[1]
Varmus, H. The new era in cancer research. Science, 2006, 312(5777), 1162-1165.
[http://dx.doi.org/10.1126/science.1126758] [PMID: 16728627]
[http://dx.doi.org/10.1126/science.1126758] [PMID: 16728627]
[2]
Xu, B.; Jiang, X.; Xiong, J.; Lan, J.; Tian, Y.; Zhong, L.; Wang, X.; Xu, N.; Cao, H.; Zhang, W.; Zhang, H.; Hong, X.; Zhan, Y.Y.; Zhang, Y.; Hu, T. Structure-activity relationship study enables the discovery of a novel Berberine analogue as the RXRα activator to inhibit colon cancer. J. Med. Chem., 2020, 63(11), 5841-5855.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00088] [PMID: 32391701]
[http://dx.doi.org/10.1021/acs.jmedchem.0c00088] [PMID: 32391701]
[3]
Bantzi, M.; Augsburger, F.; Loup, J.; Berset, Y.; Vasilakaki, S.; Myrianthopoulos, V.; Mikros, E.; Szabo, C.; Bochet, C.G. Novel aryl-substituted pyrimidones as inhibitors of 3-mercaptopyruvate sulfurtransferase with antiproliferative efficacy in colon cancer. J. Med. Chem., 2021, 64(9), 6221-6240.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00260] [PMID: 33856792]
[http://dx.doi.org/10.1021/acs.jmedchem.1c00260] [PMID: 33856792]
[4]
Chen, D.; Soh, C.K.; Goh, W.H.; Wang, H. Design, synthesis, and preclinical evaluation of fused pyrimidine-based hydroxamates for the treatment of hepatocellular carcinoma. J. Med. Chem., 2018, 61(4), 1552-1575.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01465] [PMID: 29360358]
[http://dx.doi.org/10.1021/acs.jmedchem.7b01465] [PMID: 29360358]
[5]
Huddle, B.C.; Grimley, E.; Buchman, C.D.; Chtcherbinine, M.; Debnath, B.; Mehta, P.; Yang, K.; Morgan, C.A.; Li, S.; Felton, J.; Sun, D.; Mehta, G.; Neamati, N.; Buckanovich, R.J.; Hurley, T.D.; Larsen, S.D. Structure-based optimization of a novel class of aldehyde dehydrogenase 1A (ALDH1A) subfamily-selective inhibitors as potential adjuncts to ovarian cancer chemotherapy. J. Med. Chem., 2018, 61(19), 8754-8773.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00930] [PMID: 30221940]
[http://dx.doi.org/10.1021/acs.jmedchem.8b00930] [PMID: 30221940]
[6]
Henry, N.L.; Shah, P.D.; Haider, I.; Free, P.E.; Jagsi, R.; Sabel, M.S. Cancer of the Breast.In: Abeloff’s Clinical Oncology, 6th ed; Niederhuber, J.E.; Armitage, J.O.; Doroshow, J.H.; Kastan, M.B.; Tepper, J.E., Eds.; Elsevier: Philadelphia, Pa, , 2020.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00088-8]
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00088-8]
[7]
Cutillas, N.; Yellol, G.S.; Haro, C.; Vincente, C.; Rodríguez, V.; Ruiz, J. Anticancer cyclometalated complexes of platinum group metals and gold. Coord. Chem. Rev., 2013, 257, 2784-2797.
[http://dx.doi.org/10.1016/j.ccr.2013.03.024]
[http://dx.doi.org/10.1016/j.ccr.2013.03.024]
[8]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med., 2013, 2013815621
[http://dx.doi.org/10.1155/2013/815621] [PMID: 23690855]
[http://dx.doi.org/10.1155/2013/815621] [PMID: 23690855]
[9]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18, 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[10]
Dandawate, P.; Ahmed, K.; Padhye, S.; Ahmad, A.; Biersack, B. Anticancer active heterocyclic chalcones: Recent developments. Anticancer. Agents Med. Chem., 2021, 21(5), 558-566.
[http://dx.doi.org/10.2174/1871520620666200705215722] [PMID: 32628595]
[http://dx.doi.org/10.2174/1871520620666200705215722] [PMID: 32628595]
[11]
Shukla, S.; Sood, A.K.; Goyal, K.; Singh, A.; Sharma, V.; Guliya, N.; Gulati, S.; Kumar, S. Chalcone scaffolds as anticancer drugs: A review on molecular insight in action of mechanisms and anticancer properties. Anticancer. Agents Med. Chem., 2020, 21, 1650-1670.
[http://dx.doi.org/10.2174/1871520620999201124212840] [PMID: 33238850]
[http://dx.doi.org/10.2174/1871520620999201124212840] [PMID: 33238850]
[12]
Khairul, W.M.; Hashim, F.; Mohammed, M.; Shah, N.S.M.N.; Johari, S.A.T.T.; Rahamathullah, R.; Daud, A.I.; Ma, N.L. Synthesis, molecular docking and biological activity evaluation of alkoxy substituted chalcone derivatives: Potential apoptosis inducing agent on MCF-7 cells. Anticancer. Agents Med. Chem., 2020, 21, 1738-1750.
[http://dx.doi.org/10.2174/1871520620999201110190709] [PMID: 33176667]
[http://dx.doi.org/10.2174/1871520620999201110190709] [PMID: 33176667]
[13]
Moreira, J.; Almeida, J.; Saraiva, L.; Cidade, H.; Pinto, M. Chalcones as promising antitumor agents by targeting the p53 pathway: An overview and new insights in drug-likeness. Molecules, 2021, 26(12), 3737.
[http://dx.doi.org/10.3390/molecules26123737] [PMID: 34205272]
[http://dx.doi.org/10.3390/molecules26123737] [PMID: 34205272]
[14]
Hseu, Y.C.; Huang, Y.C.; Thiyagarajan, V.; Mathew, D.C.; Lin, K.Y.; Chen, S.C.; Liu, J.Y.; Hsu, L.S.; Li, M.L.; Yang, H.L. Anticancer activities of chalcone flavokawain B from Alpinia pricei Hayata in human lung adenocarcinoma (A549) cells via induction of reactive oxygen species-mediated apoptotic and autophagic cell death. J. Cell. Physiol., 2019, 234(10), 17514-17526.
[http://dx.doi.org/10.1002/jcp.28375] [PMID: 30847898]
[http://dx.doi.org/10.1002/jcp.28375] [PMID: 30847898]
[15]
Michalkova, R.; Mirossay, L.; Gazdova, M.; Kello, M.; Mojzis, J. Molecular mechanisms of antiproliferative effects of natural chalcones. Cancers (Basel), 2021, 13(11), 2730.
[http://dx.doi.org/10.3390/cancers13112730] [PMID: 34073042]
[http://dx.doi.org/10.3390/cancers13112730] [PMID: 34073042]
[16]
Qiu, C.; Zhang, T.; Zhang, W.; Zhou, L.; Yu, B.; Wang, W.; Yang, Z.; Liu, Z.; Zou, P.; Liang, G.; Licochalcone, A. Licochalcone a inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress. Int. J. Mol. Sci., 2017, 18(8), 1761.
[http://dx.doi.org/10.3390/ijms18081761] [PMID: 28805696]
[http://dx.doi.org/10.3390/ijms18081761] [PMID: 28805696]