Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies

Author(s): Aditya A. Singh, Akash Kharwar and Manoj P. Dandekar *

Volume 20, Issue 9, 2022

Published on: 30 March, 2022

Page: [1667 - 1686] Pages: 20

DOI: 10.2174/1570159X19666210907092928

Price: $65

Abstract

Background: Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts.

Methods: Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s.

Results: We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences.

Conclusion: There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.

Keywords: Stroke, preclinical models, brain ischemia, therapeutic target, pathophysiology, gut microbiome.

Graphical Abstract

[1]
Chugh, C. Acute Ischemic Stroke: Management Approach. Indian J. Crit. Care Med., 2019, 23(Suppl. 2), S140-S146.
[http://dx.doi.org/10.5005/jp-journals-10071-23192] [PMID: 31485123]
[2]
Hurford, R.; Sekhar, A.; Hughes, T.A.T.; Muir, K.W. Diagnosis and management of acute ischaemic stroke. Pract. Neurol., 2020, 20(4), 304-316.
[http://dx.doi.org/10.1136/practneurol-2020-002557] [PMID: 32507747]
[3]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 2018, 137(12), e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[4]
Rosamond, W.; Flegal, K.; Furie, K.; Go, A.; Greenlund, K.; Haase, N.; Hailpern, S.M.; Ho, M.; Howard, V.; Kissela, B.; Kittner, S.; Lloyd-Jones, D.; McDermott, M.; Meigs, J.; Moy, C.; Nichol, G.; O’Donnell, C.; Roger, V.; Sorlie, P.; Steinberger, J.; Thom, T.; Wilson, M.; Hong, Y. Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2008, 117(4), e25-e146.
[PMID: 18086926]
[5]
Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; O’Donnell, M.; Venketasubramanian, N.; Barker-Collo, S.; Lawes, C.M.; Wang, W.; Shinohara, Y.; Witt, E.; Ezzati, M.; Naghavi, M.; Murray, C. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet, 2014, 383(9913), 245-254.
[http://dx.doi.org/10.1016/S0140-6736(13)61953-4] [PMID: 24449944]
[6]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[7]
Warlow, C.; Sudlow, C.; Dennis, M.; Wardlaw, J.; Sandercock, P. Stroke. Lancet, 2003, 362(9391), 1211-1224.
[http://dx.doi.org/10.1016/S0140-6736(03)14544-8] [PMID: 14568745]
[8]
Akpan, N.; Serrano-Saiz, E.; Zacharia, B.E.; Otten, M.L.; Ducruet, A.F.; Snipas, S.J.; Liu, W.; Velloza, J.; Cohen, G.; Sosunov, S.A.; Frey, W.H., II; Salvesen, G.S.; Connolly, E.S., Jr; Troy, C.M. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J. Neurosci., 2011, 31(24), 8894-8904.
[http://dx.doi.org/10.1523/JNEUROSCI.0698-11.2011] [PMID: 21677173]
[9]
Musuka, T.D.; Wilton, S.B.; Traboulsi, M.; Hill, M.D. Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ, 2015, 187(12), 887-893.
[http://dx.doi.org/10.1503/cmaj.140355] [PMID: 26243819]
[10]
Kuriakose, D.; Xiao, Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int. J. Mol. Sci., 2020, 21(20), E7609.
[http://dx.doi.org/10.3390/ijms21207609] [PMID: 33076218]
[11]
Mandić, M.; Rancić, N. [Risk factors for stroke Med. Pregl., 2011, 64(11-12), 600-605.
[http://dx.doi.org/10.2298/MPNS1112600M] [PMID: 22369009]
[12]
Orellana-Urzúa, S.; Rojas, I.; Líbano, L.; Rodrigo, R. Pathophysiology of ischemic stroke: Role of oxidative stress. Curr. Pharm. Des., 2020, 26(34), 4246-4260.
[http://dx.doi.org/10.2174/1381612826666200708133912] [PMID: 32640953]
[13]
Majno, G.; Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 1995, 146(1), 3-15.
[PMID: 7856735]
[14]
Zhu, Y.; Hu, S.C.; Zheng, P.W.; Jin, M.J.; Tang, M.L.; Chen, K.; Wang, J.B. Association between CPR-related genetic variants and risk of ischemic stroke: a nested case-control study. Neurol. Res., 2019, 41(12), 1090-1096.
[http://dx.doi.org/10.1080/01616412.2019.1673286] [PMID: 31584351]
[15]
Li, H.; Yu, S.; Wang, R.; Sun, Z.; Zhou, X.; Zheng, L.; Yin, Z.; Zhang, X.; Sun, Y. Genetic variant of Kalirin gene is associated with ischemic stroke in a chinese han population. BioMed Res. Int., 2017, 2017, 6594271.
[PMID: 28706949]
[16]
Llamas Sillero, P.; Fernández de Velasco Casarrubios, J.; García-Raso, A.; Meseguer Gancedo, E.; Santos Montero, A.B.; Tomás Martínez, J.F. Polymorphism -238 G/A of tumor necrosis factor alpha gene promoter is a genetic risk factor for ischemic cerebrovascular disease. J. Mol. Neurosci., 2007, 32(2), 108-110.
[http://dx.doi.org/10.1007/s12031-007-0021-8] [PMID: 17873294]
[17]
Niu, Y.M.; Weng, H.; Zhang, C.; Yuan, R.X.; Yan, J.Z.; Meng, X.Y.; Luo, J. Systematic review by multivariate meta-analyses on the possible role of tumor necrosis factor-α gene polymorphisms in association with ischemic stroke. Neuromolecular Med., 2015, 17(4), 373-384.
[http://dx.doi.org/10.1007/s12017-015-8365-7] [PMID: 26231680]
[18]
Touré, F.; Fritz, G.; Li, Q.; Rai, V.; Daffu, G.; Zou, Y.S.; Rosario, R.; Ramasamy, R.; Alberts, A.S.; Yan, S.F.; Schmidt, A.M. Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ. Res., 2012, 110(10), 1279-1293.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.262519] [PMID: 22511750]
[19]
Pan, J.; Lordier, L.; Meyran, D.; Rameau, P.; Lecluse, Y.; Kitchen-Goosen, S.; Badirou, I.; Mokrani, H.; Narumiya, S.; Alberts, A.S.; Vainchenker, W.; Chang, Y. The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons. Blood, 2014, 124(26), 3967-3977.
[http://dx.doi.org/10.1182/blood-2013-12-544924] [PMID: 25298036]
[20]
Ren, Z.; Chen, X.; Tang, W.; Li, J.; Yang, S.; Chen, Y.; Zhao, X.; Zong, H.; Liu, C.; Shen, C. Association of DIAPH1 gene polymorphisms with ischemic stroke. Aging (Albany NY), 2020, 12(1), 416-435.
[http://dx.doi.org/10.18632/aging.102631] [PMID: 31899686]
[21]
Kannan, A.; Delgardo, M.; Pennington-FitzGerald, W.; Jiang, E.X.; Christophe, B.R.; Connolly, E.S., Jr Pharmacological management of cerebral ischemia in the elderly. Expert Opin. Pharmacother., 2021, 22(7), 897-906.
[http://dx.doi.org/10.1080/14656566.2020.1856815] [PMID: 33382005]
[22]
Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging (Albany NY), 2019, 11(9), 2542-2544.
[http://dx.doi.org/10.18632/aging.101931] [PMID: 31043575]
[23]
Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke Risk Factors, Genetics, and Prevention. Circ. Res., 2017, 120(3), 472-495.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308398] [PMID: 28154098]
[24]
Putaala, J. Ischemic stroke in the young: Current perspectives on incidence, risk factors, and cardiovascular prognosis. Eur. Stroke J., 2016, 1(1), 28-40.
[http://dx.doi.org/10.1177/2396987316629860] [PMID: 31008265]
[25]
Smajlović, D. Strokes in young adults: epidemiology and prevention. Vasc. Health Risk Manag., 2015, 11, 157-164.
[http://dx.doi.org/10.2147/VHRM.S53203] [PMID: 25750539]
[26]
Putaala, J.; Metso, A.J.; Metso, T.M.; Konkola, N.; Kraemer, Y.; Haapaniemi, E.; Kaste, M.; Tatlisumak, T. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke, 2009, 40(4), 1195-1203.
[http://dx.doi.org/10.1161/STROKEAHA.108.529883] [PMID: 19246709]
[27]
Lappin, J.M.; Darke, S.; Farrell, M. Stroke and methamphetamine use in young adults: a review. J. Neurol. Neurosurg. Psychiatry, 2017, 88(12), 1079-1091.
[http://dx.doi.org/10.1136/jnnp-2017-316071] [PMID: 28835475]
[28]
Appelros, P.; Nydevik, I.; Viitanen, M. Poor outcome after first-ever stroke: predictors for death, dependency, and recurrent stroke within the first year. Stroke, 2003, 34(1), 122-126.
[http://dx.doi.org/10.1161/01.STR.0000047852.05842.3C] [PMID: 12511762]
[29]
Ahnstedt, H.; McCullough, L.D. The impact of sex and age on T cell immunity and ischemic stroke outcomes. Cell. Immunol., 2019, 345, 103960.
[http://dx.doi.org/10.1016/j.cellimm.2019.103960] [PMID: 31519365]
[30]
Towfighi, A.; Saver, J.L.; Engelhardt, R.; Ovbiagele, B. A midlife stroke surge among women in the United States. Neurology, 2007, 69(20), 1898-1904.
[http://dx.doi.org/10.1212/01.wnl.0000268491.89956.c2] [PMID: 17581944]
[31]
Roy-O’Reilly, M.; McCullough, L.D. Age and sex are critical factors in ischemic stroke pathology. Endocrinology, 2018, 159(8), 3120-3131.
[http://dx.doi.org/10.1210/en.2018-00465] [PMID: 30010821]
[32]
Chen, L.; Deng, W.; Palacios, I.; Inglessis-Azuaje, I.; McMullin, D.; Zhou, D.; Lo, E.H.; Buonanno, F.; Ning, M. Patent foramen ovale (PFO), stroke and pregnancy. J. Investig. Med., 2016, 64(5), 992-1000.
[http://dx.doi.org/10.1136/jim-2016-000103] [PMID: 26988903]
[33]
Carlton, C.; Banks, M.; Sundararajan, S. Oral contraceptives and ischemic stroke risk. Stroke, 2018, 49(4), e157-e159.
[http://dx.doi.org/10.1161/STROKEAHA.117.020084] [PMID: 29581347]
[34]
Sayeed, I.; Guo, Q.; Hoffman, S.W.; Stein, D.G. Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion. Ann. Emerg. Med., 2006, 47(4), 381-389.
[http://dx.doi.org/10.1016/j.annemergmed.2005.12.011] [PMID: 16546625]
[35]
Jamieson, D.G.; Skliut, M. Stroke in women: What is different? Curr. Atheroscler. Rep., 2010, 12(4), 236-243.
[http://dx.doi.org/10.1007/s11883-010-0118-3] [PMID: 20490952]
[36]
Gardener, H.; Sacco, R.L.; Rundek, T.; Battistella, V.; Cheung, Y.K.; Elkind, M.S.V. Race and ethnic disparities in stroke incidence in the northern manhattan study. Stroke, 2020, 51(4), 1064-1069.
[http://dx.doi.org/10.1161/STROKEAHA.119.028806] [PMID: 32078475]
[37]
Howard, G.; Kissela, B.M.; Kleindorfer, D.O.; McClure, L.A.; Soliman, E.Z.; Judd, S.E.; Rhodes, J.D.; Cushman, M.; Moy, C.S.; Sands, K.A.; Howard, V.J. Differences in the role of black race and stroke risk factors for first vs. recurrent stroke. Neurology, 2016, 86(7), 637-642.
[http://dx.doi.org/10.1212/WNL.0000000000002376] [PMID: 26791153]
[38]
Sims, N.R.; Yew, W.P. Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem. Int., 2017, 107, 88-103.
[http://dx.doi.org/10.1016/j.neuint.2016.12.016] [PMID: 28057555]
[39]
Mattson, M.P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol., 2009, 44(10), 625-633.
[http://dx.doi.org/10.1016/j.exger.2009.07.003] [PMID: 19622391]
[40]
Schäfer, K.; Konstantinides, S. Adipokines and thrombosis. Clin. Exp. Pharmacol. Physiol., 2011, 38(12), 864-871.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05589.x] [PMID: 21848866]
[41]
Tuttolomondo, A.; Di Raimondo, D.; di Sciacca, R.; Pinto, A.; Licata, G. Inflammatory cytokines in acute ischemic stroke. Curr. Pharm. Des., 2008, 14(33), 3574-3589.
[http://dx.doi.org/10.2174/138161208786848739] [PMID: 19075734]
[42]
Okun, E.; Griffioen, K.J.; Lathia, J.D.; Tang, S.C.; Mattson, M.P.; Arumugam, T.V. Toll-like receptors in neurodegeneration. Brain Res. Brain Res. Rev., 2009, 59(2), 278-292.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.001] [PMID: 18822314]
[43]
Ishikawa, M.; Zhang, J.H.; Nanda, A.; Granger, D.N. Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Front. Biosci., 2004, 9, 1339-1347.
[http://dx.doi.org/10.2741/1330] [PMID: 14977549]
[44]
Wang, Q.; Tang, X.N.; Yenari, M.A. The inflammatory response in stroke. J. Neuroimmunol., 2007, 184(1-2), 53-68.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.014] [PMID: 17188755]
[45]
Strazzullo, P.; D’Elia, L.; Kandala, N.B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ, 2009, 339, b4567.
[http://dx.doi.org/10.1136/bmj.b4567] [PMID: 19934192]
[46]
Iacoviello, L.; Bonaccio, M.; Cairella, G.; Catani, M.V.; Costanzo, S.; D’Elia, L.; Giacco, R.; Rendina, D.; Sabino, P.; Savini, I.; Strazzullo, P. Diet and primary prevention of stroke: Systematic review and dietary recommendations by the ad hoc Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis., 2018, 28(4), 309-334.
[http://dx.doi.org/10.1016/j.numecd.2017.12.010] [PMID: 29482962]
[47]
Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The mediterranean diet and cardiovascular health. Circ. Res., 2019, 124(5), 779-798.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313348] [PMID: 30817261]
[48]
Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Gómez-Gracia, E.; Arós, F.; Fiol, M.; Lapetra, J.; Serra-Majem, L.; Martínez-González, M.A.; Hu, F.B. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin. Chem., 2016, 62(4), 582-592.
[http://dx.doi.org/10.1373/clinchem.2015.251710] [PMID: 26888892]
[49]
Jenkins, D.J.A.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.I.; Josse, R.; Vieth, R.; Blanco Mejia, S.; Viguiliouk, E.; Nishi, S.; Sahye-Pudaruth, S.; Paquette, M.; Patel, D.; Mitchell, S.; Kavanagh, M.; Tsirakis, T.; Bachiri, L.; Maran, A.; Umatheva, N.; McKay, T.; Trinidad, G.; Bernstein, D.; Chowdhury, A.; Correa-Betanzo, J.; Del Principe, G.; Hajizadeh, A.; Jayaraman, R.; Jenkins, A.; Jenkins, W.; Kalaichandran, R.; Kirupaharan, G.; Manisekaran, P.; Qutta, T.; Shahid, R.; Silver, A.; Villegas, C.; White, J.; Kendall, C.W.C.; Pichika, S.C.; Sievenpiper, J.L. Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J. Am. Coll. Cardiol., 2018, 71(22), 2570-2584.
[http://dx.doi.org/10.1016/j.jacc.2018.04.020] [PMID: 29852980]
[50]
Spence, J.D. Nutrition and risk of stroke. Nutrients, 2019, 11(3), E647.
[http://dx.doi.org/10.3390/nu11030647] [PMID: 30884883]
[51]
Shah, R.S.; Cole, J.W. Smoking and stroke: the more you smoke the more you stroke. Expert Rev. Cardiovasc. Ther., 2010, 8(7), 917-932.
[http://dx.doi.org/10.1586/erc.10.56] [PMID: 20602553]
[52]
Penn, A.; Snyder, C.A. 1,3 Butadiene, a vapor phase component of environmental tobacco smoke, accelerates arteriosclerotic plaque development. Circulation, 1996, 93(3), 552-557.
[http://dx.doi.org/10.1161/01.CIR.93.3.552] [PMID: 8565175]
[53]
Sun, M.S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.L.; Guo, Z.N.; Yang, Y. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell. Longev., 2018, 2018, 3804979.
[http://dx.doi.org/10.1155/2018/3804979] [PMID: 29770166]
[54]
Choi, K.; Kim, J.; Kim, G.W.; Choi, C. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species. Curr. Neurovasc. Res., 2009, 6(4), 213-222.
[http://dx.doi.org/10.2174/156720209789630375] [PMID: 19807658]
[55]
Allen, C.L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke, 2009, 4(6), 461-470.
[http://dx.doi.org/10.1111/j.1747-4949.2009.00387.x] [PMID: 19930058]
[56]
Hachfi, W.; Ben Lasfar, N. COVID-19: Main therapeutic options. Tunis. Med., 2020, 98(4), 299-303.
[PMID: 32395792]
[57]
Hassett, C.; Gedansky, A.; Mays, M.; Uchino, K. Acute ischemic stroke and COVID-19. Cleve. Clin. J. Med., 2020. epub ahead of Print
[http://dx.doi.org/10.3949/ccjm.87a.ccc042] [PMID: 32493736]
[58]
Li, Y.; Zhao, K.; Wei, H.; Chen, W.; Wang, W.; Jia, L.; Liu, Q.; Zhang, J.; Shan, T.; Peng, Z.; Liu, Y.; Yan, X. Dynamic relationship between D-dimer and COVID-19 severity. Br. J. Haematol., 2020, 190(1), e24-e27.
[http://dx.doi.org/10.1111/bjh.16797] [PMID: 32420615]
[59]
Wijeratne, T.; Gillard Crewther, S.; Sales, C.; Karimi, L. COVID-19 pathophysiology predicts that ischemic stroke occurrence is an expectation, not an exception-a systematic Review. Front. Neurol., 2021, 11, 607221.
[http://dx.doi.org/10.3389/fneur.2020.607221] [PMID: 33584506]
[60]
Zakeri, A.; Jadhav, A.P.; Sullenger, B.A.; Nimjee, S.M. Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J. Neurointerv. Surg., 2021, 13(3), 202-206.
[http://dx.doi.org/10.1136/neurintsurg-2020-016794] [PMID: 33298508]
[61]
Ojo, A.S.; Balogun, S.A.; Idowu, A.O. Acute ischemic stroke in COVID-19: Putative mechanisms, clinical characteristics, and management. Neurol. Res. Int., 2020, 2020, 7397480.
[http://dx.doi.org/10.1155/2020/7397480] [PMID: 33224529]
[62]
Naval-Baudin, P.; Rodriguez Caamaño, I.; Rubio-Maicas, C.; Pons-Escoda, A.; Fernández Viñas, M.M.; Nuñez, A.; Cardona, P.; Majos, C.; Cos, M.; Calvo, N. COVID-19 and ischemic stroke: Clinical and neuroimaging findings. J. Neuroimaging, 2021, 31(1), 62-66.
[http://dx.doi.org/10.1111/jon.12790] [PMID: 32986907]
[63]
Tornabene, E.; Brodin, B. Stroke and drug delivery in vitro models of the ischemic blood-brain barrier. J. Pharm. Sci., 2016, 105(2), 398-405.
[http://dx.doi.org/10.1016/j.xphs.2015.11.041] [PMID: 26869407]
[64]
Barthels, D.; Das, H. Current advances in ischemic stroke research and therapies. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165260.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.012] [PMID: 31699365]
[65]
Werth, J.L.; Park, T.S.; Silbergeld, D.L.; Rothman, S.M. Excitotoxic swelling occurs in oxygen and glucose deprived human cortical slices. Brain Res., 1998, 782(1-2), 248-254.
[http://dx.doi.org/10.1016/S0006-8993(97)01286-9] [PMID: 9519270]
[66]
Richard, M.J.; Saleh, T.M.; El Bahh, B.; Zidichouski, J.A. A novel method for inducing focal ischemia in vitro. J. Neurosci. Methods, 2010, 190(1), 20-27.
[http://dx.doi.org/10.1016/j.jneumeth.2010.04.017] [PMID: 20417233]
[67]
Li, Q.; Han, X.; Wang, J. Organotypic hippocampal slices as models for stroke and traumatic brain injury. Mol. Neurobiol., 2016, 53(6), 4226-4237.
[http://dx.doi.org/10.1007/s12035-015-9362-4] [PMID: 26223803]
[68]
He, Y.; Yao, Y.; Tsirka, S.E.; Cao, Y. Cell-culture models of the blood-brain barrier. Stroke, 2014, 45(8), 2514-2526.
[http://dx.doi.org/10.1161/STROKEAHA.114.005427] [PMID: 24938839]
[69]
Abney, E.R.; Bartlett, P.P.; Raff, M.C. Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev. Biol., 1981, 83(2), 301-310.
[http://dx.doi.org/10.1016/0012-1606(81)90476-0] [PMID: 7239014]
[70]
Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 2010, 468(7323), 562-566.
[http://dx.doi.org/10.1038/nature09513] [PMID: 20944625]
[71]
Garcia, J.H. Experimental ischemic stroke: a review. Stroke, 1984, 15(1), 5-14.
[http://dx.doi.org/10.1161/01.STR.15.1.5] [PMID: 6364464]
[72]
Bose, B.; Osterholm, J.L.; Berry, R. A reproducible experimental model of focal cerebral ischemia in the cat. Brain Res., 1984, 311(2), 385-391.
[http://dx.doi.org/10.1016/0006-8993(84)90106-9] [PMID: 6498494]
[73]
Bacigaluppi, M.; Comi, G.; Hermann, D.M. Animal models of ischemic stroke. Part one: modeling risk factors. Open Neurol. J., 2010, 4, 26-33.
[http://dx.doi.org/10.2174/1874205X01004010026] [PMID: 20802809]
[74]
McCabe, C; Arroja, MM; Reid, E; Macrae, IM Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology, 2018, 134(Pt B), 169-177.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.022]
[75]
Koizumi, JJJJs Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. 1986, 8, 1-8.
[76]
Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1), 84-91.
[http://dx.doi.org/10.1161/01.STR.20.1.84] [PMID: 2643202]
[77]
Belayev, L.; Alonso, O.F.; Huh, P.W.; Zhao, W.; Busto, R.; Ginsberg, M.D. Posttreatment with high-dose albumin reduces histopathological damage and improves neurological deficit following fluid percussion brain injury in rats. J. Neurotrauma, 1999, 16(6), 445-453.
[http://dx.doi.org/10.1089/neu.1999.16.445] [PMID: 10391362]
[78]
Gao, H.; Liu, Y.; Lu, S.; Xiang, B.; Wang, C. A reversible middle cerebral artery occlusion model using intraluminal balloon technique in monkeys. J. Stroke Cerebrovasc. Dis., 2006, 15(5), 202-208.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2006.05.010] [PMID: 17904076]
[79]
Hossmann, K.A. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J. Cereb. Blood Flow Metab., 2012, 32(7), 1310-1316.
[http://dx.doi.org/10.1038/jcbfm.2011.186] [PMID: 22234335]
[80]
Gerriets, T.; Stolz, E.; Walberer, M.; Müller, C.; Rottger, C.; Kluge, A.; Kaps, M.; Fisher, M.; Bachmann, G. Complications and pitfalls in rat stroke models for middle cerebral artery occlusion: a comparison between the suture and the macrosphere model using magnetic resonance angiography. Stroke, 2004, 35(10), 2372-2377.
[http://dx.doi.org/10.1161/01.STR.0000142134.37512.a7] [PMID: 15345802]
[81]
Rink, C.; Christoforidis, G.; Abduljalil, A.; Kontzialis, M.; Bergdall, V.; Roy, S.; Khanna, S.; Slivka, A.; Knopp, M.; Sen, C.K. Minimally invasive neuroradiologic model of preclinical transient middle cerebral artery occlusion in canines. Proc. Natl. Acad. Sci. USA, 2008, 105(37), 14100-14105.
[http://dx.doi.org/10.1073/pnas.0806678105] [PMID: 18779582]
[82]
Tajiri, N.; Dailey, T.; Metcalf, C.; Mosley, Y.I.; Lau, T.; Staples, M.; van Loveren, H.; Kim, S.U.; Yamashima, T.; Yasuhara, T.; Date, I.; Kaneko, Y.; Borlongan, C.V. In vivo animal stroke models: A rationale for rodent and non-human primate models. Transl. Stroke Res., 2013, 4(3), 308-321.
[http://dx.doi.org/10.1007/s12975-012-0241-2] [PMID: 23682299]
[83]
Bederson, J.B.; Germano, I.M.; Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke, 1995, 26(6), 1086-1091.
[http://dx.doi.org/10.1161/01.STR.26.6.1086] [PMID: 7762027]
[84]
Garcia, J.H.; Wagner, S.; Liu, K.F.; Hu, X.J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995, 26(4), 627-634.
[http://dx.doi.org/10.1161/01.STR.26.4.627] [PMID: 7709410]
[85]
Kawamura, S.; Yasui, N.; Shirasawa, M.; Fukasawa, H. Rat middle cerebral artery occlusion using an intraluminal thread technique. Acta Neurochir. (Wien), 1991, 109(3-4), 126-132.
[http://dx.doi.org/10.1007/BF01403007] [PMID: 1858530]
[86]
Nagasawa, H.; Kogure, K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke, 1989, 20(8), 1037-1043.
[http://dx.doi.org/10.1161/01.STR.20.8.1037] [PMID: 2756535]
[87]
Svoboda, J.; Litvinec, A.; Kala, D.; Pošusta, A.; Vávrová, L.; Jiruška, P.; Otáhal, J. Strain differences in intraluminal thread model of middle cerebral artery occlusion in rats. Physiol. Res., 2019, 68(1), 37-48.
[http://dx.doi.org/10.33549/physiolres.933958] [PMID: 30433803]
[88]
Müller, T.B.; Haraldseth, O.; Unsgård, G. Characterization of the microcirculation during ischemia and reperfusion in the penumbra of a rat model of temporary middle cerebral artery occlusion: a laser Doppler flowmetry study. Int. J. Microcirc. Clin. Exp., 1994, 14(5), 289-295.
[http://dx.doi.org/10.1159/000178843] [PMID: 7705990]
[89]
Zhao, Q.; Memezawa, H.; Smith, M.L.; Siesjö, B.K. Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res., 1994, 649(1-2), 253-259.
[http://dx.doi.org/10.1016/0006-8993(94)91071-5] [PMID: 7953639]
[90]
Schmid-Elsaesser, R.; Zausinger, S.; Hungerhuber, E.; Baethmann, A.; Reulen, H.J. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke, 1998, 29(10), 2162-2170.
[http://dx.doi.org/10.1161/01.STR.29.10.2162] [PMID: 9756599]
[91]
Spratt, N.J.; Fernandez, J.; Chen, M.; Rewell, S.; Cox, S.; van Raay, L.; Hogan, L.; Howells, D.W. Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J. Neurosci. Methods, 2006, 155(2), 285-290.
[http://dx.doi.org/10.1016/j.jneumeth.2006.01.020] [PMID: 16513179]
[92]
Wu, Y.; Hu, L.; Yang, X.; Wang, X.; Wan, L.; Hua, X.; Cheng, J.; Li, Y. Intraluminal spindle-shaped-head suture induced occlusion of middle cerebral artery in the rats. Neurol. Res., 2017, 39(11), 1028-1036.
[http://dx.doi.org/10.1080/01616412.2017.1375661] [PMID: 28936922]
[93]
Gubskiy, I.L.; Namestnikova, D.D.; Cherkashova, E.A.; Chekhonin, V.P.; Baklaushev, V.P.; Gubsky, L.V.; Yarygin, K.N. MRI guiding of the middle cerebral artery occlusion in rats aimed to improve stroke modeling. Transl. Stroke Res., 2018, 9(4), 417-425.
[http://dx.doi.org/10.1007/s12975-017-0590-y] [PMID: 29178027]
[94]
Howells, D.W.; Porritt, M.J.; Rewell, S.S.; O’Collins, V.; Sena, E.S.; van der Worp, H.B.; Traystman, R.J.; Macleod, M.R. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2010, 30(8), 1412-1431.
[http://dx.doi.org/10.1038/jcbfm.2010.66] [PMID: 20485296]
[95]
Spychala, M.S.; Venna, V.R.; Jandzinski, M.; Doran, S.J.; Durgan, D.J.; Ganesh, B.P.; Ajami, N.J.; Putluri, N.; Graf, J.; Bryan, R.M.; McCullough, L.D. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol., 2018, 84(1), 23-36.
[http://dx.doi.org/10.1002/ana.25250] [PMID: 29733457]
[96]
Xu, W.W.; Zhang, Y.Y.; Su, J.; Liu, A.F.; Wang, K.; Li, C.; Liu, Y.E.; Zhang, Y.Q.; Lv, J.; Jiang, W.J. Ischemia reperfusion injury after gradual versus rapid flow restoration for middle cerebral artery occlusion rats. Sci. Rep., 2018, 8(1), 1638.
[http://dx.doi.org/10.1038/s41598-018-20095-9] [PMID: 29374244]
[97]
Balkaya, M.G.; Trueman, R.C.; Boltze, J.; Corbett, D.; Jolkkonen, J. Behavioral outcome measures to improve experimental stroke research. Behav. Brain Res., 2018, 352, 161-171.
[http://dx.doi.org/10.1016/j.bbr.2017.07.039] [PMID: 28760700]
[98]
Balkaya, M.; Kröber, J.M.; Rex, A.; Endres, M. Assessing post-stroke behavior in mouse models of focal ischemia. J. Cereb. Blood Flow Metab., 2013, 33(3), 330-338.
[http://dx.doi.org/10.1038/jcbfm.2012.185] [PMID: 23232947]
[99]
Yuan, D.; Liu, C.; Wu, J.; Hu, B. Nest-building activity as a reproducible and long-term stroke deficit test in a mouse model of stroke. Brain Behav., 2018, 8(6), e00993.
[http://dx.doi.org/10.1002/brb3.993] [PMID: 30106254]
[100]
Boyko, M.; Zlotnik, A.; Gruenbaum, B.F.; Gruenbaum, S.E.; Ohayon, S.; Goldsmith, T.; Kotz, R.; Leibowitz, A.; Sheiner, E.; Shapira, Y.; Teichberg, V.I. An experimental model of focal ischemia using an internal carotid artery approach. J. Neurosci. Methods, 2010, 193(2), 246-253.
[http://dx.doi.org/10.1016/j.jneumeth.2010.08.026] [PMID: 20817031]
[101]
Chakravarty, S.; Jhelum, P.; Bhat, U.A.; Rajan, W.D.; Maitra, S.; Pathak, S.S.; Patel, A.B.; Kumar, A. Insights into the epigenetic mechanisms involving histone lysine methylation and demethylation in ischemia induced damage and repair has therapeutic implication. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(1), 152-164.
[http://dx.doi.org/10.1016/j.bbadis.2016.09.014] [PMID: 27664837]
[102]
Mohr, J.P.; Caplan, L.R.; Melski, J.W.; Goldstein, R.J.; Duncan, G.W.; Kistler, J.P.; Pessin, M.S.; Bleich, H.L. The Harvard Cooperative Stroke Registry: a prospective registry. Neurology, 1978, 28(8), 754-762.
[http://dx.doi.org/10.1212/WNL.28.8.754] [PMID: 567291]
[103]
Taqi, M.A.; Vora, N.; Callison, R.C.; Lin, R.; Wolfe, T.J. Past, present, and future of endovascular stroke therapies. Neurology, 2012, 79(13)(Suppl. 1), S213-S220.
[http://dx.doi.org/10.1212/WNL.0b013e31826959e5] [PMID: 23008401]
[104]
Busch, E.; Krüger, K.; Fritze, K.; Allegrini, P.R.; Hoehn-Berlage, M.; Hossmann, K.A. Blood-brain barrier disturbances after rt-PA treatment of thromboembolic stroke in the rat. Acta Neurochir. Suppl. (Wien), 1997, 70, 206-208.
[http://dx.doi.org/10.1007/978-3-7091-6837-0_63] [PMID: 9416323]
[105]
Zhang, R.L.; Chopp, M.; Zhang, Z.G.; Jiang, Q.; Ewing, J.R. A rat model of focal embolic cerebral ischemia. Brain Res., 1997, 766(1-2), 83-92.
[http://dx.doi.org/10.1016/S0006-8993(97)00580-5] [PMID: 9359590]
[106]
Zhang, Z.; Zhang, R.L.; Jiang, Q.; Raman, S.B.; Cantwell, L.; Chopp, M. A new rat model of thrombotic focal cerebral ischemia. J. Cereb. Blood Flow Metab., 1997, 17(2), 123-135.
[http://dx.doi.org/10.1097/00004647-199702000-00001] [PMID: 9040491]
[107]
Atochin, D.N.; Murciano, J.C.; Gürsoy-Ozdemir, Y.; Krasik, T.; Noda, F.; Ayata, C.; Dunn, A.K.; Moskowitz, M.A.; Huang, P.L.; Muzykantov, V.R. Mouse model of microembolic stroke and reperfusion. Stroke, 2004, 35(9), 2177-2182.
[http://dx.doi.org/10.1161/01.STR.0000137412.35700.0e] [PMID: 15256680]
[108]
De Ley, G.; Weyne, J.; Demeester, G.; Stryckmans, K.; Goethals, P.; Leusen, I. Streptokinase treatment versus calcium overload blockade in experimental thromboembolic stroke. Stroke, 1989, 20(3), 357-361.
[http://dx.doi.org/10.1161/01.STR.20.3.357] [PMID: 2922775]
[109]
Miyake, K.; Takeo, S.; Kaijihara, H. Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke, 1993, 24(3), 415-420.
[http://dx.doi.org/10.1161/01.STR.24.3.415] [PMID: 8446979]
[110]
Yan, T.; Chopp, M.; Chen, J. Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci. Bull., 2015, 31(6), 717-734.
[http://dx.doi.org/10.1007/s12264-015-1567-z] [PMID: 26625873]
[111]
Ginsberg, M.D.; Busto, R. Rodent models of cerebral ischemia. Stroke, 1989, 20(12), 1627-1642.
[http://dx.doi.org/10.1161/01.STR.20.12.1627] [PMID: 2688195]
[112]
Kudo, M.; Aoyama, A.; Ichimori, S.; Fukunaga, N. An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke, 1982, 13(4), 505-508.
[http://dx.doi.org/10.1161/01.STR.13.4.505] [PMID: 7101352]
[113]
Kaneko, D.; Nakamura, N.; Ogawa, T. Cerebral infarction in rats using homologous blood emboli: development of a new experimental model. Stroke, 1985, 16(1), 76-84.
[http://dx.doi.org/10.1161/01.STR.16.1.76] [PMID: 3966271]
[114]
Papadopoulos, S.M.; Chandler, W.F.; Salamat, M.S.; Topol, E.J.; Sackellares, J.C. Recombinant human tissue-type plasminogen activator therapy in acute thromboembolic stroke. J. Neurosurg., 1987, 67(3), 394-398.
[http://dx.doi.org/10.3171/jns.1987.67.3.0394] [PMID: 3112328]
[115]
Overgaard, K. Thrombolytic therapy in experimental embolic stroke. Cerebrovasc. Brain Metab. Rev., 1994, 6(3), 257-286.
[PMID: 7811566]
[116]
Busch, E.; Krüger, K.; Hossmann, K.A. Improved model of thromboembolic stroke and rt-PA induced reperfusion in the rat. Brain Res., 1997, 778(1), 16-24.
[http://dx.doi.org/10.1016/S0006-8993(97)01008-1] [PMID: 9462873]
[117]
Sheng, T.; Zhang, X.; Wang, S.; Zhang, J.; Lu, W.; Dai, Y. Endothelin-1-induced mini-stroke in the dorsal hippocampus or lateral amygdala results in deficits in learning and memory. J. Biomed. Res., 2015, 29(5), 362-369.
[PMID: 26445569]
[118]
Ding, G.; Jiang, Q.; Li, L.; Zhang, L.; Zhang, Z.G.; Soltanian-Zadeh, H.; Li, Q.; Whitton, P.A.; Ewing, J.R.; Chopp, M. Characterization of cerebral tissue by MRI map ISODATA in embolic stroke in rat. Brain Res., 2006, 1084(1), 202-209.
[http://dx.doi.org/10.1016/j.brainres.2006.02.054] [PMID: 16566903]
[119]
Orset, C.; Macrez, R.; Young, A.R.; Panthou, D.; Angles-Cano, E.; Maubert, E.; Agin, V.; Vivien, D. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke, 2007, 38(10), 2771-2778.
[http://dx.doi.org/10.1161/STROKEAHA.107.487520] [PMID: 17702959]
[120]
Karatas, H.; Erdener, S.E.; Gursoy-Ozdemir, Y.; Gurer, G.; Soylemezoglu, F.; Dunn, A.K.; Dalkara, T. Thrombotic distal middle cerebral artery occlusion produced by topical FeCl(3) application: a novel model suitable for intravital microscopy and thrombolysis studies. J. Cereb. Blood Flow Metab., 2011, 31(6), 1452-1460.
[http://dx.doi.org/10.1038/jcbfm.2011.8] [PMID: 21326267]
[121]
Macrae, I.M. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischaemia. Br. J. Pharmacol., 2011, 164(4), 1062-1078.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01398.x] [PMID: 21457227]
[122]
Bralet, A.M.; Beley, A.; Beley, P.; Bralet, J. Brain edema and blood-brain barrier permeability following quantitative cerebral microembolism. Stroke, 1979, 10(1), 34-38.
[http://dx.doi.org/10.1161/01.STR.10.1.34] [PMID: 432898]
[123]
Zhu, L.; Hoffmann, A.; Wintermark, M.; Pan, X.; Tu, R.; Rapp, J.H. Do microemboli reach the brain penetrating arteries? J. Surg. Res., 2012, 176(2), 679-683.
[http://dx.doi.org/10.1016/j.jss.2011.09.059] [PMID: 22261594]
[124]
Maki, T.; Wakita, H.; Mase, M.; Itagaki, I.; Saito, N.; Ono, F.; Adachi, K.; Ito, H.; Takahashi, R.; Ihara, M.; Tomimoto, H. Watershed infarcts in a multiple microembolic model of monkey. Neurosci. Lett., 2011, 499(2), 80-83.
[http://dx.doi.org/10.1016/j.neulet.2011.05.036] [PMID: 21640789]
[125]
Tsukada, N.; Katsumata, M.; Oki, K.; Minami, K.; Abe, T.; Takahashi, S.; Itoh, Y.; Suzuki, N. Diameter of fluorescent microspheres determines their distribution throughout the cortical watershed area in mice. Brain Res., 2018, 1679, 109-115.
[http://dx.doi.org/10.1016/j.brainres.2017.11.028] [PMID: 29203170]
[126]
Gerriets, T.; Li, F.; Silva, M.D.; Meng, X.; Brevard, M.; Sotak, C.H.; Fisher, M. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J. Neurosci. Methods, 2003, 122(2), 201-211.
[http://dx.doi.org/10.1016/S0165-0270(02)00322-9] [PMID: 12573479]
[127]
Rapp, J.H.; Hollenbeck, K.; Pan, X.M. An experimental model of lacunar infarction: embolization of microthrombi. J. Vasc. Surg., 2008, 48(1), 196-200.
[http://dx.doi.org/10.1016/j.jvs.2008.01.038] [PMID: 18486421]
[128]
Zivin, J.A.; DeGirolami, U.; Kochhar, A.; Lyden, P.D.; Mazzarella, V.; Hemenway, C.C.; Henry, M.E. A model for quantitative evaluation of embolic stroke therapy. Brain Res., 1987, 435(1-2), 305-309.
[http://dx.doi.org/10.1016/0006-8993(87)91613-1] [PMID: 3427458]
[129]
Lauer, K.K.; Shen, H.; Stein, E.A.; Ho, K.C.; Kampine, J.P.; Hudetz, A.G. Focal cerebral ischemia in rats produced by intracarotid embolization with viscous silicone. Neurol. Res., 2002, 24(2), 181-190.
[http://dx.doi.org/10.1179/016164102101199594] [PMID: 11877903]
[130]
Molnár, L.; Hegedüs, K.; Fekete, I. A new model for inducing transient cerebral ischemia and subsequent reperfusion in rabbits without craniectomy. Stroke, 1988, 19(10), 1262-1266.
[http://dx.doi.org/10.1161/01.STR.19.10.1262] [PMID: 3176086]
[131]
Watanabe, O.; Bremer, A.M.; West, C.R. Experimental regional cerebral ischemia in the middle cerebral artery territory in primates. Part 1: Angio-anatomy and description of an experimental model with selective embolization of the internal carotid artery bifurcation. Stroke, 1977, 8(1), 61-70.
[http://dx.doi.org/10.1161/01.STR.8.1.61] [PMID: 402041]
[132]
Cui, Y.; Tian, Y.; Tang, Y.; Jia, L.; Wu, A.; Peng, P.; Yang, J.; Du, H.; Wang, X.; Wu, L. Application of sodium alginate microspheres in ischemic stroke modeling in miniature pigs. Neural Regen. Res., 2013, 8(16), 1473-1480.
[PMID: 25206443]
[133]
Lam, C.K.; Yoo, T.; Hiner, B.; Liu, Z.; Grutzendler, J. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature, 2010, 465(7297), 478-482.
[http://dx.doi.org/10.1038/nature09001] [PMID: 20505729]
[134]
Caplan, L.R.; Hennerici, M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch. Neurol., 1998, 55(11), 1475-1482.
[http://dx.doi.org/10.1001/archneur.55.11.1475] [PMID: 9823834]
[135]
Fluri, F.; Schuhmann, M.K.; Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther., 2015, 9, 3445-3454.
[PMID: 26170628]
[136]
Mayzel-Oreg, O.; Omae, T.; Kazemi, M.; Li, F.; Fisher, M.; Cohen, Y.; Sotak, C.H. Microsphere-induced embolic stroke: an MRI study. Magn. Reson. Med., 2004, 51(6), 1232-1238.
[http://dx.doi.org/10.1002/mrm.20100] [PMID: 15170844]
[137]
Rosenblum, W.I.; El-Sabban, F. Effects of combined parenchymal and vascular injury on platelet aggregation in pial arterioles of living mice: evidence for release of aggregate-inhibiting materials. Stroke, 1977, 8(6), 691-693.
[http://dx.doi.org/10.1161/01.STR.8.6.691] [PMID: 929658]
[138]
Watson, B.D.; Dietrich, W.D.; Busto, R.; Wachtel, M.S.; Ginsberg, M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol., 1985, 17(5), 497-504.
[http://dx.doi.org/10.1002/ana.410170513] [PMID: 4004172]
[139]
Nishimura, N.; Schaffer, C.B.; Friedman, B.; Lyden, P.D.; Kleinfeld, D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 365-370.
[http://dx.doi.org/10.1073/pnas.0609551104] [PMID: 17190804]
[140]
Shih, A.Y.; Blinder, P.; Tsai, P.S.; Friedman, B.; Stanley, G.; Lyden, P.D.; Kleinfeld, D. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat. Neurosci., 2013, 16(1), 55-63.
[http://dx.doi.org/10.1038/nn.3278] [PMID: 23242312]
[141]
Lee, J.K.; Park, M.S.; Kim, Y.S.; Moon, K.S.; Joo, S.P.; Kim, T.S.; Kim, J.H.; Kim, S.H. Photochemically induced cerebral ischemia in a mouse model. Surg. Neurol., 2007, 67(6), 620-625.
[http://dx.doi.org/10.1016/j.surneu.2006.08.077] [PMID: 17512331]
[142]
Markgraf, C.G.; Kraydieh, S.; Prado, R.; Watson, B.D.; Dietrich, W.D.; Ginsberg, M.D. Comparative histopathologic consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague-Dawley and Wistar rats. Stroke, 1993, 24(2), 286-292.
[http://dx.doi.org/10.1161/01.STR.24.2.286] [PMID: 8421830]
[143]
Ikeda, K.; Klinkosz, B.; Greene, T.; Cedarbaum, J.M.; Wong, V.; Lindsay, R.M.; Mitsumoto, H. Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol., 1995, 37(4), 505-511.
[http://dx.doi.org/10.1002/ana.410370413] [PMID: 7717687]
[144]
Kuluz, J.W.; Prado, R.; He, D.; Zhao, W.; Dietrich, W.D.; Watson, B. New pediatric model of ischemic stroke in infant piglets by photothrombosis: acute changes in cerebral blood flow, microvasculature, and early histopathology. Stroke, 2007, 38(6), 1932-1937.
[http://dx.doi.org/10.1161/STROKEAHA.106.475244] [PMID: 17463315]
[145]
Clark, T.A.; Sullender, C.; Jacob, D.; Zuo, Y.; Dunn, A.K.; Jones, T.A. Rehabilitative training interacts with ischemia-instigated spine dynamics to promote a lasting population of new synapses in peri-infarct motor cortex. J. Neurosci., 2019, 39(43), 8471-8483.
[http://dx.doi.org/10.1523/JNEUROSCI.1141-19.2019] [PMID: 31511430]
[146]
Yao, H.; Ibayashi, S.; Sugimori, H.; Fujii, K.; Fujishima, M. Simplified model of krypton laser-induced thrombotic distal middle cerebral artery occlusion in spontaneously hypertensive rats. Stroke, 1996, 27(2), 333-336.
[http://dx.doi.org/10.1161/01.STR.27.2.333] [PMID: 8571433]
[147]
Del Bene, A.; Makin, S.D.; Doubal, F.N.; Inzitari, D.; Wardlaw, J.M. Variation in risk factors for recent small subcortical infarcts with infarct size, shape, and location. Stroke, 2013, 44(11), 3000-3006.
[http://dx.doi.org/10.1161/STROKEAHA.113.002227] [PMID: 24008573]
[148]
Dietrich, W.D.; Ginsberg, M.D.; Busto, R.; Watson, B.D. Photochemically induced cortical infarction in the rat. 1. Time course of hemodynamic consequences. J. Cereb. Blood Flow Metab., 1986, 6(2), 184-194.
[http://dx.doi.org/10.1038/jcbfm.1986.31] [PMID: 3958063]
[149]
Carmichael, S.T.; Archibeque, I.; Luke, L.; Nolan, T.; Momiy, J.; Li, S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp. Neurol., 2005, 193(2), 291-311.
[http://dx.doi.org/10.1016/j.expneurol.2005.01.004] [PMID: 15869933]
[150]
Cotrina, M.L.; Lou, N.; Tome-Garcia, J.; Goldman, J.; Nedergaard, M. Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience, 2017, 343, 483-494.
[http://dx.doi.org/10.1016/j.neuroscience.2016.12.012] [PMID: 28003156]
[151]
Schmidt, A.; Hoppen, M.; Strecker, J.K.; Diederich, K.; Schäbitz, W.R.; Schilling, M.; Minnerup, J. Photochemically induced ischemic stroke in rats. Exp. Transl. Stroke Med., 2012, 4(1), 13.
[http://dx.doi.org/10.1186/2040-7378-4-13] [PMID: 22876978]
[152]
Tamura, A.; Graham, D.I.; McCulloch, J.; Teasdale, G.M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J. Cereb. Blood Flow Metab., 1981, 1(1), 53-60.
[http://dx.doi.org/10.1038/jcbfm.1981.6] [PMID: 7328138]
[153]
Colak, G.; Filiano, A.J.; Johnson, G.V. The application of permanent middle cerebral artery ligation in the mouse. J. Vis. Exp., 2011, 2011(53)
[154]
Hudgins, W.R.; Garcia, J.H. Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke, 1970, 1(2), 107-111.
[http://dx.doi.org/10.1161/01.STR.1.2.107] [PMID: 5001802]
[155]
Suzuki, J.; Yoshimoto, T.; Tnanka, S.; Sakamoto, T. Production of various models of cerebral infarction in the dog by means of occlusion of intracranial trunk arteries. Stroke, 1980, 11(4), 337-341.
[http://dx.doi.org/10.1161/01.STR.11.4.337] [PMID: 7414661]
[156]
Yanamoto, H.; Nagata, I.; Niitsu, Y.; Xue, J.H.; Zhang, Z.; Kikuchi, H. Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique. Exp. Neurol., 2003, 182(2), 261-274.
[http://dx.doi.org/10.1016/S0014-4886(03)00116-X] [PMID: 12895438]
[157]
Durukan, A.; Tatlisumak, T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav., 2007, 87(1), 179-197.
[http://dx.doi.org/10.1016/j.pbb.2007.04.015] [PMID: 17521716]
[158]
Sugimori, H.; Yao, H.; Ooboshi, H.; Ibayashi, S.; Iida, M. Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Res. Brain Res. Protoc., 2004, 13(3), 189-196.
[http://dx.doi.org/10.1016/j.brainresprot.2004.06.001] [PMID: 15296857]
[159]
Chauveau, F.; Moucharrafie, S.; Wiart, M.; Brisset, J.C.; Berthezène, Y.; Nighoghossian, N.; Cho, T.H. In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure. Exp. Transl. Stroke Med., 2010, 2(1), 4.
[http://dx.doi.org/10.1186/2040-7378-2-4] [PMID: 20298536]
[160]
Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke, 2009, 40(6), 2244-2250.
[http://dx.doi.org/10.1161/STROKEAHA.108.541128] [PMID: 19246690]
[161]
Saver, J.L.; Albers, G.W.; Dunn, B.; Johnston, K.C.; Fisher, M.; Consortium, S.V. Stroke Therapy Academic Industry Roundtable (STAIR) recommendations for extended window acute stroke therapy trials. Stroke, 2009, 40(7), 2594-2600.
[http://dx.doi.org/10.1161/STROKEAHA.109.552554] [PMID: 19478212]
[162]
Adams, H.P., Jr; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C.; Lyden, P.D.; Morgenstern, L.B.; Qureshi, A.I.; Rosenwasser, R.H.; Scott, P.A.; Wijdicks, E.F. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke, 2007, 38(5), 1655-1711.
[http://dx.doi.org/10.1161/STROKEAHA.107.181486] [PMID: 17431204]
[163]
Ning, M.; Sarracino, D.A.; Buonanno, F.S.; Krastins, B.; Chou, S.; McMullin, D.; Wang, X.; Lopez, M.; Lo, E.H. Proteomic protease substrate profiling of tPA treatment in acute ischemic stroke patients: A step toward individualizing thrombolytic therapy at the bedside. Transl. Stroke Res., 2010, 1(4), 268-275.
[http://dx.doi.org/10.1007/s12975-010-0047-z] [PMID: 22140417]
[164]
O’Collins, V.E.; Macleod, M.R.; Donnan, G.A.; Horky, L.L.; van der Worp, B.H.; Howells, D.W. 1,026 experimental treatments in acute stroke. Ann. Neurol., 2006, 59(3), 467-477.
[http://dx.doi.org/10.1002/ana.20741] [PMID: 16453316]
[165]
Chen, L.; Zhang, G.; Khan, A.A.; Guo, X.; Gu, Y. Clinical Efficacy and Meta-Analysis of Stem Cell Therapies for Patients with Brain Ischemia. Stem Cells Int., 2016, 2016, 6129579.
[http://dx.doi.org/10.1155/2016/6129579] [PMID: 27656217]
[166]
Hirrlinger, J.; Dringen, R. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol., 2005, 400, 395-409.
[http://dx.doi.org/10.1016/S0076-6879(05)00023-6] [PMID: 16399362]
[167]
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol., 2018, 315(3), C343-C356.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[168]
Han, B.; Zhang, Y.; Zhang, Y.; Bai, Y.; Chen, X.; Huang, R.; Wu, F.; Leng, S.; Chao, J.; Zhang, J.H.; Hu, G.; Yao, H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018, 14(7), 1164-1184.
[http://dx.doi.org/10.1080/15548627.2018.1458173] [PMID: 29938598]
[169]
Wu, F.; Han, B.; Wu, S.; Yang, L.; Leng, S.; Li, M.; Liao, J.; Wang, G.; Ye, Q.; Zhang, Y.; Chen, H.; Chen, X.; Zhong, M.; Xu, Y.; Liu, Q.; Zhang, J.H.; Yao, H. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. J. Neurosci., 2019, 39(37), 7369-7393.
[http://dx.doi.org/10.1523/JNEUROSCI.0299-19.2019] [PMID: 31311824]
[170]
Petrov, A.M.; Zefirov, A.L. Cholesterol and lipid rafts in the biological membranes. Role in the release, reception and ion channel functions. Usp. Fiziol. Nauk, 2013, 44(1), 17-38.
[PMID: 23662472]
[171]
Zhong, W.; Huang, Q.; Zeng, L.; Hu, Z.; Tang, X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int. J. Med. Sci., 2019, 16(11), 1492-1503.
[http://dx.doi.org/10.7150/ijms.35158] [PMID: 31673241]
[172]
Steen, K.A.; Xu, H.; Bernlohr, D.A. FABP4/aP2 Regulates Macrophage Redox Signaling and Inflammasome Activation via Control of UCP2. Mol. Cell. Biol., 2017, 37(2), e00282-e16.
[http://dx.doi.org/10.1128/MCB.00282-16] [PMID: 27795298]
[173]
Bacigaluppi, M.; Martino, G. FABP4 a novel therapeutic target in ischaemic stroke. Eur. Heart J., 2020, 41(33), 3181-3183.
[http://dx.doi.org/10.1093/eurheartj/ehaa230] [PMID: 32350508]
[174]
Joseph, R.; Welch, K.M.; D’Andrea, G. Effect of therapy on platelet activating factor-induced aggregation in acute stroke. Stroke, 1989, 20(5), 609-611.
[http://dx.doi.org/10.1161/01.STR.20.5.609] [PMID: 2718200]
[175]
Belayev, L.; Obenaus, A.; Mukherjee, P.K.; Knott, E.J.; Khoutorova, L.; Reid, M.M.; Roque, C.R.; Nguyen, L.; Lee, J.B.; Petasis, N.A.; Oria, R.B.; Bazan, N.G. Blocking pro-inflammatory platelet-activating factor receptors and activating cell survival pathways: A novel therapeutic strategy in experimental ischemic stroke. Brain Circ., 2020, 6(4), 260-268.
[http://dx.doi.org/10.4103/bc.bc_36_20] [PMID: 33506149]
[176]
Paul, S.; Candelario-Jalil, E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp. Neurol., 2021, 335, 113518.
[http://dx.doi.org/10.1016/j.expneurol.2020.113518] [PMID: 33144066]
[177]
Goenka, L.; Uppugunduri Satyanarayana, C.R. S, S.K.; George, M. Neuroprotective agents in Acute Ischemic Stroke-A Reality Check. Biomed. Pharmacother., 2019, 109, 2539-2547.
[http://dx.doi.org/10.1016/j.biopha.2018.11.041] [PMID: 30551514]
[178]
Ziganshina, L.E.; Abakumova, T.; Vernay, L. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst. Rev., 2017, 4, CD007026.
[PMID: 28430363]
[179]
Kanazawa, M.; Ninomiya, I.; Hatakeyama, M.; Takahashi, T.; Shimohata, T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int. J. Mol. Sci., 2017, 18(10), E2135.
[http://dx.doi.org/10.3390/ijms18102135] [PMID: 29027964]
[180]
Lan, X.; Han, X.; Li, Q.; Yang, Q.W.; Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol., 2017, 13(7), 420-433.
[http://dx.doi.org/10.1038/nrneurol.2017.69] [PMID: 28524175]
[181]
Matsukawa, N.; Yasuhara, T.; Hara, K.; Xu, L.; Maki, M.; Yu, G.; Kaneko, Y.; Ojika, K.; Hess, D.C.; Borlongan, C.V. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci., 2009, 10, 126.
[http://dx.doi.org/10.1186/1471-2202-10-126] [PMID: 19807907]
[182]
Mitta, M.; Goel, D.; Bansal, K.K.; Puri, P. Edaravone - citicoline comparative study in acute ischemic stroke (ECCS-AIS). J. Assoc. Physicians India, 2012, 60, 36-38.
[PMID: 23767201]
[183]
Isahaya, K.; Yamada, K.; Yamatoku, M.; Sakurai, K.; Takaishi, S.; Kato, B.; Hirayama, T.; Hasegawa, Y. Effects of edaravone, a free radical scavenger, on serum levels of inflammatory biomarkers in acute brain infarction. J. Stroke Cerebrovasc. Dis., 2012, 21(2), 102-107.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2010.05.009] [PMID: 21215657]
[184]
Hayakawa, K.; Nakano, T.; Irie, K.; Higuchi, S.; Fujioka, M.; Orito, K.; Iwasaki, K.; Jin, G.; Lo, E.H.; Mishima, K.; Fujiwara, M. Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 2010, 30(4), 871-882.
[http://dx.doi.org/10.1038/jcbfm.2009.257] [PMID: 19997116]
[185]
Pekny, M.; Wilhelmsson, U.; Tatlisumak, T.; Pekna, M. Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci. Lett., 2019, 689, 45-55.
[http://dx.doi.org/10.1016/j.neulet.2018.07.021] [PMID: 30025833]
[186]
Han, S.W.; Lee, S.S.; Kim, S.H.; Lee, J.H.; Kim, G.S.; Kim, O.J.; Koh, I.S.; Lee, J.Y.; Suk, S.H.; Lee, S.I.; Nam, H.S.; Kim, W.J.; Yong, S.W.; Lee, K.Y.; Park, J.H. Effect of cilostazol in acute lacunar infarction based on pulsatility index of transcranial Doppler (ECLIPse): a multicenter, randomized, double-blind, placebo-controlled trial. Eur. Neurol., 2013, 69(1), 33-40.
[http://dx.doi.org/10.1159/000338247] [PMID: 23128968]
[187]
Chen, X.; Wang, K. The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995-2015. Acta Pharm. Sin. B, 2016, 6(6), 522-530.
[http://dx.doi.org/10.1016/j.apsb.2016.06.013] [PMID: 27818918]
[188]
Lewin, G.R.; Barde, Y.A. Physiology of the neurotrophins. Annu. Rev. Neurosci., 1996, 19, 289-317.
[http://dx.doi.org/10.1146/annurev.ne.19.030196.001445] [PMID: 8833445]
[189]
McDonald, N.Q.; Chao, M.V. Structural determinants of neurotrophin action. J. Biol. Chem., 1995, 270(34), 19669-19672.
[http://dx.doi.org/10.1074/jbc.270.34.19669] [PMID: 7649974]
[190]
Lindvall, O.; Kokaia, Z.; Bengzon, J.; Elmér, E.; Kokaia, M. Neurotrophins and brain insults. Trends Neurosci., 1994, 17(11), 490-496.
[http://dx.doi.org/10.1016/0166-2236(94)90139-2] [PMID: 7531892]
[191]
Jackson, G.R.; Apffel, L.; Werrbach-Perez, K.; Perez-Polo, J.R. Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J. Neurosci. Res., 1990, 25(3), 360-368.
[http://dx.doi.org/10.1002/jnr.490250313] [PMID: 2325161]
[192]
Nisticò, G.; Ciriolo, M.R.; Fiskin, K.; Iannone, M.; De Martino, A.; Rotilio, G. NGF restores decrease in catalase and increases glutathione peroxidase activity in the brain of aged rats. Neurosci. Lett., 1991, 130(1), 117-119.
[http://dx.doi.org/10.1016/0304-3940(91)90241-K] [PMID: 1749511]
[193]
Berretta, A.; Tzeng, Y.C.; Clarkson, A.N. Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev. Neurother., 2014, 14(11), 1335-1344.
[http://dx.doi.org/10.1586/14737175.2014.969242] [PMID: 25319267]
[194]
Connor, B.; Dragunow, M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Brain Res. Rev., 1998, 27(1), 1-39.
[http://dx.doi.org/10.1016/S0165-0173(98)00004-6] [PMID: 9639663]
[195]
Sofroniew, M.V.; Howe, C.L.; Mobley, W.C. Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci., 2001, 24, 1217-1281.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1217] [PMID: 11520933]
[196]
Zhang, G.; Zhang, T.; Li, N.; Wu, L.; Gu, J.; Li, C.; Zhao, C.; Liu, W.; Shan, L.; Yu, P.; Yang, X.; Tang, Y.; Yang, G.Y.; Wang, Y.; Sun, Y.; Zhang, Z. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br. J. Pharmacol., 2018, 175(3), 517-531.
[http://dx.doi.org/10.1111/bph.14102] [PMID: 29161771]
[197]
de Boer, R.G.A.; Spielmann, K.; Heijenbrok-Kal, M.H.; van der Vliet, R.; Ribbers, G.M.; van de Sandt-Koenderman, W.M.E. The role of the BDNF Val66Met polymorphism in recovery of aphasia after stroke. Neurorehabil. Neural Repair, 2017, 31(9), 851-857.
[http://dx.doi.org/10.1177/1545968317723752] [PMID: 28818006]
[198]
Zafra, F.; Castrén, E.; Thoenen, H.; Lindholm, D. Interplay between glutamate and gamma-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc. Natl. Acad. Sci. USA, 1991, 88(22), 10037-10041.
[http://dx.doi.org/10.1073/pnas.88.22.10037] [PMID: 1658793]
[199]
Jiang, C.; Zuo, F.; Wang, Y.; Lu, H.; Yang, Q.; Wang, J. Progesterone changes VEGF and BDNF expression and promotes neurogenesis after ischemic stroke. Mol. Neurobiol., 2016, online ahead or Print.
[PMID: 26746666]
[200]
Li, B.; Piao, C.S.; Liu, X.Y.; Guo, W.P.; Xue, Y.Q.; Duan, W.M.; Gonzalez-Toledo, M.E.; Zhao, L.R. Brain self-protection: the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia. Brain Res., 2010, 1327, 91-102.
[http://dx.doi.org/10.1016/j.brainres.2010.02.030] [PMID: 20171958]
[201]
Stanzani, L.; Zoia, C.; Sala, G.; Appollonio, I.; Frattola, L.; De Simoni, M.G.; Ferrarese, C. Nerve growth factor and transforming growth factor-beta serum levels in acute stroke patients. Possible involvement of neurotrophins in cerebrovascular disease. Cerebrovasc. Dis., 2001, 12(3), 240-244.
[http://dx.doi.org/10.1159/000047710] [PMID: 11641590]
[202]
Feczkó, T.; Piiper, A.; Ansar, S.; Blixt, F.W.; Ashtikar, M.; Schiffmann, S.; Ulshöfer, T.; Parnham, M.J.; Harel, Y.; Israel, L.L.; Lellouche, J.P.; Wacker, M.G. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J. Control. Release, 2019, 293, 63-72.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.017] [PMID: 30458203]
[203]
Saito, A.; Narasimhan, P.; Hayashi, T.; Okuno, S.; Ferrand-Drake, M.; Chan, P.H. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J. Neurosci., 2004, 24(7), 1584-1593.
[http://dx.doi.org/10.1523/JNEUROSCI.5209-03.2004] [PMID: 14973226]
[204]
Liu, J.; Solway, K.; Messing, R.O. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosec., 1998, 18(19), 7768-7778.
[205]
Gould, E.T.P. Stress and hippocampal neurogenesis. Biological psychiatry, 1999, 46(11), 1472-1479.
[206]
Chen, G.; Rajkowska, G.; Du, F.; Seraji-Bozorgzad, N.; Manji, H.K. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem., 2000, 75(4), 1729-1734.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751729.x] [PMID: 10987856]
[207]
Leventhal, C; Rafii, S; Rafii, D; Shahar, A; Goldman, SAJM; Neuroscience, C Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. 1999, 13(6), 450-464.
[http://dx.doi.org/10.1006/mcne.1999.0762]
[208]
Doetsch, F.; García-Verdugo, J.M.; Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci., 1997, 17(13), 5046-5061.
[http://dx.doi.org/10.1523/JNEUROSCI.17-13-05046.1997] [PMID: 9185542]
[209]
García-Verdugo, J.M.; Doetsch, F.; Wichterle, H.; Lim, D.A.; Alvarez-Buylla, A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol., 1998, 36(2), 234-248.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199808)36:2<234:AID-NEU10>3.0.CO;2-E] [PMID: 9712307]
[210]
Chen, J.; Li, Y.; Zhang, R.; Katakowski, M.; Gautam, S.C.; Xu, Y.; Lu, M.; Zhang, Z.; Chopp, M. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res., 2004, 1005(1-2), 21-28.
[http://dx.doi.org/10.1016/j.brainres.2003.11.080] [PMID: 15044060]
[211]
Thored, P.; Arvidsson, A.; Cacci, E.; Ahlenius, H.; Kallur, T.; Darsalia, V.; Ekdahl, C.T.; Kokaia, Z.; Lindvall, O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells, 2006, 24(3), 739-747.
[http://dx.doi.org/10.1634/stemcells.2005-0281] [PMID: 16210404]
[212]
Palmer, T.D.; Willhoite, A.R.; Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol., 2000, 425(4), 479-494.
[http://dx.doi.org/10.1002/1096-9861(20001002)425:4<479:AID-CNE2>3.0.CO;2-3] [PMID: 10975875]
[213]
Shen, Q.; Goderie, S.K.; Jin, L.; Karanth, N.; Sun, Y.; Abramova, N.; Vincent, P.; Pumiglia, K.; Temple, S. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 2004, 304(5675), 1338-1340.
[http://dx.doi.org/10.1126/science.1095505] [PMID: 15060285]
[214]
Oki, K.; Tatarishvili, J.; Wood, J.; Koch, P.; Wattananit, S.; Mine, Y.; Monni, E.; Tornero, D.; Ahlenius, H.; Ladewig, J.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells, 2012, 30(6), 1120-1133.
[http://dx.doi.org/10.1002/stem.1104] [PMID: 22495829]
[215]
Lee, H.J.; Lim, I.J.; Lee, M.C.; Kim, S.U. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J. Neurosci. Res., 2010, 88(15), 3282-3294.
[http://dx.doi.org/10.1002/jnr.22474] [PMID: 20818776]
[216]
Huang, L.; Wong, S.; Snyder, E.Y.; Hamblin, M.H.; Lee, J.P. Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Res. Ther., 2014, 5(6), 129.
[http://dx.doi.org/10.1186/scrt519] [PMID: 25418536]
[217]
Wang, F.; Tang, H.; Zhu, J.; Zhang, J.H. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant., 2018, 27(12), 1825-1834.
[http://dx.doi.org/10.1177/0963689718795424] [PMID: 30251564]
[218]
Jeong, C.H.; Kim, S.M.; Lim, J.Y.; Ryu, C.H.; Jun, J.A.; Jeun, S.S. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. BioMed Res. Int., 2014, 2014, 129145.
[http://dx.doi.org/10.1155/2014/129145] [PMID: 24672780]
[219]
Akhoundzadeh, K.; Vakili, A. Effect of stem cells-based therapy on astrogliosis in stroke subjected-mice. Stem Cell Investig., 2020, 7, 21.
[http://dx.doi.org/10.21037/sci-2020-031] [PMID: 33437841]
[220]
Baker, E.W.; Platt, S.R.; Lau, V.W.; Grace, H.E.; Holmes, S.P.; Wang, L.; Duberstein, K.J.; Howerth, E.W.; Kinder, H.A.; Stice, S.L.; Hess, D.C.; Mao, H.; West, F.D. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci. Rep., 2017, 7(1), 10075.
[http://dx.doi.org/10.1038/s41598-017-10406-x] [PMID: 28855627]
[221]
Surugiu, R.; Olaru, A.; Hermann, D.M.; Glavan, D.; Catalin, B.; Popa-Wagner, A. Recent advances in mono- and combined stem cell therapies of stroke in animal models and humans. Int. J. Mol. Sci., 2019, 20(23), E6029.
[http://dx.doi.org/10.3390/ijms20236029] [PMID: 31795466]
[222]
Liu, L.R.; Liu, J.C.; Bao, J.S.; Bai, Q.Q.; Wang, G.Q. Interaction of microglia and astrocytes in the neurovascular unit. Front. Immunol., 2020, 11, 1024.
[http://dx.doi.org/10.3389/fimmu.2020.01024] [PMID: 32733433]
[223]
Rahman, Z.; Dandekar, M.P. Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. J. Neuroimmunol., 2021, 353, 577498.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577498] [PMID: 33607506]
[224]
Tan, C.; Wu, Q.; Wang, H.; Gao, X.; Xu, R.; Cui, Z. Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. JPEN J. Parenter. Enteral Nutr., 2021, 45(3), 518-529.
[PMID: 32473086]
[225]
Yadav, S.K.; Boppana, S.; Ito, N.; Mindur, J.E.; Mathay, M.T.; Patel, A.; Dhib-Jalbut, S.; Ito, K. Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood. Proc. Natl. Acad. Sci. USA, 2017, 114(44), E9318-E9327.
[http://dx.doi.org/10.1073/pnas.1615715114] [PMID: 29078267]
[226]
Singh, V.; Roth, S.; Llovera, G.; Sadler, R.; Garzetti, D.; Stecher, B.; Dichgans, M.; Liesz, A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci., 2016, 36(28), 7428-7440.
[http://dx.doi.org/10.1523/JNEUROSCI.1114-16.2016] [PMID: 27413153]
[227]
Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; Sartor, R.B.; McIntyre, T.M.; Silverstein, R.L.; Tang, W.H.W.; DiDonato, J.A.; Brown, J.M.; Lusis, A.J.; Hazen, S.L. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 2016, 165(1), 111-124.
[http://dx.doi.org/10.1016/j.cell.2016.02.011] [PMID: 26972052]
[228]
Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[229]
Akhoundzadeh, K.; Vakili, A.; Shadnoush, M.; Sadeghzadeh, J. Effects of the oral ingestion of probiotics on brain damage in a transient model of focal cerebral ischemia in mice. Iran. J. Med. Sci., 2018, 43(1), 32-40.
[PMID: 29398750]
[230]
Chen, R.; Xu, Y.; Wu, P.; Zhou, H.; Lasanajak, Y.; Fang, Y.; Tang, L.; Ye, L.; Li, X.; Cai, Z.; Zhao, J. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol. Res., 2019, 148, 104403.
[http://dx.doi.org/10.1016/j.phrs.2019.104403] [PMID: 31425750]
[231]
Zhang, F.; Zhai, M.; Wu, Q.; Jia, X.; Wang, Y.; Wang, N. Protective effect of tong-qiao-huo-xue decoction on inflammatory injury caused by intestinal microbial disorders in stroke rats. Biol. Pharm. Bull., 2020, 43(5), 788-800.
[http://dx.doi.org/10.1248/bpb.b19-00847] [PMID: 32132347]
[232]
Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne), 2020, 11, 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[233]
Vendrik, K.E.W.; Ooijevaar, R.E.; de Jong, P.R.C.; Laman, J.D.; van Oosten, B.W.; van Hilten, J.J.; Ducarmon, Q.R.; Keller, J.J.; Kuijper, E.J.; Contarino, M.F. Fecal microbiota transplantation in neurological disorders. Front. Cell. Infect. Microbiol., 2020, 10, 98.
[http://dx.doi.org/10.3389/fcimb.2020.00098] [PMID: 32266160]
[234]
Benakis, C.; Poon, C.; Lane, D.; Brea, D.; Sita, G.; Moore, J.; Murphy, M.; Racchumi, G.; Iadecola, C.; Anrather, J. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke, 2020, 51(6), 1844-1854.
[http://dx.doi.org/10.1161/STROKEAHA.120.029262] [PMID: 32404038]
[235]
Wang, H; Song, W; Gao, X; Zhu, J; Li, J; Wu, Q Modulation of the gut microbiota of type 2 diabetic mice by sodium butyrate attenuates ischemic stroke injury., 2020, Preprint.
[236]
Lee, J.; d’Aigle, J.; Atadja, L.; Quaicoe, V.; Honarpisheh, P.; Ganesh, B.P.; Hassan, A.; Graf, J.; Petrosino, J.; Putluri, N.; Zhu, L.; Durgan, D.J.; Bryan, R.M., Jr; McCullough, L.D.; Venna, V.R. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ. Res., 2020, 127(4), 453-465.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316448] [PMID: 32354259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy