Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Potential Role of Hypoxia-Inducible Factor-1 in the Progression and Therapy of Central Nervous System Diseases

Author(s): Hongxiu Chen, Di Ma, Feixue Yue, Yajie Qi, Manman Dou, Liuping Cui and Yingqi Xing*

Volume 20, Issue 9, 2022

Published on: 30 March, 2022

Page: [1651 - 1666] Pages: 16

DOI: 10.2174/1570159X19666210729123137

Price: $65

Abstract

Hypoxia-inducible factor-1 (HIF-1) is a heterodimer protein composed of an oxygenregulated functional subunit, HIF-1α, and a structural subunit, HIF-1β, belonging to the basic helixloop- helix family. Strict regulation of HIF-1 protein stability and subsequent transcriptional activity involves various molecular interactions and is primarily controlled by post-transcriptional modifications. Hypoxia, owing to impaired cerebral blood flow, has been implicated in a range of central nervous system (CNS) diseases by exerting a deleterious effect on brain function. As a master oxygen- sensitive transcription regulator, HIF-1 is responsible for upregulating a wide spectrum of target genes involved in glucose metabolism, angiogenesis, and erythropoiesis to generate the adaptive response to avoid, or at least minimize, hypoxic brain injury. However, prolonged, severe oxygen deprivation may directly contribute to the role-conversion of HIF-1, namely, from neuroprotection to the promotion of cell death. Currently, an increasing number of studies support the fact HIF-1 is involved in a variety of CNS-related diseases, such as intracranial atherosclerosis, stroke, and neurodegenerative diseases. This review article chiefly focuses on the effect of HIF-1 on the pathogenesis and mechanism of progression of numerous CNS-related disorders by mediating the expression of various downstream genes and extensive biological functional events and presents robust evidence that HIF-1 may represent a potential therapeutic target for CNS-related diseases.

Keywords: Hypoxia-inducible factor-1, central nervous system, neuroprotection, apoptosis, angiogenesis, erythropoiesis, inflammation.

Graphical Abstract

[1]
Semenza, G.L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med., 2001, 7(8), 345-350.
[http://dx.doi.org/10.1016/S1471-4914(01)02090-1] [PMID: 11516994]
[2]
Eskandani, M.; Vandghanooni, S.; Barar, J.; Nazemiyeh, H.; Omidi, Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int. J. Biol. Macromol., 2017, 99, 46-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.113] [PMID: 28223135]
[3]
Corcoran, A.; O’Connor, J.J. Hypoxia-inducible factor signalling mechanisms in the central nervous system. Acta Physiol. (Oxf.), 2013, 208(4), 298-310.
[http://dx.doi.org/10.1111/apha.12117] [PMID: 23692777]
[4]
Semenza, G.L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med., 2011, 365(6), 537-547.
[http://dx.doi.org/10.1056/NEJMra1011165] [PMID: 21830968]
[5]
Semenza, G.L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol., 1999, 15, 551-578.
[http://dx.doi.org/10.1146/annurev.cellbio.15.1.551] [PMID: 10611972]
[6]
Singh, N.; Sharma, G.; Mishra, V. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell. Mol. Neurobiol., 2012, 32(4), 491-507.
[http://dx.doi.org/10.1007/s10571-012-9803-9] [PMID: 22297543]
[7]
Semenza, G.L.; Agani, F.; Booth, G.; Forsythe, J.; Iyer, N.; Jiang, B.H.; Leung, S.; Roe, R.; Wiener, C.; Yu, A. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int., 1997, 51(2), 553-555.
[http://dx.doi.org/10.1038/ki.1997.77] [PMID: 9027737]
[8]
Masoud, G.N.; Li, W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B, 2015, 5(5), 378-389.
[http://dx.doi.org/10.1016/j.apsb.2015.05.007] [PMID: 26579469]
[9]
Semenza, G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol., 2014, 76, 39-56.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170322] [PMID: 23988176]
[10]
Acker, T.; Acker, H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J. Exp. Biol., 2004, 207(Pt 18), 3171-3188.
[http://dx.doi.org/10.1242/jeb.01075] [PMID: 15299039]
[11]
Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol., 1992, 12(12), 5447-5454.
[http://dx.doi.org/10.1128/MCB.12.12.5447] [PMID: 1448077]
[12]
Semenza, G.L.; Nejfelt, M.K.; Chi, S.M.; Antonarakis, S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3¢ to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5680-5684.
[http://dx.doi.org/10.1073/pnas.88.13.5680] [PMID: 2062846]
[13]
Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA, 1995, 92(12), 5510-5514.
[http://dx.doi.org/10.1073/pnas.92.12.5510] [PMID: 7539918]
[14]
Wang, G.L.; Semenza, G.L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem., 1993, 268(29), 21513-21518.
[http://dx.doi.org/10.1016/S0021-9258(20)80571-7] [PMID: 8408001]
[15]
Wang, G.L.; Semenza, G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem., 1995, 270(3), 1230-1237.
[http://dx.doi.org/10.1074/jbc.270.3.1230] [PMID: 7836384]
[16]
Reyes, H.; Reisz-Porszasz, S.; Hankinson, O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science, 1992, 256(5060), 1193-1195.
[http://dx.doi.org/10.1126/science.256.5060.1193] [PMID: 1317062]
[17]
Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol., 2006, 70(5), 1469-1480.
[http://dx.doi.org/10.1124/mol.106.027029] [PMID: 16887934]
[18]
Jiang, B.H.; Rue, E.; Wang, G.L.; Roe, R.; Semenza, G.L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem., 1996, 271(30), 17771-17778.
[http://dx.doi.org/10.1074/jbc.271.30.17771] [PMID: 8663540]
[19]
Kadesch, T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ., 1993, 4(1), 49-55.
[PMID: 8424906]
[20]
Huang, Z.J.; Edery, I.; Rosbash, M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature, 1993, 364(6434), 259-262.
[http://dx.doi.org/10.1038/364259a0] [PMID: 8391649]
[21]
Dengler, V.L.; Galbraith, M.; Espinosa, J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol., 2014, 49(1), 1-15.
[http://dx.doi.org/10.3109/10409238.2013.838205] [PMID: 24099156]
[22]
Jiang, B.H.; Zheng, J.Z.; Leung, S.W.; Roe, R.; Semenza, G.L. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem., 1997, 272(31), 19253-19260.
[http://dx.doi.org/10.1074/jbc.272.31.19253] [PMID: 9235919]
[23]
Huang, L.E.; Gu, J.; Schau, M.; Bunn, H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 7987-7992.
[http://dx.doi.org/10.1073/pnas.95.14.7987] [PMID: 9653127]
[24]
Ema, M.; Taya, S.; Yokotani, N.; Sogawa, K.; Matsuda, Y.; Fujii-Kuriyama, Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA, 1997, 94(9), 4273-4278.
[http://dx.doi.org/10.1073/pnas.94.9.4273] [PMID: 9113979]
[25]
Gu, Y.Z.; Moran, S.M.; Hogenesch, J.B.; Wartman, L.; Bradfield, C.A. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr., 1998, 7(3), 205-213.
[PMID: 9840812]
[26]
Tian, H.; McKnight, S.L.; Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev., 1997, 11(1), 72-82.
[http://dx.doi.org/10.1101/gad.11.1.72] [PMID: 9000051]
[27]
Holmquist-Mengelbier, L.; Fredlund, E.; Löfstedt, T.; Noguera, R.; Navarro, S.; Nilsson, H.; Pietras, A.; Vallon-Christersson, J.; Borg, A.; Gradin, K.; Poellinger, L.; Påhlman, S. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell, 2006, 10(5), 413-423.
[http://dx.doi.org/10.1016/j.ccr.2006.08.026] [PMID: 17097563]
[28]
Löfstedt, T.; Fredlund, E.; Holmquist-Mengelbier, L.; Pietras, A.; Ovenberger, M.; Poellinger, L.; Påhlman, S. Hypoxia inducible factor-2alpha in cancer. Cell Cycle, 2007, 6(8), 919-926.
[http://dx.doi.org/10.4161/cc.6.8.4133] [PMID: 17404509]
[29]
Makino, Y.; Kanopka, A.; Wilson, W.J.; Tanaka, H.; Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J. Biol. Chem., 2002, 277(36), 32405-32408.
[http://dx.doi.org/10.1074/jbc.C200328200] [PMID: 12119283]
[30]
Huang, L.E.; Arany, Z.; Livingston, D.M.; Bunn, H.F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem., 1996, 271(50), 32253-32259.
[http://dx.doi.org/10.1074/jbc.271.50.32253] [PMID: 8943284]
[31]
Salceda, S.; Caro, J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem., 1997, 272(36), 22642-22647.
[http://dx.doi.org/10.1074/jbc.272.36.22642] [PMID: 9278421]
[32]
Gleadle, J.M.; Ratcliffe, P.J. Hypoxia and the regulation of gene expression. Mol. Med. Today, 1998, 4(3), 122-129.
[http://dx.doi.org/10.1016/S1357-4310(97)01198-2] [PMID: 9575495]
[33]
Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G. Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292(5516), 464-468.
[http://dx.doi.org/10.1126/science.1059817] [PMID: 11292862]
[34]
Albanese, A.; Daly, L.A.; Mennerich, D.; Kietzmann, T.; Sée, V. The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. Int. J. Mol. Sci., 2020, 22(1), E268.
[http://dx.doi.org/10.3390/ijms22010268] [PMID: 33383924]
[35]
Kaelin, W.G. Proline hydroxylation and gene expression. Annu. Rev. Biochem., 2005, 74, 115-128.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133142] [PMID: 15952883]
[36]
Srinivas, V.; Zhang, L.P.; Zhu, X.H.; Caro, J. Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem. Biophys. Res. Commun., 1999, 260(2), 557-561.
[http://dx.doi.org/10.1006/bbrc.1999.0878] [PMID: 10403805]
[37]
Berra, E.; Benizri, E.; Ginouvès, A.; Volmat, V.; Roux, D.; Pouysségur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J., 2003, 22(16), 4082-4090.
[http://dx.doi.org/10.1093/emboj/cdg392] [PMID: 12912907]
[38]
Epstein, A.C.; Gleadle, J.M.; McNeill, L.A.; Hewitson, K.S.; O’Rourke, J.; Mole, D.R.; Mukherji, M.; Metzen, E.; Wilson, M.I.; Dhanda, A.; Tian, Y.M.; Masson, N.; Hamilton, D.L.; Jaakkola, P.; Barstead, R.; Hodgkin, J.; Maxwell, P.H.; Pugh, C.W.; Schofield, C.J.; Ratcliffe, P.J.C.C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001, 107(1), 43-54.
[http://dx.doi.org/10.1016/S0092-8674(01)00507-4] [PMID: 11595184]
[39]
Paltoglou, S.; Roberts, B.J. HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene, 2007, 26(4), 604-609.
[http://dx.doi.org/10.1038/sj.onc.1209818] [PMID: 16862177]
[40]
Jeong, J.W.; Bae, M.K.; Ahn, M.Y.; Kim, S.H.; Sohn, T.K.; Bae, M.H.; Yoo, M.A.; Song, E.J.; Lee, K.J.; Kim, K.W. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell, 2002, 111(5), 709-720.
[http://dx.doi.org/10.1016/S0092-8674(02)01085-1] [PMID: 12464182]
[41]
Lando, D.; Peet, D.J.; Whelan, D.A.; Gorman, J.J.; Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science, 2002, 295(5556), 858-861.
[http://dx.doi.org/10.1126/science.1068592] [PMID: 11823643]
[42]
Cassavaugh, J.; Lounsbury, K.M. Hypoxia-mediated biological control. J. Cell. Biochem., 2011, 112(3), 735-744.
[http://dx.doi.org/10.1002/jcb.22956] [PMID: 21328446]
[43]
Richard, D.E.; Berra, E.; Gothié, E.; Roux, D.; Pouysségur, J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J. Biol. Chem., 1999, 274(46), 32631-32637.
[http://dx.doi.org/10.1074/jbc.274.46.32631] [PMID: 10551817]
[44]
Gradin, K.; Takasaki, C.; Fujii-Kuriyama, Y.; Sogawa, K. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem., 2002, 277(26), 23508-23514.
[http://dx.doi.org/10.1074/jbc.M201307200] [PMID: 11983697]
[45]
Lancaster, D.E.; McNeill, L.A.; McDonough, M.A.; Aplin, R.T.; Hewitson, K.S.; Pugh, C.W.; Ratcliffe, P.J.; Schofield, C.J. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem. J., 2004, 383(Pt. 3), 429-437.
[http://dx.doi.org/10.1042/BJ20040735] [PMID: 15239670]
[46]
Mylonis, I.; Chachami, G.; Samiotaki, M.; Panayotou, G.; Paraskeva, E.; Kalousi, A.; Georgatsou, E.; Bonanou, S.; Simos, G. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J. Biol. Chem., 2006, 281(44), 33095-33106.
[http://dx.doi.org/10.1074/jbc.M605058200] [PMID: 16954218]
[47]
Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem., 2004, 73, 355-382.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.074118] [PMID: 15189146]
[48]
Filippopoulou, C.; Simos, G.; Chachami, G. The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells, 2020, 9(11), E2359.
[http://dx.doi.org/10.3390/cells9112359] [PMID: 33114748]
[49]
Bae, S.H.; Jeong, J.W.; Park, J.A.; Kim, S.H.; Bae, M.K.; Choi, S.J.; Kim, K.W. Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun., 2004, 324(1), 394-400.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.068] [PMID: 15465032]
[50]
Berta, M.A.; Mazure, N.; Hattab, M.; Pouysségur, J.; Brahimi-Horn, M.C. SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem. Biophys. Res. Commun., 2007, 360(3), 646-652.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.103] [PMID: 17610843]
[51]
Cheng, J.; Kang, X.; Zhang, S.; Yeh, E.T. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 2007, 131(3), 584-595.
[http://dx.doi.org/10.1016/j.cell.2007.08.045] [PMID: 17981124]
[52]
Lee, J.W.; Bae, S.H.; Jeong, J.W.; Kim, S.H.; Kim, K.W. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp. Mol. Med., 2004, 36(1), 1-12.
[http://dx.doi.org/10.1038/emm.2004.1] [PMID: 15031665]
[53]
Ergul, A.; Abdelsaid, M.; Fouda, A.Y.; Fagan, S.C. Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. J. Cereb. Blood Flow Metab., 2014, 34(4), 553-563.
[http://dx.doi.org/10.1038/jcbfm.2014.18] [PMID: 24496174]
[54]
Rey, S.; Semenza, G.L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res., 2010, 86(2), 236-242.
[http://dx.doi.org/10.1093/cvr/cvq045] [PMID: 20164116]
[55]
Semenza, G.L. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J. Cell. Biochem., 2007, 102(4), 840-847.
[http://dx.doi.org/10.1002/jcb.21523] [PMID: 17891779]
[56]
Zimna, A.; Kurpisz, M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int., 2015, 2015, 549412.
[http://dx.doi.org/10.1155/2015/549412] [PMID: 26146622]
[57]
Kelly, B.D.; Hackett, S.F.; Hirota, K.; Oshima, Y.; Cai, Z.; Berg-Dixon, S.; Rowan, A.; Yan, Z.; Campochiaro, P.A.; Semenza, G.L. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res., 2003, 93(11), 1074-1081.
[http://dx.doi.org/10.1161/01.RES.0000102937.50486.1B] [PMID: 14576200]
[58]
Ben-Yosef, Y.; Miller, A.; Shapiro, S.; Lahat, N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am. J. Physiol. Cell Physiol., 2005, 289(5), C1321-C1331.
[http://dx.doi.org/10.1152/ajpcell.00079.2005] [PMID: 16210427]
[59]
Rehn, M.; Veikkola, T.; Kukk-Valdre, E.; Nakamura, H.; Ilmonen, M.; Lombardo, C.; Pihlajaniemi, T.; Alitalo, K.; Vuori, K. Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA, 2001, 98(3), 1024-1029.
[http://dx.doi.org/10.1073/pnas.98.3.1024] [PMID: 11158588]
[60]
Manalo, D.J.; Rowan, A.; Lavoie, T.; Natarajan, L.; Kelly, B.D.; Ye, S.Q.; Garcia, J.G.; Semenza, G.L. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005, 105(2), 659-669.
[http://dx.doi.org/10.1182/blood-2004-07-2958] [PMID: 15374877]
[61]
Jin, M.L.; Zou, Z.H.; Tao, T.; Li, J.; Xu, J.; Luo, K.J.; Liu, Z. Effect of the recombinant adenovirus-mediated HIF-1 alpha on the expression of VEGF in the hypoxic brain microvascular endothelial cells of rats. Neuropsychiatr. Dis. Treat., 2020, 16, 397-406.
[http://dx.doi.org/10.2147/NDT.S238616] [PMID: 32103959]
[62]
Sun, Y.; Jin, K.; Xie, L.; Childs, J.; Mao, X.O.; Logvinova, A.; Greenberg, D.A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest., 2003, 111(12), 1843-1851.
[http://dx.doi.org/10.1172/JCI200317977] [PMID: 12813020]
[63]
Youssoufian, H.; Longmore, G.; Neumann, D.; Yoshimura, A.; Lodish, H.F. Structure, function, and activation of the erythropoietin receptor. Blood, 1993, 81(9), 2223-2236.
[http://dx.doi.org/10.1182/blood.V81.9.2223.2223] [PMID: 8481505]
[64]
Nagai, A.; Nakagawa, E.; Choi, H.B.; Hatori, K.; Kobayashi, S.; Kim, S.U. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J. Neuropathol. Exp. Neurol., 2001, 60(4), 386-392.
[http://dx.doi.org/10.1093/jnen/60.4.386] [PMID: 11305874]
[65]
Sakanaka, M.; Wen, T.C.; Matsuda, S.; Masuda, S.; Morishita, E.; Nagao, M.; Sasaki, R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4635-4640.
[http://dx.doi.org/10.1073/pnas.95.8.4635] [PMID: 9539790]
[66]
Ribatti, D. Angiogenic effects of erythropoietin. Int. Rev. Cell Mol. Biol., 2012, 299, 199-234.
[http://dx.doi.org/10.1016/B978-0-12-394310-1.00005-9] [PMID: 22959304]
[67]
Marti, H.H.; Bernaudin, M.; Petit, E.; Bauer, C. Neuroprotection and angiogenesis: Dual role of erythropoietin in brain ischemia. News Physiol. Sci., 2000, 15, 225-229.
[http://dx.doi.org/10.1152/physiologyonline.2000.15.5.225] [PMID: 11390915]
[68]
Li, J.; Tao, T.; Xu, J.; Liu, Z.; Zou, Z.; Jin, M. HIF 1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia reperfusion injury in a rat MCAO model. Int. J. Mol. Med., 2020, 45(4), 1027-1036.
[http://dx.doi.org/10.3892/ijmm.2020.4480] [PMID: 32124933]
[69]
Buemi, M.; Cavallaro, E.; Floccari, F.; Sturiale, A.; Aloisi, C.; Trimarchi, M.; Corica, F.; Frisina, N. The pleiotropic effects of erythropoietin in the central nervous system. J. Neuropathol. Exp. Neurol., 2003, 62(3), 228-236.
[http://dx.doi.org/10.1093/jnen/62.3.228] [PMID: 12638727]
[70]
Kawakami, M.; Sekiguchi, M.; Sato, K.; Kozaki, S.; Takahashi, M. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J. Biol. Chem., 2001, 276(42), 39469-39475.
[http://dx.doi.org/10.1074/jbc.M105832200] [PMID: 11504731]
[71]
Ruscher, K.; Freyer, D.; Karsch, M.; Isaev, N.; Megow, D.; Sawitzki, B.; Priller, J.; Dirnagl, U.; Meisel, A. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J. Neurosci., 2002, 22(23), 10291-10301.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10291.2002] [PMID: 12451129]
[72]
Sola, A.; Rogido, M.; Lee, B.H.; Genetta, T.; Wen, T.C. Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr. Res., 2005, 57(4), 481-487.
[http://dx.doi.org/10.1203/01.PDR.0000155760.88664.06] [PMID: 15718373]
[73]
Sirén, A.L.; Fratelli, M.; Brines, M.; Goemans, C.; Casagrande, S.; Lewczuk, P.; Keenan, S.; Gleiter, C.; Pasquali, C.; Capobianco, A.; Mennini, T.; Heumann, R.; Cerami, A.; Ehrenreich, H.; Ghezzi, P. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. USA, 2001, 98(7), 4044-4049.
[http://dx.doi.org/10.1073/pnas.051606598] [PMID: 11259643]
[74]
Digicaylioglu, M.; Lipton, S.A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature, 2001, 412(6847), 641-647.
[http://dx.doi.org/10.1038/35088074] [PMID: 11493922]
[75]
Liu, J.; Narasimhan, P.; Yu, F.; Chan, P.H. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke, 2005, 36(6), 1264-1269.
[http://dx.doi.org/10.1161/01.STR.0000166180.91042.02] [PMID: 15890996]
[76]
Wang, H.; Niu, F.; Fan, W.; Shi, J.; Zhang, J.; Li, B. Modulating effects of preconditioning exercise in the expression of ET-1 and BNP via HIF-1α in ischemically injured brain. Metab. Brain Dis., 2019, 34(5), 1299-1311.
[http://dx.doi.org/10.1007/s11011-019-00450-z] [PMID: 31222402]
[77]
Kietzmann, T.; Knabe, W.; Schmidt-Kastner, R. Hypoxia and hypoxia-inducible factor modulated gene expression in brain: involvement in neuroprotection and cell death. Eur. Arch. Psychiatry Clin. Neurosci., 2001, 251(4), 170-178.
[http://dx.doi.org/10.1007/s004060170037] [PMID: 11697581]
[78]
Xu, M.; Zhang, H.L. Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol. Sin., 2011, 32(9), 1089-1099.
[http://dx.doi.org/10.1038/aps.2011.50] [PMID: 21804578]
[79]
Balduini, W.; Carloni, S.; Buonocore, G. Autophagy in hypoxia-ischemia induced brain injury. J. Matern. Fetal Neonatal Med., 2012, 25(Suppl. 1), 30-34.
[http://dx.doi.org/10.3109/14767058.2012.663176] [PMID: 22385271]
[80]
Mazure, N.M.; Pouysségur, J. Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol., 2010, 22(2), 177-180.
[http://dx.doi.org/10.1016/j.ceb.2009.11.015] [PMID: 20022734]
[81]
Carloni, S.; Buonocore, G.; Balduini, W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis., 2008, 32(3), 329-339.
[http://dx.doi.org/10.1016/j.nbd.2008.07.022] [PMID: 18760364]
[82]
Zhang, H.; Bosch-Marce, M.; Shimoda, L.A.; Tan, Y.S.; Baek, J.H.; Wesley, J.B.; Gonzalez, F.J.; Semenza, G.L. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem., 2008, 283(16), 10892-10903.
[http://dx.doi.org/10.1074/jbc.M800102200] [PMID: 18281291]
[83]
Descloux, C.; Ginet, V.; Clarke, P.G.; Puyal, J.; Truttmann, A.C. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int. J. Dev. Neurosci., 2015, 45, 75-85.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.06.008] [PMID: 26225751]
[84]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[85]
Nakka, V.P.; Gusain, A.; Mehta, S.L.; Raghubir, R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol. Neurobiol., 2008, 37(1), 7-38.
[http://dx.doi.org/10.1007/s12035-007-8013-9] [PMID: 18066503]
[86]
Carmeliet, P.; Dor, Y.; Herbert, J.M.; Fukumura, D.; Brusselmans, K.; Dewerchin, M.; Neeman, M.; Bono, F.; Abramovitch, R.; Maxwell, P.; Koch, C.J.; Ratcliffe, P.; Moons, L.; Jain, R.K.; Collen, D.; Keshert, E. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394(6692), 485-490.
[http://dx.doi.org/10.1038/28867] [PMID: 9697772]
[87]
Helton, R.; Cui, J.; Scheel, J.R.; Ellison, J.A.; Ames, C.; Gibson, C.; Blouw, B.; Ouyang, L.; Dragatsis, I.; Zeitlin, S.; Johnson, R.S.; Lipton, S.A.; Barlow, C. Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J. Neurosci., 2005, 25(16), 4099-4107.
[http://dx.doi.org/10.1523/JNEUROSCI.4555-04.2005] [PMID: 15843612]
[88]
Piret, J.P.; Mottet, D.; Raes, M.; Michiels, C. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem. Pharmacol., 2002, 64(5-6), 889-892.
[http://dx.doi.org/10.1016/S0006-2952(02)01155-3] [PMID: 12213583]
[89]
Brunelle, J.K.; Chandel, N.S. Oxygen deprivation induced cell death: an update. Apoptosis, 2002, 7(6), 475-482.
[http://dx.doi.org/10.1023/A:1020668923852] [PMID: 12370489]
[90]
Bruick, R.K. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9082-9087.
[http://dx.doi.org/10.1073/pnas.97.16.9082] [PMID: 10922063]
[91]
Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ., 2018, 25(1), 65-80.
[http://dx.doi.org/10.1038/cdd.2017.186] [PMID: 29149100]
[92]
Hollville, E.; Romero, S.E.; Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J., 2019, 286(17), 3276-3298.
[http://dx.doi.org/10.1111/febs.14970] [PMID: 31230407]
[93]
Sermeus, A.; Michiels, C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis., 2011, 2(5), e164.
[http://dx.doi.org/10.1038/cddis.2011.48] [PMID: 21614094]
[94]
Chen, D.; Li, M.; Luo, J.; Gu, W. Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J. Biol. Chem., 2003, 278(16), 13595-13598.
[http://dx.doi.org/10.1074/jbc.C200694200] [PMID: 12606552]
[95]
Renolleau, S.; Benjelloun, N.; Ben-Ari, Y.; Charriaut-Marlangue, C. Regulation of apoptosis-associated proteins in cell death following transient focal ischemia in rat pups. Apoptosis, 1997, 2(4), 368-376.
[http://dx.doi.org/10.1023/A:1026453623753] [PMID: 14646533]
[96]
Kim, J.Y.; Ahn, H.J.; Ryu, J.H.; Suk, K.; Park, J.H. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J. Exp. Med., 2004, 199(1), 113-124.
[http://dx.doi.org/10.1084/jem.20030613] [PMID: 14699081]
[97]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[98]
Cummins, E.P.; Keogh, C.E.; Crean, D.; Taylor, C.T. The role of HIF in immunity and inflammation. Mol. Aspects Med., 2016, 47-48, 24-34.
[http://dx.doi.org/10.1016/j.mam.2015.12.004] [PMID: 26768963]
[99]
Taylor, C.T.; Colgan, S.P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol., 2017, 17(12), 774-785.
[http://dx.doi.org/10.1038/nri.2017.103] [PMID: 28972206]
[100]
Görlach, A.; Bonello, S. The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem. J., 2008, 412(3), e17-e19.
[http://dx.doi.org/10.1042/BJ20080920] [PMID: 18498249]
[101]
Safronova, O.; Morita, I. Transcriptome remodeling in hypoxic inflammation. J. Dent. Res., 2010, 89(5), 430-444.
[http://dx.doi.org/10.1177/0022034510366813] [PMID: 20348484]
[102]
Scortegagna, M.; Cataisson, C.; Martin, R.J.; Hicklin, D.J.; Schreiber, R.D.; Yuspa, S.H.; Arbeit, J.M. HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling. Blood, 2008, 111(7), 3343-3354.
[http://dx.doi.org/10.1182/blood-2007-10-115758] [PMID: 18199827]
[103]
Cramer, T.; Yamanishi, Y.; Clausen, B.E.; Förster, I.; Pawlinski, R.; Mackman, N.; Haase, V.H.; Jaenisch, R.; Corr, M.; Nizet, V.; Firestein, G.S.; Gerber, H.P.; Ferrara, N.; Johnson, R.S. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 2003, 112(5), 645-657.
[http://dx.doi.org/10.1016/S0092-8674(03)00154-5] [PMID: 12628185]
[104]
Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med., 2011, 364(7), 656-665.
[http://dx.doi.org/10.1056/NEJMra0910283] [PMID: 21323543]
[105]
McGettrick, A.F.; O’Neill, L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab., 2020, 32(4), 524-536.
[http://dx.doi.org/10.1016/j.cmet.2020.08.002] [PMID: 32853548]
[106]
Peyssonnaux, C.; Datta, V.; Cramer, T.; Doedens, A.; Theodorakis, E.A.; Gallo, R.L.; Hurtado-Ziola, N.; Nizet, V.; Johnson, R.S. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest., 2005, 115(7), 1806-1815.
[http://dx.doi.org/10.1172/JCI23865] [PMID: 16007254]
[107]
Walmsley, S.R.; Print, C.; Farahi, N.; Peyssonnaux, C.; Johnson, R.S.; Cramer, T.; Sobolewski, A.; Condliffe, A.M.; Cowburn, A.S.; Johnson, N.; Chilvers, E.R. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J. Exp. Med., 2005, 201(1), 105-115.
[http://dx.doi.org/10.1084/jem.20040624] [PMID: 15630139]
[108]
Naldini, A.; Morena, E.; Pucci, A.; Miglietta, D.; Riboldi, E.; Sozzani, S.; Carraro, F. Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1α and lipopolysaccharide. J. Cell. Physiol., 2012, 227(2), 587-595.
[http://dx.doi.org/10.1002/jcp.22761] [PMID: 21448921]
[109]
Filippi, I.; Morena, E.; Aldinucci, C.; Carraro, F.; Sozzani, S.; Naldini, A. Short-term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway. J. Cell. Physiol., 2014, 229(12), 2067-2076.
[http://dx.doi.org/10.1002/jcp.24666] [PMID: 24818793]
[110]
Dang, E.V.; Barbi, J.; Yang, H.Y.; Jinasena, D.; Yu, H.; Zheng, Y.; Bordman, Z.; Fu, J.; Kim, Y.; Yen, H.R.; Luo, W.; Zeller, K.; Shimoda, L.; Topalian, S.L.; Semenza, G.L.; Dang, C.V.; Pardoll, D.M.; Pan, F. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 2011, 146(5), 772-784.
[http://dx.doi.org/10.1016/j.cell.2011.07.033] [PMID: 21871655]
[111]
Qureshi, A.I.; Caplan, L.R. Intracranial atherosclerosis. Lancet, 2014, 383(9921), 984-998.
[http://dx.doi.org/10.1016/S0140-6736(13)61088-0] [PMID: 24007975]
[112]
Jain, T.; Nikolopoulou, E.A.; Xu, Q.; Qu, A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol. Ther., 2018, 183, 22-33.
[http://dx.doi.org/10.1016/j.pharmthera.2017.09.003] [PMID: 28942242]
[113]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[114]
Gao, L.; Chen, Q.; Zhou, X.; Fan, L. The role of hypoxia-inducible factor 1 in atherosclerosis. J. Clin. Pathol., 2012, 65(10), 872-876.
[http://dx.doi.org/10.1136/jclinpath-2012-200828] [PMID: 22569539]
[115]
Ten, V.S.; Pinsky, D.J. Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr. Opin. Crit. Care, 2002, 8(3), 242-250.
[http://dx.doi.org/10.1097/00075198-200206000-00008] [PMID: 12386504]
[116]
Akhtar, S.; Hartmann, P.; Karshovska, E.; Rinderknecht, F.A.; Subramanian, P.; Gremse, F.; Grommes, J.; Jacobs, M.; Kiessling, F.; Weber, C.; Steffens, S.; Schober, A. Endothelial hypoxia-inducible factor-1α promotes atherosclerosis and monocyte recruitment by upregulating MicroRNA-19a. Hypertension, 2015, 66(6), 1220-1226.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05886] [PMID: 26483345]
[117]
Feng, S.; Bowden, N.; Fragiadaki, M.; Souilhol, C.; Hsiao, S.; Mahmoud, M.; Allen, S.; Pirri, D.; Ayllon, B.T.; Akhtar, S.; Thompson, A.A.R.; Jo, H.; Weber, C.; Ridger, V.; Schober, A.; Evans, P.C. Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler. Thromb. Vasc. Biol., 2017, 37(11), 2087-2101.
[http://dx.doi.org/10.1161/ATVBAHA.117.309249] [PMID: 28882872]
[118]
Fu, H.; Luo, F.; Yang, L.; Wu, W.; Liu, X. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1alpha dependent pathway. BMC Cell Biol., 2010, 11, 66.
[http://dx.doi.org/10.1186/1471-2121-11-66] [PMID: 20727156]
[119]
Higashida, T.; Kanno, H.; Nakano, M.; Funakoshi, K.; Yamamoto, I. Expression of hypoxia-inducible angiogenic proteins (hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and E26 transformation-specific-1) and plaque hemorrhage in human carotid atherosclerosis. J. Neurosurg., 2008, 109(1), 83-91.
[http://dx.doi.org/10.3171/JNS/2008/109/7/0083] [PMID: 18590436]
[120]
Schinkel, A.F.L.; Bosch, J.G.; Staub, D.; Adam, D.; Feinstein, S.B. Contrast-Enhanced Ultrasound to Assess Carotid Intraplaque Neovascularization. Ultrasound Med. Biol., 2020, 46(3), 466-478.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.10.020] [PMID: 31791553]
[121]
Tedgui, A.; Mallat, Z. Apoptosis as a determinant of atherothrombosis. Thromb. Haemost., 2001, 86(1), 420-426.
[PMID: 11487033]
[122]
Rahtu-Korpela, L.; Määttä, J.; Dimova, E.Y.; Hörkkö, S.; Gylling, H.; Walkinshaw, G.; Hakkola, J.; Kivirikko, K.I.; Myllyharju, J.; Serpi, R.; Koivunen, P. Hypoxia-Inducible Factor Prolyl 4-hydroxylase-2 inhibition protects against development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2016, 36(4), 608-617.
[http://dx.doi.org/10.1161/ATVBAHA.115.307136] [PMID: 26848160]
[123]
Iyalomhe, O.; Swierczek, S.; Enwerem, N.; Chen, Y.; Adedeji, M.O.; Allard, J.; Ntekim, O.; Johnson, S.; Hughes, K.; Kurian, P.; Obisesan, T.O. The role of hypoxia-inducible factor 1 in mild cognitive impairment. Cell. Mol. Neurobiol., 2017, 37(6), 969-977.
[http://dx.doi.org/10.1007/s10571-016-0440-6]
[124]
Hassan, H.; Chen, R. Hypoxia in Alzheimer’s disease: effects of hypoxia inducible factors. Neural Regen. Res., 2021, 16(2), 310-311.
[http://dx.doi.org/10.4103/1673-5374.290898] [PMID: 32859789]
[125]
Schubert, D.; Soucek, T.; Blouw, B. The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur. J. Neurosci., 2009, 29(7), 1323-1334.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06712.x] [PMID: 19519624]
[126]
Merelli, A.; Rodríguez, J.C.G.; Folch, J.; Regueiro, M.R.; Camins, A.; Lazarowski, A. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr. Neuropharmacol., 2018, 16(10), 1484-1498.
[http://dx.doi.org/10.2174/1570159X16666180110130253] [PMID: 29318974]
[127]
Soucek, T.; Cumming, R.; Dargusch, R.; Maher, P.; Schubert, D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron, 2003, 39(1), 43-56.
[http://dx.doi.org/10.1016/S0896-6273(03)00367-2] [PMID: 12848931]
[128]
Avramovich-Tirosh, Y.; Bar-Am, O.; Amit, T.; Youdim, M.B.; Weinreb, O. Up-regulation of hypoxia-inducible factor (HIF)-1α and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer drug, M30. Curr. Alzheimer Res., 2010, 7(4), 300-306.
[http://dx.doi.org/10.2174/156720510791162403] [PMID: 20043814]
[129]
Chai, X.; Kong, W.; Liu, L.; Yu, W.; Zhang, Z.; Sun, Y. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis. Neural Regen. Res., 2014, 9(11), 1145-1153.
[http://dx.doi.org/10.4103/1673-5374.135317] [PMID: 25206774]
[130]
Sun, J.; Martin, J.M.; Vanderpoel, V.; Sumbria, R.K. The promises and challenges of erythropoietin for treatment of Alzheimer’s disease. Neuromolecular Med., 2019, 21(1), 12-24.
[http://dx.doi.org/10.1007/s12017-019-08524-y] [PMID: 30656553]
[131]
Rodríguez Cruz, Y.; Strehaiano, M.; Rodríguez Obaya, T.; García Rodríguez, J.C.; Maurice, T. An intranasal formulation of erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the APPSwe transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 55(1), 231-248.
[http://dx.doi.org/10.3233/JAD-160500] [PMID: 27662300]
[132]
Zhang, X.; Zhou, K.; Wang, R.; Cui, J.; Lipton, S.A.; Liao, F.F.; Xu, H.; Zhang, Y.W. Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J. Biol. Chem., 2007, 282(15), 10873-10880.
[http://dx.doi.org/10.1074/jbc.M608856200] [PMID: 17303576]
[133]
Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases. J. Alzheimers Dis., 2021, 82(S1), S109-S126.
[http://dx.doi.org/10.3233/JAD-201074] [PMID: 33325385]
[134]
Zhang, S.; Zhang, Z.; Sandhu, G.; Ma, X.; Yang, X.; Geiger, J.D.; Kong, J. Evidence of oxidative stress-induced BNIP3 expression in amyloid beta neurotoxicity. Brain Res., 2007, 1138, 221-230.
[http://dx.doi.org/10.1016/j.brainres.2006.12.086] [PMID: 17274962]
[135]
GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 439-458.
[http://dx.doi.org/10.1016/S1474-4422(19)30034-1] [PMID: 30871944]
[136]
Baranova, O.; Miranda, L.F.; Pichiule, P.; Dragatsis, I.; Johnson, R.S.; Chavez, J.C. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci., 2007, 27(23), 6320-6332.
[http://dx.doi.org/10.1523/JNEUROSCI.0449-07.2007] [PMID: 17554006]
[137]
Fernando, G.; Yamila, R.; Cesar, G.J.; Ramón, R. Neuroprotective effects of neuroEPO using an in vitro model of stroke. Behav. Sci. (Basel), 2018, 8(2), E26.
[http://dx.doi.org/10.3390/bs8020026] [PMID: 29438293]
[138]
Yang, J.; Liu, C.; Du, X.; Liu, M.; Ji, X.; Du, H.; Zhao, H. Hypoxia inducible factor 1α plays a key role in remote ischemic preconditioning against stroke by modulating inflammatory responses in rats. J. Am. Heart Assoc., 2018, 7(5), e007589.
[http://dx.doi.org/10.1161/JAHA.117.007589] [PMID: 29478025]
[139]
Xia, M.; Ding, Q.; Zhang, Z.; Feng, Q. Remote limb ischemic preconditioning protects rats against cerebral ischemia via HIF-1α/AMPK/HSP70 Pathway. Cell. Mol. Neurobiol., 2017, 37(6), 1105-1114.
[http://dx.doi.org/10.1007/s10571-016-0444-2] [PMID: 27896629]
[140]
Singh, A.; Wilson, J.W.; Schofield, C.J.; Chen, R. Hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors induce autophagy and have a protective effect in an in-vitro ischaemia model. Sci. Rep., 2020, 10(1), 1597.
[http://dx.doi.org/10.1038/s41598-020-58482-w] [PMID: 32005890]
[141]
Nagel, S.; Papadakis, M.; Chen, R.; Hoyte, L.C.; Brooks, K.J.; Gallichan, D.; Sibson, N.R.; Pugh, C.; Buchan, A.M. Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab., 2011, 31(1), 132-143.
[http://dx.doi.org/10.1038/jcbfm.2010.60] [PMID: 20407463]
[142]
Cheng, Y.L.; Park, J.S.; Manzanero, S.; Choi, Y.; Baik, S.H.; Okun, E.; Gelderblom, M.; Fann, D.Y.; Magnus, T.; Launikonis, B.S.; Mattson, M.P.; Sobey, C.G.; Jo, D.G.; Arumugam, T.V. Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol. Dis., 2014, 62, 286-295.
[http://dx.doi.org/10.1016/j.nbd.2013.10.009] [PMID: 24141018]
[143]
Jiang, Q.; Geng, X.; Warren, J.; Eugene Paul Cosky, E.; Kaura, S.; Stone, C.; Li, F.; Ding, Y. Hypoxia Inducible Factor-1α (HIF-1α) Mediates NLRP3 Inflammasome-Dependent-Pyroptotic and Apoptotic Cell Death Following Ischemic Stroke. Neuroscience, 2020, 448, 126-139.
[http://dx.doi.org/10.1016/j.neuroscience.2020.09.036] [PMID: 32976985]
[144]
Wu, C.; Hu, Q.; Chen, J.; Yan, F.; Li, J.; Wang, L.; Mo, H.; Gu, C.; Zhang, P.; Chen, G. Inhibiting HIF-1α by 2ME2 ameliorates early brain injury after experimental subarachnoid hemorrhage in rats. Biochem. Biophys. Res. Commun., 2013, 437(3), 469-474.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.107] [PMID: 23850688]
[145]
Ostrowski, R.P.; Colohan, A.R.; Zhang, J.H. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J. Cereb. Blood Flow Metab., 2005, 25(5), 554-571.
[http://dx.doi.org/10.1038/sj.jcbfm.9600048] [PMID: 15703702]
[146]
Wang, Z.; Meng, C.J.; Shen, X.M.; Shu, Z.; Ma, C.; Zhu, G.Q.; Liu, H.X.; He, W.C.; Sun, X.B.; Huo, L.; Zhang, J.; Chen, G. Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood-brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J. Mol. Neurosci., 2012, 48(1), 273-280.
[http://dx.doi.org/10.1007/s12031-012-9769-6] [PMID: 22528459]
[147]
Yan, J.; Chen, C.; Lei, J.; Yang, L.; Wang, K.; Liu, J.; Zhou, C. 2-methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp. Neurol., 2006, 202(2), 348-356.
[http://dx.doi.org/10.1016/j.expneurol.2006.06.009] [PMID: 16904108]
[148]
Hishikawa, T.; Ono, S.; Ogawa, T.; Tokunaga, K.; Sugiu, K.; Date, I. Effects of deferoxamine-activated hypoxia-inducible factor-1 on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery, 2008, 62(1), 232-240.
[http://dx.doi.org/10.1227/01.NEU.0000311082.88766.33] [PMID: 18300912]
[149]
Höllig, A.; Weinandy, A.; Liu, J.; Clusmann, H.; Rossaint, R.; Coburn, M. Beneficial properties of argon after experimental subarachnoid hemorrhage: early treatment reduces mortality and influences hippocampal protein expression. Crit. Care Med., 2016, 44(7), e520-e529.
[http://dx.doi.org/10.1097/CCM.0000000000001561] [PMID: 26751611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy