Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling

Author(s): Guanquan Mao, Shuting Zheng, Jinlian Li, Xiaohua Liu, Qin Zhou, Jinghua Cao, Qianqian Zhang, Lingyun Zheng, Lijing Wang* and Cuiling Qi*

Volume 22, Issue 9, 2022

Published on: 11 January, 2022

Page: [1735 - 1741] Pages: 7

DOI: 10.2174/1871520621666210910085733

Price: $65

Abstract

Background: Breast cancer is one of the most common cancers worldwide among women, and angiogenesis has an important effect on its growth and metastasis. Glipizide, which is a widely used drug for type 2 diabetes mellitus, has been reported to inhibit tumor growth and metastasis by upregulating the expression of natriuretic peptide receptor A (NPRA). Atrial natriuretic peptide (ANP), the receptor of NPRA, plays an important role in angiogenesis. The purpose of this study was to explore the effect of glipizide combined with ANP on breast cancer growth and metastasis.

Methods: This study aimed at investigating the effect of glipizide combined with ANP on breast cancer. Glipizide, ANP, or glipizide combined with ANP was intraperitoneally injected into MMTV-PyMT mice. To explore whether the anticancer efficacy of glipizide combined with ANP was correlated with angiogenesis, a tube formation assay was performed.

Results: Glipizide combined with ANP was found to inhibit breast cancer growth and metastasis in MMTV-PyMT mice, which spontaneously develop breast cancer. Furthermore, the inhibitory effect of ANP combined with glipizide was better than that of glipizide alone. ANP combined with glipizide significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) by suppressing vascular endothelial growth factor (VEGF)/VEGFR2 (vascular endothelial growth factor receptor 2) signaling.

Conclusion: These results demonstrate that glipizide combined with ANP has a greater potential than glipizide alone to be repurposed as an effective agent for the treatment of breast cancer by targeting tumor-induced angiogenesis.

Keywords: Glipizide, ANP, breast cancer, tumor growth, metastasis, tumor angiogenesis, HUVECs.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends-An update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[3]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[4]
Abdelmoneim, A.S.; Hasenbank, S.E.; Seubert, J.M.; Brocks, D.R.; Light, P.E.; Simpson, S.H. Variations in tissue selectivity amongst insulin secretagogues: a systematic review. Diabetes Obes. Metab., 2012, 14(2), 130-138.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01496.x] [PMID: 21923736]
[5]
Qi, C.; Zhou, Q.; Li, B.; Yang, Y.; Cao, L.; Ye, Y.; Li, J.; Ding, Y.; Wang, H.; Wang, J.; He, X.; Zhang, Q.; Lan, T.; Lee, K.K.; Li, W.; Song, X.; Zhou, J.; Yang, X.; Wang, L. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget, 2014, 5(20), 9966-9979.
[http://dx.doi.org/10.18632/oncotarget.2483] [PMID: 25294818]
[6]
Qi, C.; Bin Li, Yang, Y.; Yang, Y.; Li, J.; Zhou, Q.; Wen, Y.; Zeng, C.; Zheng, L.; Zhang, Q.; Li, J.; He, X.; Zhou, J.; Shao, C.; Wang, L. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci. Rep., 2016, 6, 27819.
[http://dx.doi.org/10.1038/srep27819] [PMID: 27292155]
[7]
Hansen, L.H.; Madsen, T.D.; Goth, C.K.; Clausen, H.; Chen, Y.; Dzhoyashvili, N.; Iyer, S.R.; Sangaralingham, S.J.; Burnett, J.C., Jr; Rehfeld, J.F.; Vakhrushev, S.Y.; Schjoldager, K.T.; Goetze, J.P. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J. Biol. Chem., 2019, 294(34), 12567-12578.
[http://dx.doi.org/10.1074/jbc.RA119.008102] [PMID: 31186350]
[8]
Tan, H.; Lin, L.; Huang, L.; Yu, Y. Is atrial natriuretic peptide (ANP) and natriuretic peptide receptor-A (NPR-A) expression in human placenta and decidua normal? Med. Sci. Monit., 2019, 25(19), 2868-2878.
[http://dx.doi.org/10.12659/MSM.915449] [PMID: 31000687]
[9]
Lara-Castillo, N.; Zandi, S.; Nakao, S.; Ito, Y.; Noda, K.; She, H.; Ahmed, M.; Frimmel, S.; Ablonczy, Z.; Hafezi-Moghadam, A. Atrial natriuretic peptide reduces vascular leakage and choroidal neovascularization. Am. J. Pathol., 2009, 175(6), 2343-2350.
[http://dx.doi.org/10.2353/ajpath.2009.090439] [PMID: 19910509]
[10]
Gu, Q.; Wang, C.; Wang, G.; Han, Z.; Li, Y.; Wang, X.; Li, J.; Qi, C.; Xu, T.; Yang, X.; Wang, L. Glipizide suppresses embryonic vasculogenesis and angiogenesis through targeting natriuretic peptide receptor A. Exp. Cell Res., 2015, 333(2), 261-272.
[http://dx.doi.org/10.1016/j.yexcr.2015.03.012] [PMID: 25823921]
[11]
Lin, E.Y.; Jones, J.G.; Li, P.; Zhu, L.; Whitney, K.D.; Muller, W.J.; Pollard, J.W. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol., 2003, 163(5), 2113-2126.
[http://dx.doi.org/10.1016/S0002-9440(10)63568-7] [PMID: 14578209]
[12]
Weigelt, B.; Baehner, F.L.; Reis-Filho, J.S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol., 2010, 220(2), 263-280.
[http://dx.doi.org/10.1002/path.2648] [PMID: 19927298]
[13]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[14]
Daniel, C.K.; Robert, S.F.; Michael, D.M. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[15]
Farkouh, M.E.; Fuster, V. Diabetes: making sense of the rosiglitazone controversy. Nat. Rev. Cardiol., 2010, 7(7), 366-367.
[http://dx.doi.org/10.1038/nrcardio.2010.69] [PMID: 20577297]
[16]
Yoshimura, M.; Yasue, H.; Ogawa, H. Pathophysiological significance and clinical application of ANP and BNP in patients with heart failure. Can. J. Physiol. Pharmacol., 2001, 79(8), 730-735.
[http://dx.doi.org/10.1139/y01-039] [PMID: 11558682]
[17]
Cameron, V.A.; Rademaker, M.T.; Ellmers, L.J.; Espiner, E.A.; Nicholls, M.G.; Richards, A.M. Atrial (ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct. Endocrinology, 2000, 141(12), 4690-4697.
[http://dx.doi.org/10.1210/endo.141.12.7847] [PMID: 11108284]
[18]
Wiedemann, R.; Ghofrani, H.A.; Weissmann, N.; Schermuly, R.; Quanz, K.; Grimminger, F.; Seeger, W.; Olschewski, H. Atrial natriuretic peptide in severe primary and nonprimary pulmonary hypertension: response to iloprost inhalation. J. Am. Coll. Cardiol., 2001, 38(4), 1130-1136.
[http://dx.doi.org/10.1016/S0735-1097(01)01490-5] [PMID: 11583893]
[19]
Hirata, K.; Akita, H.; Yokoyama, M.; Watanabe, Y. Impaired vasodilatory response to atrial natriuretic peptide during atherosclerosis progression. Arterioscler. Thromb., 1992, 12(1), 99-105.
[http://dx.doi.org/10.1161/01.ATV.12.1.99] [PMID: 1310025]
[20]
Johnson, B.E.; Chute, J.P.; Rushin, J.; Williams, J.; Le, P.T.; Venzon, D.; Richardson, G.E. A prospective study of patients with lung cancer and hyponatremia of malignancy. Am. J. Respir. Crit. Care Med., 1997, 156(5), 1669-1678.
[http://dx.doi.org/10.1164/ajrccm.156.5.96-10075] [PMID: 9372692]
[21]
Saba, S.R.; Garces, A.H.; Clark, L.C.; Soto, J.; Gower, W.R., Jr; Vesely, D.L. Immunocytochemical localization of atrial natriuretic peptide, vessel dilator, long-acting natriuretic peptide, and kaliuretic peptide in human pancreatic adenocarcinomas. J. Histochem. Cytochem., 2005, 53(8), 989-995.
[http://dx.doi.org/10.1369/jhc.4A6572.2005] [PMID: 15879575]
[22]
Skelton, W.P. 4th; Skelton, M.; Vesely, D.L. Inhibition of AKT in human pancr-eatic, renal and colorectal cancer cells by four cardiac hormones. Anticancer Res., 2013, 33(3), 785-790.
[PMID: 23482745]
[23]
Nojiri, T.; Hosoda, H.; Tokudome, T.; Miura, K.; Ishikane, S.; Otani, K.; Kishimoto, I.; Shintani, Y.; Inoue, M.; Kimura, T.; Sawabata, N.; Minami, M.; Nakagiri, T.; Funaki, S.; Takeuchi, Y.; Maeda, H.; Kidoya, H.; Kiyonari, H.; Shioi, G.; Arai, Y.; Hasegawa, T.; Takakura, N.; Hori, M.; Ohno, Y.; Miyazato, M.; Mochizuki, N.; Okumura, M.; Kangawa, K. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc. Natl. Acad. Sci. USA, 2015, 112(13), 4086-4091.
[http://dx.doi.org/10.1073/pnas.1417273112] [PMID: 25775533]
[24]
Hou, P.; Li, H.; Yong, H.; Chen, F.; Chu, S.; Zheng, J.; Bai, J. PinX1 represses renal cancer angiogenesis via the mir-125a- 3p/VEGF signaling pathway. Angiogenesis, 2019, 22(4), 507-519.
[http://dx.doi.org/10.1007/s10456-019-09675-z] [PMID: 31254127]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy