[1]
WHO Global action plan for prevention and control of pneumonia (GAPP) WHO, 2009.
[2]
Gupta, N.; Krasnodembskaya, A.; Kapetanaki, M.; Mouded, M.; Tan, X.; Serikov, V.; Matthay, M.A. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax, 2012, 67(6), 533-539. [http://dx.doi.org/10.1136/thoraxjnl-2011-201176]. [PMID: 22250097].
[3]
Matthay, M.A.; Zemans, R.L. The acute respiratory distress syndrome: Pathogenesis and treatment. Annu. Rev. Pathol., 2011, 6, 147-163. [http://dx.doi.org/10.1146/annurev-pathol-011110-130158]. [PMID: 20936936].
[4]
Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1334-1349. [http://dx.doi.org/10.1056/NEJM200005043421806]. [PMID: 10793167].
[5]
Yadav, H.; Thompson, B.T.; Gajic, O. Fifty years of research in ARDS. Is acute respiratory distress syndrome a preventable disease? Am. J. Respir. Crit. Care Med., 2017, 195(6), 725-736. [http://dx.doi.org/10.1164/rccm.201609-1767CI]. [PMID: 28040987].
[6]
Tomczyk, S.; Bennett, N.M.; Stoecker, C.; Gierke, R.; Moore, M.R.; Whitney, C.G.; Hadler, S.; Pilishvili, T. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb. Mortal. Wkly. Rep., 2014, 63(37), 822-825.
[7]
Sung, D.K.; Chang, Y.S.; Sung, S.I.; Yoo, H.S.; Ahn, S.Y.; Park, W.S. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell. Microbiol., 2016, 18(3), 424-436. [http://dx.doi.org/10.1111/cmi.12522]. [PMID: 26350435].
[8]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4)e21 [http://dx.doi.org/10.1016/S2213-2600(20)30116-8]. [PMID: 32171062].
[9]
Yao, Y.; Yang, L.; Feng, L-F.; Yue, Z-W.; Zhao, N-H.; Li, Z.; He, Z-X. IGF-1C domain-modified hydrogel enhanced the efficacy of stem cells in the treatment of AMI. Stem Cell Res. Ther., 2020, 11(1), 136. [http://dx.doi.org/10.1186/s13287-020-01637-3]. [PMID: 32216819].
[10]
Monsel, A.; Zhu, Y-G.; Gennai, S.; Hao, Q.; Liu, J.; Lee, J.W. Cell-based therapy for acute organ injury: Preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology, 2014, 121(5), 1099-1121. [http://dx.doi.org/10.1097/ALN.0000000000000446]. [PMID: 25211170].
[11]
Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; Busca, A.; Falda, M.; Bussolati, B.; Tetta, C.; Camussi, G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol., 2009, 20(5), 1053-1067. [http://dx.doi.org/10.1681/ASN.2008070798]. [PMID: 19389847].
[12]
Eliopoulos, N.; Zhao, J.; Bouchentouf, M.; Forner, K.; Birman, E.; Yuan, S.; Boivin, M-N.; Martineau, D. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. Am. J. Physiol. Renal Physiol., 2010, 299(6), F1288-F1298. [http://dx.doi.org/10.1152/ajprenal.00671.2009]. [PMID: 20844023].
[13]
Mahmood, A.; Lu, D.; Lu, M.; Chopp, M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 2003, 53(3), 697-702. [http://dx.doi.org/10.1227/01.NEU.0000079333.61863.AA]. [PMID: 12943585].
[14]
Whone, A.L.; Kemp, K.; Sun, M.; Wilkins, A.; Scolding, N.J. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res., 2012, 1431, 86-96. [http://dx.doi.org/10.1016/j.brainres.2011.10.038]. [PMID: 22143094].
[15]
Burra, P.; Arcidiacono, D.; Bizzaro, D.; Chioato, T.; Di Liddo, R.; Banerjee, A.; Cappon, A.; Bo, P.; Conconi, M.T.; Parnigotto, P.P.; Mirandola, S.; Gringeri, E.; Carraro, A.; Cillo, U.; Russo, F.P. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterol., 2012, 12, 88. [http://dx.doi.org/10.1186/1471-230X-12-88]. [PMID: 22788801].
[16]
Quintanilha, L.F.; Takami, T.; Hirose, Y.; Fujisawa, K.; Murata, Y.; Yamamoto, N.; Goldenberg, R.C.D.S.; Terai, S.; Sakaida, I. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol. Res., 2014, 44(10), E206-E217. [http://dx.doi.org/10.1111/hepr.12204]. [PMID: 23889977].
[17]
Shi, Y.; Wang, Y.; Li, Q.; Liu, K.; Hou, J.; Shao, C.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol., 2018, 14(8), 493-507. [http://dx.doi.org/10.1038/s41581-018-0023-5]. [PMID: 29895977].
[18]
Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005, 105(4), 1815-1822. [http://dx.doi.org/10.1182/blood-2004-04-1559]. [PMID: 15494428].
[19]
Jerkic, M.; Masterson, C.; Ormesher, L.; Gagnon, S.; Goyal, S.; Rabani, R.; Otulakowski, G.; Zhang, H.; Kavanagh, B.P.; Laffey, J.G. Overexpression of IL-10 enhances the efficacy of human umbilical-cord-derived mesenchymal stromal cells in E. coli pneumosepsis. J. Clin. Med., 2019, 8(6)E847 [http://dx.doi.org/10.3390/jcm8060847]. [PMID: 31200579].
[20]
Lindner, U.; Kramer, J.; Rohwedel, J.; Schlenke, P. Mesenchymal stem or stromal cells: Toward a better understanding of their biology? Transfus. Med. Hemother., 2010, 37(2), 75-83. [http://dx.doi.org/10.1159/000290897]. [PMID: 20737049].
[21]
Keating, A. Mesenchymal stromal cells: New directions. Cell Stem Cell, 2012, 10(6), 709-716. [http://dx.doi.org/10.1016/j.stem.2012.05.015]. [PMID: 22704511].
[22]
Park, J.; Kim, S.; Lim, H.; Liu, A.; Hu, S.; Lee, J.; Zhuo, H.; Hao, Q.; Matthay, M.A.; Lee, J-W. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax, 2019, 74(1), 43-50. [http://dx.doi.org/10.1136/thoraxjnl-2018-211576]. [PMID: 30076187].
[23]
Liu, A.; Zhang, X.; He, H.; Zhou, L.; Naito, Y.; Sugita, S.; Lee, J-W. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin. Biol. Ther., 2020, 20(2), 125-140. [http://dx.doi.org/10.1080/14712598.2020.1689954]. [PMID: 31701782].
[24]
Chaleshtori, S.S.; Dezfouli, M.M.R.; Fakhr, J.M. Mesenchymal stem/stromal cells: The therapeutic effects in animal models of acute pulmonary diseases. Respir. Res., 2020, 21(1), 110. [http://dx.doi.org/10.1186/s12931-020-01373-5]. [PMID: 32393278].
[25]
Driver, C. Pneumonia part 1: Pathology, presentation and prevention. Br. J. Nurs., 2012, 21(2), 103-106. [http://dx.doi.org/10.12968/bjon.2012.21.2.103]. [PMID: 22306639].
[26]
Mizgerd, J.P. Pathogenesis of severe pneumonia: Advances and knowledge gaps. Curr. Opin. Pulm. Med., 2017, 23(3), 193-197. [http://dx.doi.org/10.1097/MCP.0000000000000365]. [PMID: 28221171].
[27]
Abrahamian, F.M.; Deblieux, P.M.; Emerman, C.L.; Kollef, M.H.; Kupersmith, E.; Leeper, K.V., Jr; Paterson, D.L.; Shorr, A.F. Health care-associated pneumonia: Identification and initial management in the ED. Am. J. Emerg. Med., 2008, 26(6)(Suppl.), 1-11. [http://dx.doi.org/10.1016/j.ajem.2008.03.015]. [PMID: 18603170].
[28]
Nair, G.B.; Niederman, M.S. Community-acquired pneumonia: an unfinished battle. Med. Clin. North Am., 2011, 95(6), 1143-1161. [http://dx.doi.org/10.1016/j.mcna.2011.08.007]. [PMID: 22032432].
[29]
Brown, P.D.; Lerner, S.A. Community-acquired pneumonia. Lancet, 1998, 352(9136), 1295-1302. [http://dx.doi.org/10.1016/S0140-6736(98)02239-9]. [PMID: 9788476].
[30]
Alcón, A.; Fàbregas, N.; Torres, A. Pathophysiology of pneumonia. Clin. Chest Med., 2005, 26(1), 39-46. [http://dx.doi.org/10.1016/j.ccm.2004.10.013]. [PMID: 15802164].
[31]
Nelson, S.; Mason, C.M.; Kolls, J.; Summer, W.R. Pathophysiology of pneumonia. Clin. Chest Med., 1995, 16(1), 1-12. [http://dx.doi.org/10.1016/S0272-5231(21)00975-8]. [PMID: 7768083].
[32]
Koegelenberg, C.F.N.; Diacon, A.H.; Bolliger, C.T. Parapneumonic pleural effusion and empyema. Respiration, 2008, 75(3), 241-250. [http://dx.doi.org/10.1159/000117172]. [PMID: 18367849].
[33]
Liang, L.; Li, Z.; Ma, T.; Han, Z.; Du, W.; Geng, J.; Jia, H.; Zhao, M.; Wang, J.; Zhang, B.; Feng, J.; Zhao, L.; Rupin, A.; Wang, Y.; Han, Z.C. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transplant., 2017, 26(1), 45-61. [http://dx.doi.org/10.3727/096368916X692726]. [PMID: 27501782].
[34]
Li, Q.; Hou, H.; Li, M.; Yu, X.; Zuo, H.; Gao, J.; Zhang, M.; Li, Z.; Guo, Z. CD73+ mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front. Cell Dev. Biol., 2021, 9637239 [http://dx.doi.org/10.3389/fcell.2021.637239]. [PMID: 34055772].
[35]
Cao, X.; Duan, L.; Hou, H.; Liu, Y.; Chen, S.; Zhang, S.; Liu, Y.; Wang, C.; Qi, X.; Liu, N.; Han, Z.; Zhang, D.; Han, Z-C.; Guo, Z.; Zhao, Q.; Li, Z. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization. Theranostics, 2020, 10(17), 7697-7709. [http://dx.doi.org/10.7150/thno.45434]. [PMID: 32685014].
[36]
Zhao, X.; Liu, Y.; Jia, P.; Cheng, H.; Wang, C.; Chen, S.; Huang, H.; Han, Z.; Han, Z.C.; Marycz, K.; Chen, X.; Li, Z. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res. Ther., 2021, 12(1), 196. [http://dx.doi.org/10.1186/s13287-021-02262-4]. [PMID: 33743829].
[37]
Li, H.; Huang, H.; Chen, X.; Chen, S.; Yu, L.; Wang, C.; Liu, Y.; Zhang, K.; Wu, L.; Han, Z.C.; Liu, N.; Wu, J.; Li, Z. The delivery of hsa-miR-11401 by extracellular vesicles can relieve doxorubicin-induced mesenchymal stem cell apoptosis. Stem Cell Res. Ther., 2021, 12(1), 77. [http://dx.doi.org/10.1186/s13287-021-02156-5]. [PMID: 33482923].
[38]
Zhang, K.; Chen, S.; Sun, H.; Wang, L.; Li, H.; Zhao, J.; Zhang, C.; Li, N.; Guo, Z.; Han, Z.; Han, Z.C.; Zheng, G.; Chen, X.; Li, Z. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment. J. Biol. Chem., 2020, 295(34), 12203-12213. [http://dx.doi.org/10.1074/jbc.RA120.012732]. [PMID: 32641493].
[39]
Zhang, C.; Shang, Y.; Chen, X.; Midgley, A.C.; Wang, Z.; Zhu, D.; Wu, J.; Chen, P.; Wu, L.; Wang, X.; Zhang, K.; Wang, H.; Kong, D.; Yang, Z.; Li, Z.; Chen, X. Supramolecular nanofibers containing arginine-glycine-aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair. ACS Nano, 2020, 14(9), 12133-12147. [http://dx.doi.org/10.1021/acsnano.0c05681]. [PMID: 32790341].
[40]
Behnke, J.; Kremer, S.; Shahzad, T.; Chao, C-M.; Böttcher-Friebertshäuser, E.; Morty, R.E.; Bellusci, S.; Ehrhardt, H. MSC based therapies-new perspectives for the injured lung. J. Clin. Med., 2020, 9(3)E682 [http://dx.doi.org/10.3390/jcm9030682]. [PMID: 32138309].
[41]
Gao, P.; Zhou, Y.; Xian, L.; Li, C.; Xu, T.; Plunkett, B.; Huang, S.K.; Wan, M.; Cao, X. Functional effects of TGF-β1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. J. Immunol., 2014, 192(10), 4560-4570. [http://dx.doi.org/10.4049/jimmunol.1303461]. [PMID: 24711618].
[42]
Xu, C.; Yu, P.; Han, X.; Du, L.; Gan, J.; Wang, Y.; Shi, Y. TGF-β promotes immune responses in the presence of mesenchymal stem cells. J. Immunol., 2014, 192(1), 103-109.
[43]
Volarevic, V.; Gazdic, M.; Simovic Markovic, B.; Jovicic, N.; Djonov, V.; Arsenijevic, N. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors, 2017, 43(5), 633-644. [http://dx.doi.org/10.1002/biof.1374]. [PMID: 28718997].
[44]
Uzunhan, Y.; Bernard, O.; Marchant, D.; Dard, N.; Vanneaux, V.; Larghero, J.; Gille, T.; Clerici, C.; Valeyre, D.; Nunes, H.; Boncoeur, E.; Planès, C. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(5), L439-L451. [http://dx.doi.org/10.1152/ajplung.00117.2015]. [PMID: 26702148].
[45]
Zheng, Y.; Cai, W.; Zhou, S.; Xu, L.; Jiang, C. Protective effect of bone marrow derived mesenchymal stem cells in lipopolysaccharide-induced acute lung injury mediated by claudin-4 in a rat model. Am. J. Transl. Res., 2016, 8(9), 3769-3779.
[46]
Lee, S-H.; Jang, A-S.; Kim, Y-E.; Cha, J-Y.; Kim, T-H.; Jung, S.; Park, S-K.; Lee, Y-K.; Won, J-H.; Kim, Y-H.; Park, C-S. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir. Res., 2010, 11, 16. [http://dx.doi.org/10.1186/1465-9921-11-16]. [PMID: 20137099].
[47]
Reddy, M.; Fonseca, L.; Gowda, S.; Chougule, B.; Hari, A.; Totey, S. Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: Comparison with pirfenidone. Int. J. Stem Cells, 2016, 9(2), 192-206. [http://dx.doi.org/10.15283/ijsc16041]. [PMID: 27871152].
[48]
Ortiz, L.A.; Gambelli, F.; McBride, C.; Gaupp, D.; Baddoo, M.; Kaminski, N.; Phinney, D.G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8407-8411. [http://dx.doi.org/10.1073/pnas.1432929100]. [PMID: 12815096].
[49]
Monsel, A.; Zhu, Y.G.; Gennai, S.; Hao, Q.; Hu, S.; Rouby, J-J.; Rosenzwajg, M.; Matthay, M.A.; Lee, J.W. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med., 2015, 192(3), 324-336. [http://dx.doi.org/10.1164/rccm.201410-1765OC]. [PMID: 26067592].
[50]
Mei, S.H.J.; Haitsma, J.J.; Dos Santos, C.C.; Deng, Y.; Lai, P.F.H.; Slutsky, A.S.; Liles, W.C.; Stewart, D.J. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am. J. Respir. Crit. Care Med., 2010, 182(8), 1047-1057. [http://dx.doi.org/10.1164/rccm.201001-0010OC]. [PMID: 20558630].
[51]
Krasnodembskaya, A.; Song, Y.; Fang, X.; Gupta, N.; Serikov, V.; Lee, J-W.; Matthay, M.A. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 2010, 28(12), 2229-2238. [http://dx.doi.org/10.1002/stem.544]. [PMID: 20945332].
[52]
Zhu, Y-G.; Feng, X-M.; Abbott, J.; Fang, X-H.; Hao, Q.; Monsel, A.; Qu, J-M.; Matthay, M.A.; Lee, J.W. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells, 2014, 32(1), 116-125. [http://dx.doi.org/10.1002/stem.1504]. [PMID: 23939814].
[53]
Gupta, N.; Su, X.; Popov, B.; Lee, J.W.; Serikov, V.; Matthay, M.A. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J. Immunol., 2007, 179(3), 1855-1863. [http://dx.doi.org/10.4049/jimmunol.179.3.1855]. [PMID: 17641052].
[54]
Gennai, S.; Monsel, A.; Hao, Q.; Park, J.; Matthay, M.A.; Lee, J.W. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am. J. Transplant., 2015, 15(9), 2404-2412. [http://dx.doi.org/10.1111/ajt.13271]. [PMID: 25847030].
[55]
Zheng, G.; Huang, L.; Tong, H.; Shu, Q.; Hu, Y.; Ge, M.; Deng, K.; Zhang, L.; Zou, B.; Cheng, B.; Xu, J. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir. Res., 2014, 15, 39. [http://dx.doi.org/10.1186/1465-9921-15-39]. [PMID: 24708472].
[56]
Le Blanc, K.; Tammik, L.; Sundberg, B.; Haynesworth, S.E.; Ringdén, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol., 2003, 57(1), 11-20. [http://dx.doi.org/10.1046/j.1365-3083.2003.01176.x]. [PMID: 12542793].
[57]
Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; Moseley, A.; Hoffman, R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol., 2002, 30(1), 42-48. [http://dx.doi.org/10.1016/S0301-472X(01)00769-X]. [PMID: 11823036].
[58]
Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99(10), 3838-3843. [http://dx.doi.org/10.1182/blood.V99.10.3838]. [PMID: 11986244].
[59]
Tse, W.T.; Pendleton, J.D.; Beyer, W.M.; Egalka, M.C.; Guinan, E.C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation, 2003, 75(3), 389-397. [http://dx.doi.org/10.1097/01.TP.0000045055.63901.A9]. [PMID: 12589164].
[60]
Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther., 2016, 7(1), 125. [http://dx.doi.org/10.1186/s13287-016-0363-7]. [PMID: 27581859].
[61]
Ionescu, L.I.; Alphonse, R.S.; Arizmendi, N.; Morgan, B.; Abel, M.; Eaton, F.; Duszyk, M.; Vliagoftis, H.; Aprahamian, T.R.; Walsh, K.; Thébaud, B. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. Am. J. Respir. Cell Mol. Biol., 2012, 46(2), 207-216. [http://dx.doi.org/10.1165/rcmb.2010-0391OC]. [PMID: 21903873].
[62]
Sutton, M.T.; Fletcher, D.; Ghosh, S.K.; Weinberg, A.; van Heeckeren, R.; Kaur, S.; Sadeghi, Z.; Hijaz, A.; Reese, J.; Lazarus, H.M.; Lennon, D.P.; Caplan, A.I.; Bonfield, T.L. Antimicrobial properties of mesenchymal stem cells: Therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int., 2016, 20165303048 [http://dx.doi.org/10.1155/2016/5303048]. [PMID: 26925108].
[63]
de Castro, L.L.; Xisto, D.G.; Kitoko, J.Z.; Cruz, F.F.; Olsen, P.C.; Redondo, P.A.G.; Ferreira, T.P.T.; Weiss, D.J.; Martins, M.A.; Morales, M.M.; Rocco, P.R.M. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res. Ther., 2017, 8(1), 151. [http://dx.doi.org/10.1186/s13287-017-0600-8]. [PMID: 28646903].
[64]
Robbins, P.D.; Morelli, A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol., 2014, 14(3), 195-208. [http://dx.doi.org/10.1038/nri3622]. [PMID: 24566916].
[65]
Gomzikova, M.O.; James, V.; Rizvanov, A.A. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. Front. Immunol., 2019, 10, 2663. [http://dx.doi.org/10.3389/fimmu.2019.02663]. [PMID: 31849929].
[66]
Burrello, J.; Monticone, S.; Gai, C.; Gomez, Y.; Kholia, S.; Camussi, G. Stem cell-derived extracellular vesicles and immune-modulation. Front. Cell Dev. Biol., 2016, 4, 83. [http://dx.doi.org/10.3389/fcell.2016.00083]. [PMID: 27597941].
[67]
Usunier, B.; Benderitter, M.; Tamarat, R.; Chapel, A. Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells Int., 2014, 2014340257 [http://dx.doi.org/10.1155/2014/340257]. [PMID: 25132856].
[68]
Strempel, N.; Neidig, A.; Nusser, M.; Geffers, R.; Vieillard, J.; Lesouhaitier, O.; Brenner-Weiss, G.; Overhage, J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One, 2013, 8(12)e82240 [http://dx.doi.org/10.1371/journal.pone.0082240]. [PMID: 24349231].
[69]
Loi, R.; Beckett, T.; Goncz, K.K.; Suratt, B.T.; Weiss, D.J. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am. J. Respir. Crit. Care Med., 2006, 173(2), 171-179. [http://dx.doi.org/10.1164/rccm.200502-309OC]. [PMID: 16179642].
[70]
Hostettler, K.E.; Gazdhar, A.; Khan, P.; Savic, S.; Tamo, L.; Lardinois, D.; Roth, M.; Tamm, M.; Geiser, T. Multipotent mesenchymal stem cells in lung fibrosis. PLoS One, 2017, 12(8)e0181946 [http://dx.doi.org/10.1371/journal.pone.0181946]. [PMID: 28827799].
[71]
Harrell, C.R.; Sadikot, R.; Pascual, J.; Fellabaum, C.; Jankovic, M.G.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Mesenchymal stem cell-based therapy of inflammatory lung diseases: Current understanding and future perspectives. Stem Cells Int., 2019, 20194236973 [http://dx.doi.org/10.1155/2019/4236973]. [PMID: 31191672].
[72]
Zhang, Z.; Huang, S.; Wu, S.; Qi, J.; Li, W.; Liu, S.; Cong, Y.; Chen, H.; Lu, L.; Shi, S.; Wang, D.; Chen, W.; Sun, L. Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine, 2019, 45, 341-350. [http://dx.doi.org/10.1016/j.ebiom.2019.06.016]. [PMID: 31248835].
[73]
Ghannam, S.; Bouffi, C.; Djouad, F.; Jorgensen, C.; Noël, D. Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Res. Ther., 2010, 1(1), 2. [http://dx.doi.org/10.1186/scrt2]. [PMID: 20504283].
[74]
Walter, J.; Ware, L.B.; Matthay, M.A. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir. Med., 2014, 2(12), 1016-1026. [http://dx.doi.org/10.1016/S2213-2600(14)70217-6]. [PMID: 25465643].
[75]
Haddad, R.; Saldanha-Araujo, F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? BioMed Res. Int., 2014, 2014216806 [http://dx.doi.org/10.1155/2014/216806]. [PMID: 25025040].
[76]
Budoni, M.; Fierabracci, A.; Luciano, R.; Petrini, S.; Di Ciommo, V.; Muraca, M. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant., 2013, 22(2), 369-379. [http://dx.doi.org/10.3727/096368911X582769b]. [PMID: 23433427].
[77]
Di Trapani, M.; Bassi, G.; Midolo, M.; Gatti, A.; Kamga, P.T.; Cassaro, A.; Carusone, R.; Adamo, A.; Krampera, M. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci. Rep., 2016, 6, 24120. [http://dx.doi.org/10.1038/srep24120]. [PMID: 27071676].
[78]
Galleu, A.; Riffo-Vasquez, Y.; Trento, C.; Lomas, C.; Dolcetti, L.; Cheung, T.S.; von Bonin, M.; Barbieri, L.; Halai, K.; Ward, S.; Weng, L.; Chakraverty, R.; Lombardi, G.; Watt, F.M.; Orchard, K.; Marks, D.I.; Apperley, J.; Bornhauser, M.; Walczak, H.; Bennett, C.; Dazzi, F. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med., 2017, 9(416)eaam7828 [http://dx.doi.org/10.1126/scitranslmed.aam7828]. [PMID: 29141887].
[79]
Li, X.; Liu, L.; Yang, J.; Yu, Y.; Chai, J.; Wang, L.; Ma, L.; Yin, H. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine, 2016, 8, 72-82. [http://dx.doi.org/10.1016/j.ebiom.2016.04.030]. [PMID: 27428420].
[80]
Favaro, E.; Carpanetto, A.; Lamorte, S.; Fusco, A.; Caorsi, C.; Deregibus, M.C.; Bruno, S.; Amoroso, A.; Giovarelli, M.; Porta, M.; Perin, P.C.; Tetta, C.; Camussi, G.; Zanone, M.M. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia, 2014, 57(8), 1664-1673. [http://dx.doi.org/10.1007/s00125-014-3262-4]. [PMID: 24838680].
[81]
Lo Sicco, C.; Reverberi, D.; Balbi, C.; Ulivi, V.; Principi, E.; Pascucci, L.; Becherini, P.; Bosco, M.C.; Varesio, L.; Franzin, C.; Pozzobon, M.; Cancedda, R.; Tasso, R. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl. Med., 2017, 6(3), 1018-1028. [http://dx.doi.org/10.1002/sctm.16-0363]. [PMID: 28186708].
[82]
Wang, Y.; Chen, X.; Cao, W.; Shi, Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat. Immunol., 2014, 15(11), 1009-1016. [http://dx.doi.org/10.1038/ni.3002]. [PMID: 25329189].
[83]
Zhang, Y.; Xu, J.; Liu, S.; Lim, M.; Zhao, S.; Cui, K.; Zhang, K.; Wang, L.; Ji, Q.; Han, Z.; Kong, D.; Li, Z.; Liu, N. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics, 2019, 9(23), 6976-6990. [http://dx.doi.org/10.7150/thno.35305]. [PMID: 31660081].
[84]
Wei, Y.; Wu, Y.; Zhao, R.; Zhang, K.; Midgley, A.C.; Kong, D.; Li, Z.; Zhao, Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials, 2019, 204, 13-24. [http://dx.doi.org/10.1016/j.biomaterials.2019.01.049]. [PMID: 30875515].
[85]
Yu, L.; Liu, S.; Wang, C.; Zhang, C.; Wen, Y.; Zhang, K.; Chen, S.; Huang, H.; Liu, Y.; Wu, L.; Han, Z.; Chen, X.; Li, Z.; Liu, N. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Res. Ther., 2021, 12(1), 379. [http://dx.doi.org/10.1186/s13287-021-02460-0]. [PMID: 34215331].
[86]
Ren, J.; Liu, Y.; Yao, Y.; Feng, L.; Zhao, X.; Li, Z.; Yang, L. Intranasal delivery of MSC-derived exosomes attenuates allergic asthma via expanding IL-10 producing lung interstitial macrophages in mice. Int. Immunopharmacol., 2021, 91107288 [http://dx.doi.org/10.1016/j.intimp.2020.107288]. [PMID: 33360827].
[87]
Noonin, C.; Thongboonkerd, V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics, 2021, 11(9), 4436-4451. [http://dx.doi.org/10.7150/thno.54004]. [PMID: 33754070].
[88]
Zhou, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Chang, E.; Fan, H. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol. Ther., 2018, 26(5), 1375-1384. [http://dx.doi.org/10.1016/j.ymthe.2018.02.020]. [PMID: 29599080].
[89]
Liu, Y.; Cui, J.; Wang, H.; Hezam, K.; Zhao, X.; Huang, H.; Chen, S.; Han, Z.; Han, Z.C.; Guo, Z.; Li, Z. Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment. Stem Cell Res. Ther., 2020, 11(1), 161. [http://dx.doi.org/10.1186/s13287-020-01668-w]. [PMID: 32321594].
[90]
Matthay, M.A.; Pati, S.; Lee, J-W. Concise review: Mesenchymal stem (stromal) cells: Biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells, 2017, 35(2), 316-324. [http://dx.doi.org/10.1002/stem.2551]. [PMID: 27888550].
[91]
Chen, J.Y.; An, R.; Liu, Z.J.; Wang, J.J.; Chen, S.Z.; Hong, M.M.; Liu, J.H.; Xiao, M.Y.; Chen, Y.F. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol. Sin., 2014, 35(9), 1121-1128. [http://dx.doi.org/10.1038/aps.2014.61]. [PMID: 25088001].
[92]
Lee, C.; Mitsialis, S.A.; Aslam, M.; Vitali, S.H.; Vergadi, E.; Konstantinou, G.; Sdrimas, K.; Fernandez-Gonzalez, A.; Kourembanas, S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 2012, 126(22), 2601-2611. [http://dx.doi.org/10.1161/CIRCULATIONAHA.112.114173]. [PMID: 23114789].
[93]
Morrison, T.J.; Jackson, M.V.; Cunningham, E.K.; Kissenpfennig, A.; McAuley, D.F.; O’Kane, C.M.; Krasnodembskaya, A.D. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am. J. Respir. Crit. Care Med., 2017, 196(10), 1275-1286. [http://dx.doi.org/10.1164/rccm.201701-0170OC]. [PMID: 28598224].
[94]
Cruz, F.F.; Borg, Z.D.; Goodwin, M.; Sokocevic, D.; Wagner, D.E.; Coffey, A.; Antunes, M.; Robinson, K.L.; Mitsialis, S.A.; Kourembanas, S.; Thane, K.; Hoffman, A.M.; McKenna, D.H.; Rocco, P.R.; Weiss, D.J. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl. Med., 2015, 4(11), 1302-1316. [http://dx.doi.org/10.5966/sctm.2014-0280]. [PMID: 26378259].
[95]
Lei, X.; He, N.; Zhu, L.; Zhou, M.; Zhang, K.; Wang, C.; Huang, H.; Chen, S.; Li, Y.; Liu, Q.; Han, Z.; Guo, Z.; Han, Z.; Li, Z. Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via miRNA-214-3p. Antioxid. Redox Signal., 2020. [http://dx.doi.org/10.1089/ars.2019.7965]. [PMID: 32664737].
[96]
Johnson, E.R.; Matthay, M.A. Acute lung injury: Epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(4), 243-252. [http://dx.doi.org/10.1089/jamp.2009.0775]. [PMID: 20073554].
[97]
Huh, J.W.; Kim, S.Y.; Lee, J.H.; Lee, J.S.; Van Ta, Q.; Kim, M.; Oh, Y.M.; Lee, Y.S.; Lee, S.D. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(3), L255-L266. [http://dx.doi.org/10.1152/ajplung.00253.2010]. [PMID: 21622846].
[98]
Wilson, J.G.; Liu, K.D.; Zhuo, H.; Caballero, L.; McMillan, M.; Fang, X.; Cosgrove, K.; Vojnik, R.; Calfee, C.S.; Lee, J.W.; Rogers, A.J.; Levitt, J.; Wiener-Kronish, J.; Bajwa, E.K.; Leavitt, A.; McKenna, D.; Thompson, B.T.; Matthay, M.A. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir. Med., 2015, 3(1), 24-32. [http://dx.doi.org/10.1016/S2213-2600(14)70291-7]. [PMID: 25529339].
[99]
Rojas, M.; Xu, J.; Woods, C.R.; Mora, A.L.; Spears, W.; Roman, J.; Brigham, K.L. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol., 2005, 33(2), 145-152. [http://dx.doi.org/10.1165/rcmb.2004-0330OC]. [PMID: 15891110].
[100]
Shalaby, S.M.; El-Shal, A.S.; Abd-Allah, S.H.; Selim, A.O.; Selim, S.A.; Gouda, Z.A.; Abd El Motteleb, D.M.; Zanfaly, H.E.; El-Assar, H.M.; Abdelazim, S. Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli-induced acute lung injury in mice. Cytotherapy, 2014, 16(6), 764-775. [http://dx.doi.org/10.1016/j.jcyt.2013.12.006]. [PMID: 24525173].
[101]
Hayes, M.; Masterson, C.; Devaney, J.; Barry, F.; Elliman, S.; O’Brien, T.; O’Toole, D.; Curley, G.F.; Laffey, J.G. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology, 2015, 122(2), 363-373. [http://dx.doi.org/10.1097/ALN.0000000000000545]. [PMID: 25490744].
[102]
Shologu, N.; Scully, M.; Laffey, J.G.; O’Toole, D. Human mesenchymal stem cell secretome from bone marrow or adipose-derived tissue sources for treatment of hypoxia-induced pulmonary epithelial injury. Int. J. Mol. Sci., 2018, 19(10), 2996. [http://dx.doi.org/10.3390/ijms19102996]. [PMID: 30274394].
[103]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. [http://dx.doi.org/10.1038/s41586-020-2012-7]. [PMID: 32015507].
[104]
Cucinotta, D.; Vanelli, M.; Declares, W.H.O. COVID-19 a Pandemic. Acta Biomed., 2020, 91(1), 157-160. [PMID: 32191675].
[105]
Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol., 2020, 49(3), 717-726. [http://dx.doi.org/10.1093/ije/dyaa033]. [PMID: 32086938].
[106]
Zhai, P.; Ding, Y.; Wu, X.; Long, J.; Zhong, Y.; Li, Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents, 2020, 55(5)105955 [http://dx.doi.org/10.1016/j.ijantimicag.2020.105955]. [PMID: 32234468].
[107]
Yaqinuddin, A.; Kashir, J. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using monalizumab, cholroquine, and antiviral agents. Med. Hypotheses, 2020, 140109777 [http://dx.doi.org/10.1016/j.mehy.2020.109777]. [PMID: 32344314].
[108]
Hezam, K.; Almansoub, H.A.; Saleh, F.A.; Almansob, Y.A.; Al-Mekhlafi, H.; Asma, A-Y.; Al-Gheethi, A.; Almezgagi, M.; Al-Shaebi, F.; Murshed, D. 2020.
[109]
Peng, H.; Gong, T.; Huang, X.; Sun, X.; Luo, H.; Wang, W.; Luo, J.; Luo, B.; Chen, Y.; Wang, X.; Long, H.; Mei, H.; Li, C.; Dai, Y.; Li, H. A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely ill COVID-19 patients: A clinical case report. Stem Cell Res. Ther., 2020, 11(1), 291. [http://dx.doi.org/10.1186/s13287-020-01802-8]. [PMID: 32678017].
[110]
Serafin, M.B.; Bottega, A.; Foletto, V.S.; da Rosa, T.F.; Hörner, A.; Hörner, R. Drug repositioning is an alternative for the treatment of coronavirus COVID-19. Int. J. Antimicrob. Agents, 2020, 55(6)105969 [http://dx.doi.org/10.1016/j.ijantimicag.2020.105969]. [PMID: 32278811].
[111]
Saldanha-Araujo, F.; Melgaço Garcez, E.; Silva-Carvalho, A.E.; Carvalho, J.L. Mesenchymal stem cells: A new piece in the puzzle of COVID-19 treatment. Front. Immunol., 2020, 11, 1563. [http://dx.doi.org/10.3389/fimmu.2020.01563]. [PMID: 32719683].
[112]
Tang, L.; Jiang, Y.; Zhu, M.; Chen, L.; Zhou, X.; Zhou, C.; Ye, P.; Chen, X.; Wang, B.; Xu, Z.; Zhang, Q.; Xu, X.; Gao, H.; Wu, X.; Li, D.; Jiang, W.; Qu, J.; Xiang, C.; Li, L. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Front. Med., 2020, 14(5), 664-673. [http://dx.doi.org/10.1007/s11684-020-0810-9]. [PMID: 32761491].
[113]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 Pneumonia. Aging Dis., 2020, 11(2), 216-228. [http://dx.doi.org/10.14336/AD.2020.0228]. [PMID: 32257537].
[114]
Shu, L.; Niu, C.; Li, R.; Huang, T.; Wang, Y.; Huang, M.; Ji, N.; Zheng, Y.; Chen, X.; Shi, L.; Wu, M.; Deng, K.; Wei, J.; Wang, X.; Cao, Y.; Yan, J.; Feng, G. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther., 2020, 11(1), 361. [http://dx.doi.org/10.1186/s13287-020-01875-5]. [PMID: 32811531].
[115]
Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol., 2021, 16(7), 748-759. [http://dx.doi.org/10.1038/s41565-021-00931-2]. [PMID: 34211166].
[116]
Sherman, C.D.; Lodha, S.; Sahoo, S. ev cargo sorting in therapeutic development for cardiovascular disease. Cells, 2021, 10(6), 1500. [http://dx.doi.org/10.3390/cells10061500]. [PMID: 34203713].
[117]
Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int., 2019, 20199628536 [http://dx.doi.org/10.1155/2019/9628536]. [PMID: 31093291].
[118]
Liu, S.; Ginestier, C.; Ou, S.J.; Clouthier, S.G.; Patel, S.H.; Monville, F.; Korkaya, H.; Heath, A.; Dutcher, J.; Kleer, C.G.; Jung, Y.; Dontu, G.; Taichman, R.; Wicha, M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res., 2011, 71(2), 614-624. [http://dx.doi.org/10.1158/0008-5472.CAN-10-0538]. [PMID: 21224357].
[119]
Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449(7162), 557-563. [http://dx.doi.org/10.1038/nature06188]. [PMID: 17914389].
[120]
Haynesworth, S.E.; Baber, M.A.; Caplan, A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J. Cell. Physiol., 1996, 166(3), 585-592. [http://dx.doi.org/10.1002/(SICI)1097-4652(199603)166:3<585:AID-JCP13>3.0.CO;2-6]. [PMID: 8600162].
[121]
Kadereit, S.; Deeds, L.S.; Haynesworth, S.E.; Koc, O.N.; Kozik, M.M.; Szekely, E.; Daum-Woods, K.; Goetchius, G.W.; Fu, P.; Welniak, L.A.; Murphy, W.J.; Laughlin, M.J. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(-) early progenitors cultured over human MSCs as a feeder layer. Stem Cells, 2002, 20(6), 573-582. [http://dx.doi.org/10.1634/stemcells.20-6-573]. [PMID: 12456965].
[122]
Lee, J.W.; Fang, X.; Gupta, N.; Serikov, V.; Matthay, M.A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16357-16362. [http://dx.doi.org/10.1073/pnas.0907996106]. [PMID: 19721001].
[123]
Tsoyi, K.; Hall, S.R.; Dalli, J.; Colas, R.A.; Ghanta, S.; Ith, B.; Coronata, A.; Fredenburgh, L.E.; Baron, R.M.; Choi, A.M.; Serhan, C.N.; Liu, X.; Perrella, M.A. Carbon monoxide improves efficacy of mesenchymal stromal cells during sepsis by production of specialized proresolving lipid mediators. Crit. Care Med., 2016, 44(12), e1236-e1245. [http://dx.doi.org/10.1097/CCM.0000000000001999]. [PMID: 27513357].
[124]
Kim, E.S.; Chang, Y.S.; Choi, S.J.; Kim, J.K.; Yoo, H.S.; Ahn, S.Y.; Sung, D.K.; Kim, S.Y.; Park, Y.R.; Park, W.S. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir. Res., 2011, 12, 108. [http://dx.doi.org/10.1186/1465-9921-12-108]. [PMID: 21843339].
[125]
Li, W.; Chen, W.; Huang, S.; Tang, X.; Yao, G.; Sun, L. Mesenchymal stem cells enhance pulmonary antimicrobial immunity and prevent following bacterial infection. Stem Cells Int., 2020, 20203169469 [http://dx.doi.org/10.1155/2020/3169469]. [PMID: 32300367].
[126]
Chen, X.; Wu, S.; Tang, L.; Ma, L.; Wang, F.; Feng, H.; Meng, J.; Han, Z. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J. Cell. Physiol., 2019, 234(5), 7301-7319. [http://dx.doi.org/10.1002/jcp.27488]. [PMID: 30362554].
[127]
Fang, X.; Abbott, J.; Cheng, L.; Colby, J.K.; Lee, J.W.; Levy, B.D.; Matthay, M.A. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J. Immunol., 2015, 195(3), 875-881. [http://dx.doi.org/10.4049/jimmunol.1500244]. [PMID: 26116507].
[128]
Li, X.; Zhang, Y.; Liang, Y.; Cui, Y.; Yeung, S.C.; Ip, M.S.; Tse, H.F.; Lian, Q.; Mak, J.C. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J. Cell. Mol. Med., 2017, 21(2), 265-277. [http://dx.doi.org/10.1111/jcmm.12962]. [PMID: 27641240].
[129]
Curley, G.F.; Jerkic, M.; Dixon, S.; Hogan, G.; Masterson, C.; O’Toole, D.; Devaney, J.; Laffey, J.G. Cryopreserved, xeno-free human umbilical cord mesenchymal stromal cells reduce lung injury severity and bacterial burden in rodent Escherichia coli-induced acute respiratory distress syndrome. Crit. Care Med., 2017, 45(2), e202-e212. [http://dx.doi.org/10.1097/CCM.0000000000002073]. [PMID: 27861182].
[130]
Devaney, J.; Horie, S.; Masterson, C.; Elliman, S.; Barry, F.; O’Brien, T.; Curley, G.F.; O’Toole, D.; Laffey, J.G. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015, 70(7), 625-635. [http://dx.doi.org/10.1136/thoraxjnl-2015-206813]. [PMID: 25986435].