Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Apatinib Inhibits Stem Properties and Malignant Biological Behaviors of Breast Cancer Stem Cells by Blocking Wnt/β-catenin Signal Pathway through Downregulating LncRNA ROR

Author(s): Baohong Jiang, Hongbo Zhu, Liting Tang, Ting Gao, Yu Zhou, Fuqiang Gong, Yeru Tan, Liming Xie, Xiaoping Wu and Yuehua Li*

Volume 22, Issue 9, 2022

Published on: 05 January, 2022

Page: [1723 - 1734] Pages: 12

DOI: 10.2174/1871520621666210412103849

Price: $65

Abstract

Background: Cancer stem cells could influence tumor recurrence and metastasis.

Objective: To develop a new effective treatment modality targeting breast cancer stem cells (BCSCs) and to explore the role of Apatinib in BCSCs.

Methods: BCSCs were isolated from MDA-MB-231 cells by the immune magnetic beads method. BCSCs were treated with Apatinib, lentiviral plasmids (lncRNA ROR), and iCRT-3 (Wnt pathway inhibitors). Viability, colony numbers, sphere numbers, apoptosis, migration, invasion of BCSCs were detected by MTT, colony formation, tumorsphere, flow cytometry, wound-healing, transwell assays, respectively. The expressions of markers (ABCG2, CD44, CD90, and CD24), epithelial-mesenchymal transition (EMT)-related molecules (Ecadherin, N-cadherin, Vimentin, MMP-2, MMP-9), and Wnt/β-catenin pathway-related proteins (Wnt3a, Wnt5a, β-catenin) in breast cancer stem cells were determined by performing Western blot and qRT-PCR analysis.

Results: Apatinib decreased the viability and colony numbers of BCSCs in a concentration-dependent manner, and it also reduced sphere numbers, suppressed migration, invasion and lncRNA ROR expression, and induced apoptosis of BCSCs. However, these results were partially reversed by lncRNA ROR overexpression. Apatinib suppressed stem property, EMT process, and Wnt/β-catenin pathway in BCSCs, which was partially reversed by lncRNA ROR overexpression. Moreover, lncRNA ROR overexpression increased the colony and sphere numbers and promoted the cell viability, apoptosis inhibition, migration, and invasion of BCSCs, but these effects were partially reversed by iCRT-3. LncRNA ROR overexpression increased the stem property, EMT process, and Wnt/β-catenin pathway, which were partially counteracted by iCRT-3.

Conclusion: Apatinib inhibited stem property and malignant biological behaviors of BCSCs by blocking the Wnt/β-catenin signal pathway through down-regulating lncRNA ROR.

Keywords: Apatinib, BCSCs, LncRNA ROR, Wnt/β-catenin, stem property, EMT.

Graphical Abstract

[1]
Li, G.; Guo, X.; Chen, M.; Tang, L.; Jiang, H.; Day, J.X.; Xie, Y.; Peng, L.; Xu, X.; Li, J.; Wang, S.; Xiao, Z.; Dai, L.; Wang, J. Prevalence and spectrum of AKT1, PIK3CA, PTEN and TP53 somatic mutations in Chinese breast cancer patients. PLoS One, 2018, 13(9), e0203495.
[http://dx.doi.org/10.1371/journal.pone.0203495] [PMID: 30212483]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Li, W.; Jia, G.; Qu, Y.; Du, Q.; Liu, B.; Liu, B. Long non-coding RNA (LncRNA) HOXA11-AS promotes breast cancer invasion and metastasis by regulating epithelial-mesenchymal transition. Med. Sci. Monit., 2017, 23, 3393-3403.
[http://dx.doi.org/10.12659/MSM.904892] [PMID: 28701685]
[4]
Lemler, D.J.; Lynch, M.L.; Tesfay, L.; Deng, Z.; Paul, B.T.; Wang, X.; Hegde, P.; Manz, D.H.; Torti, S.V.; Torti, F.M. DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res., 2017, 19(1), 25.
[http://dx.doi.org/10.1186/s13058-017-0814-9] [PMID: 28270217]
[5]
Seton-Rogers, S. Leukaemia: Unravelling the heterogeneity of cancer stem cells. Nat. Rev. Cancer, 2017, 17(7), 397.
[PMID: 28642598]
[6]
Adorno-Cruz, V.; Kibria, G.; Liu, X.; Doherty, M.; Junk, D.J.; Guan, D.; Hubert, C.; Venere, M.; Mulkearns-Hubert, E.; Sinyuk, M.; Alvarado, A.; Caplan, A.I.; Rich, J.; Gerson, S.L.; Lathia, J.; Liu, H. Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res., 2015, 75(6), 924-929.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3225] [PMID: 25604264]
[7]
Conti, L.; Lanzardo, S.; Ruiu, R.; Cadenazzi, M.; Cavallo, F.; Aime, S.; Geninatti Crich, S. L-Ferritin targets breast cancer stem cells and delivers therapeutic and imaging agents. Oncotarget, 2016, 7(41), 66713-66727.
[http://dx.doi.org/10.18632/oncotarget.10920] [PMID: 27579532]
[8]
Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Shared signaling pathways in normal and breast cancer stem cells. J. Carcinog., 2011, 10, 38.
[http://dx.doi.org/10.4103/1477-3163.91413] [PMID: 22279423]
[9]
Yang, F.; Xu, J.; Tang, L.; Guan, X. Breast cancer stem cell: the roles and therapeutic implications. Cell. Mol. Life Sci., 2017, 74(6), 951-966.
[http://dx.doi.org/10.1007/s00018-016-2334-7] [PMID: 27530548]
[10]
Tudoran, OM; Balacescu, O; Berindan-Neagoe, I Breast cancer stem-like cells: clinical implications and therapeutic strategies. Clujul Medical (1957),, 2016, 89(2), 193-198.
[http://dx.doi.org/10.15386/cjmed-559]
[11]
Scott, L.J. Apatinib: A Review in advanced gastric cancer and other advanced cancers. Drugs, 2018, 78(7), 747-758.
[http://dx.doi.org/10.1007/s40265-018-0903-9] [PMID: 29663291]
[12]
Ni, Y.; Ye, X. Angiogenesis and apatinib: Can be used for the patients with non-gastic cancer? J. Cancer Res. Ther., 2018, 14(4), 727-729.
[http://dx.doi.org/10.4103/jcrt.JCRT_222_18] [PMID: 29970645]
[13]
Jin, M.; Cai, J.; Wang, X.; Zhang, T.; Zhao, Y. Successful maintenance therapy with apatinib inplatinum-resistant advanced ovarian cancer and literature review. Cancer Biol. Ther., 2018, 19(12), 1088-1092.
[http://dx.doi.org/10.1080/15384047.2018.1491500] [PMID: 30110192]
[14]
Wu, F.; Zhang, S.; Gao, G.; Zhao, J.; Ren, S.; Zhou, C. Successful treatment using apatinib with or without docetaxel in heavily pretreated advanced non-squamous non-small cell lung cancer: A case report and literature review. Cancer Biol. Ther., 2018, 19(3), 141-144.
[http://dx.doi.org/10.1080/15384047.2017.1414757] [PMID: 29261000]
[15]
Zhang, H.; Sun, J.; Ju, W.; Li, B.; Lou, Y.; Zhang, G.; Liang, G.; Luo, X. Apatinib suppresses breast cancer cells proliferation and invasion via angiomotin inhibition. Am. J. Transl. Res., 2019, 11(7), 4460-4469.
[PMID: 31396349]
[16]
Gao, Z.; Shi, M.; Wang, Y.; Chen, J.; Ou, Y. Apatinib enhanced anti-tumor activity of cisplatin on triple-negative breast cancer through inhibition of VEGFR-2. Pathol. Res. Pract., 2019, 215(7), 152422.
[http://dx.doi.org/10.1016/j.prp.2019.04.014] [PMID: 31079851]
[17]
Zhang, H.Y.; Liang, F.; Zhang, J.W.; Wang, F.; Wang, L.; Kang, X.G. Effects of long noncoding RNA-ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-205. Cancer Chemother. Pharmacol., 2017, 79(2), 327-337.
[http://dx.doi.org/10.1007/s00280-016-3208-2] [PMID: 28063065]
[18]
Peng, W.X.; Huang, J.G.; Yang, L.; Gong, A.H.; Mo, Y.Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol. Cancer, 2017, 16(1), 161.
[http://dx.doi.org/10.1186/s12943-017-0727-3] [PMID: 29041978]
[19]
Yang, Y.; Hao, E.; Pan, X.; Tan, D.; Du, Z.; Xie, J.; Hou, X.; Deng, J.; Wei, K. Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model. Aging (Albany NY), 2019, 11(19), 8347-8361.
[http://dx.doi.org/10.18632/aging.102323] [PMID: 31612865]
[20]
Bilir, B.; Kucuk, O.; Moreno, C.S. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J. Transl. Med., 2013, 11, 280.
[http://dx.doi.org/10.1186/1479-5876-11-280] [PMID: 24188694]
[21]
Liu, T.; Hu, K.; Zhao, Z.; Chen, G.; Ou, X.; Zhang, H.; Zhang, X.; Wei, X.; Wang, D.; Cui, M.; Liu, C. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway. Oncotarget, 2015, 6(39), 41638-41649.
[http://dx.doi.org/10.18632/oncotarget.5873] [PMID: 26497855]
[22]
Zhang, J.; Liu, C.; Huang, R.Z.; Chen, H.F.; Liao, Z.X.; Sun, J.Y.; Xia, X.K.; Wang, F.X. Three new C-27-carboxylated-lupane-triterpenoid derivatives from Potentilla discolor Bunge and their in vitro antitumor activities. PLoS One, 2017, 12(4), e0175502.
[http://dx.doi.org/10.1371/journal.pone.0175502] [PMID: 28388692]
[23]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[24]
Ding, J.; Cheng, X.Y.; Liu, S.; Ji, H.Y.; Lin, M.; Ma, R.; Meng, F.L. Apatinib exerts anti-tumour effects on ovarian cancer cells. Gynecol. Oncol., 2019, 153(1), 165-174.
[http://dx.doi.org/10.1016/j.ygyno.2019.01.010] [PMID: 30651189]
[25]
Ito, M.; Hagiyama, M.; Mimae, T.; Inoue, T.; Kato, T.; Yoneshige, A.; Nakanishi, J.; Kondo, T.; Okada, M.; Ito, A. α-Parvin, a pseudopodial constituent, promotes cell motility and is associated with lymph node metastasis of lobular breast carcinoma. Breast Cancer Res. Treat., 2014, 144(1), 59-69.
[http://dx.doi.org/10.1007/s10549-014-2859-0] [PMID: 24496929]
[26]
Ma, J.; Yang, Y.; Huo, D.; Wang, Z.; Zhai, X.; Chen, J.; Sun, H.; An, W.; Jie, J.; Yang, P. LincRNA-RoR/miR-145 promote invasion and metastasis in triple-negative breast cancer via targeting MUC1. Biochem. Biophys. Res. Commun., 2018, 500(3), 614-620.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.119] [PMID: 29673594]
[27]
Wang, S.H.; Zhang, M.D.; Wu, X.C.; Weng, M.Z.; Zhou, D.; Quan, Z.W. Overexpression of LncRNA-ROR predicts a poor outcome in gallbladder cancer patients and promotes the tumor cells proliferation, migration, and invasion. Tumour Biol., 2016, 37(9), 12867-12875.
[http://dx.doi.org/10.1007/s13277-016-5210-z] [PMID: 27449039]
[28]
Chen, Y.; Peng, Y.; Xu, Z.; Ge, B.; Xiang, X.; Zhang, T. LncROR promotes bladder cancer cell proliferation, migration, and epithelial-mesenchymal transition. Cell. Physiol. Biochem., 2017, 41(6), 2399-2410.
[29]
Lou, Y.; Jiang, H.; Cui, Z.; Wang, L.; Wang, X.; Tian, T. Linc-ROR induces epithelial-to-mesenchymal transition in ovarian cancer by increasing Wnt/β-catenin signaling. Oncotarget, 2017, 8(41), 69983-69994.
[http://dx.doi.org/10.18632/oncotarget.19545] [PMID: 29050257]
[30]
Pan, Y.; Chen, J.; Tao, L.; Zhang, K.; Wang, R.; Chu, X.; Chen, L. Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway. Oncotarget, 2017, 8(20), 33144-33158.
[http://dx.doi.org/10.18632/oncotarget.16562] [PMID: 28388536]
[31]
Zhan, H.X.; Wang, Y.; Li, C.; Xu, J.W.; Zhou, B.; Zhu, J.K.; Han, H.F.; Wang, L.; Wang, Y.S.; Hu, S.Y. LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway. Cancer Lett., 2016, 374(2), 261-271.
[http://dx.doi.org/10.1016/j.canlet.2016.02.018] [PMID: 26898939]
[32]
Shin, K.C.; Hwang, I.; Choe, S.S.; Park, J.; Ji, Y.; Kim, J.I.; Lee, G.Y.; Choi, S.H.; Ching, J.; Kovalik, J.P.; Kim, J.B. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat. Commun., 2017, 8(1), 1087.
[http://dx.doi.org/10.1038/s41467-017-01232-w] [PMID: 29057873]
[33]
Duff, D.; Long, A. Roles for RACK1 in cancer cell migration and invasion. Cell. Signal., 2017, 35, 250-255.
[http://dx.doi.org/10.1016/j.cellsig.2017.03.005] [PMID: 28336233]
[34]
Fu, D.; Lu, C.; Qu, X.; Li, P.; Chen, K.; Shan, L.; Zhu, X. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY), 2019, 11(19), 8374-8385.
[http://dx.doi.org/10.18632/aging.102325] [PMID: 31600142]
[35]
Ramamurthy, V.P.; Ramalingam, S.; Gediya, L.K.; Njar, V.C.O. The retinamide VNLG-152 inhibits f-AR/AR-V7 and MNK-eIF4E signaling pathways to suppress EMT and castration-resistant prostate cancer xenograft growth. FEBS J., 2018, 285(6), 1051-1063.
[http://dx.doi.org/10.1111/febs.14383] [PMID: 29323792]
[36]
Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci., 2011, 68(18), 3033-3046.
[http://dx.doi.org/10.1007/s00018-011-0735-1] [PMID: 21637948]
[37]
Sun, W.; Liu, D.B.; Li, W.W.; Zhang, L.L.; Long, G.X.; Wang, J.F.; Mei, Q.; Hu, G.Q. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int. J. Oncol., 2014, 44(5), 1551-1560.
[http://dx.doi.org/10.3892/ijo.2014.2323] [PMID: 24603891]
[38]
Fararjeh, A.; Ho, Y.S. The kinome pathways in radioresistance breast cancer stem cells. J. Thorac. Dis., 2016, 8(11), E1470-E1472.
[http://dx.doi.org/10.21037/jtd.2016.11.20] [PMID: 28066633]
[39]
Liu, B.Y.; McDermott, S.P.; Khwaja, S.S.; Alexander, C.M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4158-4163.
[http://dx.doi.org/10.1073/pnas.0400699101] [PMID: 15020770]
[40]
Xu, L.; Zhang, L.; Hu, C.; Liang, S.; Fei, X.; Yan, N.; Zhang, Y.; Zhang, F. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int. J. Oncol., 2016, 48(3), 1175-1186.
[http://dx.doi.org/10.3892/ijo.2016.3337] [PMID: 26781188]
[41]
Morrison, B.J.; Schmidt, C.W.; Lakhani, S.R.; Reynolds, B.A.; Lopez, J.A. Breast cancer stem cells: implications for therapy of breast cancer. Breast Cancer Res., 2008, 10(4), 210.
[http://dx.doi.org/10.1186/bcr2111] [PMID: 18671830]
[42]
Dong, P.; Xiong, Y.; Yue, J.; JB Hanley, S.; Kobayashi, N.; Todo, Y.; Watari, H. Exploring lncRNA-Mediated Regulatory Networks in Endometrial Cancer Cells and the Tumor Microenvironment: Advances and Challenges. Cancers (Basel), 2019, 11(2), E234.
[http://dx.doi.org/10.3390/cancers11020234] [PMID: 30781521]
[43]
Feng, L.; Shi, L.; Lu, Y.F.; Wang, B.; Tang, T.; Fu, W.M.; He, W.; Li, G.; Zhang, J.F. Linc-ROR promotes osteogenic differentiation of mesenchymal stem cells by functioning as a competing endogenous RNA for miR-138 and miR-145. Mol. Ther. Nucleic Acids,, 2018, 11, 345-353.
[http://dx.doi.org/10.1016/j.omtn.2018.03.004] [PMID: 29858070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy