiago, M.Q.; Correia, J.L.; Pereira-Junior, F.N.; Leal, R.B.; Pereira, M.G.; Chicas, L.S.; Nagano, C.S.; Rocha, B.A.; Silva-Filho, J.C.; Ferreira, W.P.; Rocha, C.R.; Nascimento, K.S.; Assreuy, A.M.; Cavada, B.S. Structural studies of a vasorelaxant lectin from Dioclea reflexa hook seeds: crystal structure, molecular docking and dynamics. Int. J. Biol. Macromol., 2017, 98, 12-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.092] [PMID: 28130130]
[150]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys. Chem., 2018, 240, 63-69.
[http://dx.doi.org/10.1016/j.bpc.2018.05.010] [PMID: 29906639]
[151]
Amaral, M.E.A.; Nery, L.R.; Leite, C.E.; de Azevedo, W.F. Jr.; Campos, M.M. Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest. New Drugs, 2018, 36(5), 782-796.
[http://dx.doi.org/10.1007/s10637-018-0568-y] [PMID: 29392539]
[152]
Borisa, A.; Bhatt, H. 3D-QSAR (CoMFA, CoMFA-RG, CoMSIA) and molecular docking study of thienopyrimidine and thienopyridine derivatives to explore structural requirements for aurora-B kinase inhibition. Eur. J. Pharm. Sci., 2015, 79, 1-12.
[http://dx.doi.org/10.1016/j.ejps.2015.08.017] [PMID: 26343315]
[153]
Gramatica, P. On the development and validation of QSAR models. Methods Mol. Biol., 2013, 930, 499-526.
[http://dx.doi.org/10.1007/978-1-62703-059-5_21] [PMID: 23086855]
[154]
Triggle, D.J. The chemist as astronaut: searching for biologically useful space in the chemical universe. Biochem. Pharmacol., 2009, 78(3), 217-223.
[http://dx.doi.org/10.1016/j.bcp.2009.02.015] [PMID: 19481639]
[155]
Kell, D.B.; Samanta, S.; Swainston, N. Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochem. J., 2020, 477(23), 4559-4580.
[http://dx.doi.org/10.1042/BCJ20200781] [PMID: 33290527]
[156]
Johnson, E.O.; Hung, D.T. A point of inflection and reflection on systems chemical biology. ACS Chem. Biol., 2019, 14(12), 2497-2511.
[http://dx.doi.org/10.1021/acschembio.9b00714] [PMID: 31613592]
[157]
Fotis, C.; Antoranz, A.; Hatziavramidis, D.; Sakellaropoulos, T.; Alexopoulos, L.G. Network-based technologies for early drug discovery. Drug Discov. Today, 2018, 23(3), 626-635.
[http://dx.doi.org/10.1016/j.drudis.2017.12.001] [PMID: 29294361]
[158]
Kirkpatrick, P.; Ellis, C. Chemical space. Nature, 2004, 432(7019), 823.
[http://dx.doi.org/10.1038/432823a]
[159]
Lipinski, C.; Hopkins, A. Navigating chemical space for biology and medicine. Nature, 2004, 432(7019), 855-861.
[http://dx.doi.org/10.1038/nature03193] [PMID: 15602551]
[160]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[161]
Stockwell, B.R. Exploring biology with small organic molecules. Nature, 2004, 432(7019), 846-854.
[http://dx.doi.org/10.1038/nature03196] [PMID: 15602550]
[162]
Smith, J.M. Natural selection and the concept of a protein space. Nature, 1970, 225(5232), 563-564.
[http://dx.doi.org/10.1038/225563a0] [PMID: 5411867]
[163]
Hou, J.; Jun, S.R.; Zhang, C.; Kim, S.H. Global mapping of the protein structure space and application in structure-based inference of protein function. Proc. Natl. Acad. Sci. USA, 2005, 102(10), 3651-3656.
[http://dx.doi.org/10.1073/pnas.0409772102] [PMID: 15705717]
[164]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[165]
Singh, A.V.; Jahnke, T.; Wang, S.; Xiao, Y.; Alapan, Y.; Kharratian, S.; Onbasli, M.C.; Kozielski, K.; David, H.; Richter, G.; Bill, J.; Laux, P.; Luch, A.; Sitti, M. Anisotropic gold nanostructures: optimization via in silico modeling for hyperthermia. ACS Appl. Nano Mater., 2018, 1(11), 6205-6216.
[http://dx.doi.org/10.1021/acsanm.8b01406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy