Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Essential Oils: A Novel Approach for Anti-Microbial Therapy

Author(s): Ashwini Wani*, Hiren Mange and Aishwarya Vasudevan

Volume 12, Issue 5, 2022

Published on: 06 January, 2022

Article ID: e060921196176 Pages: 15

DOI: 10.2174/2210315511666210906114009

Price: $65

Abstract

Overexploitation of antibiotics has led to significant challenges with antimicrobial resistance. The gravity of this trend has resulted in the rapid emergence of multi-resistant pathogens. Increased frequency to treat infections and the unfeasibility to reverse this resistance have burdened researchers in developing novel mechanisms to counteract and obstruct antimicrobial resistance. An effective medical strategy to control resistance was to develop new and potent antibiotics although, a sobering reality is that the product pipeline towards new antibiotics is inadequate. To ensure continued effective treatment of bacterial infections, there is an urgent need to control as well as conserve existing antibiotics through novel approaches. Utilization of Essential Oils (EO) in a multi-target anti-infective therapy addresses this need by targeting the mechanism of bacterial resistance and discovering synergism between EO’s antimicrobial properties to anti-infectives. When introduced into a pharmaceutical formulation, this novel and rational approach will open the door towards the development of a new generation of antimicrobials. Today, several essential oils have the ability to act as resistant modifying agents and enhance the antimicrobial activity of anti-infectives. This review article intends to focus on the effectiveness of essential oils on drug-resistant pathogens, mechanisms to counteract antimicrobial resistance, approaches to enhance efficacy, and explore potential applications.

Keywords: Antibiotics, essential oils, anti-microbial, synergistic interaction, multi-drug resistance, natural anti-microbials.

Graphical Abstract

[1]
Klein, E.Y.; Tseng, K.K.; Pant, S.; Laxminarayan, R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob. Health, 2019, 4(2), e001315.
[http://dx.doi.org/10.1136/bmjgh-2018-001315] [PMID: 31139449]
[2]
Sumpradit, N.; Chongtrakul, P.; Anuwong, K.; Pumtong, S.; Kongsomboon, K.; Butdeemee, P.; Khonglormyati, J.; Chomyong, S.; Tongyoung, P.; Losiriwat, S.; Seesuk, P.; Suwanwaree, P.; Tangcharoensathien, V. Utilisation intelligente des antibiotiques: Un modèle viable visant à promouvoir l’usage rationnel des médicaments en thaïlande. Bull. World Health Organ., 2012, 90(12), 905-913.
[http://dx.doi.org/10.2471/BLT.12.105445] [PMID: 23284196]
[3]
Antibacterial Agents in clinical development: An analysis of the antibacterial clinical development pipeline.World Health Organization: Geneva, 2019.
[4]
Edwards-Jones, V. Alternative Antimicrobial Approaches to Fighting Multidrug-Resistant Infections; Elsevier, 2013.
[http://dx.doi.org/10.1016/B978-0-12-398539-2.00001-X]
[5]
Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod., 2014, 62, 250-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[6]
Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x] [PMID: 10736000]
[7]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel), 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[8]
Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragrance J., 2013, 28(5), 269-279.
[http://dx.doi.org/10.1002/ffj.3165]
[9]
Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complement. Alternat. Med., 2016, 2016, 3012462.
[http://dx.doi.org/10.1155/2016/3012462] [PMID: 28090211]
[10]
Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J. Food Prot., 2006, 69(5), 1046-1055.
[http://dx.doi.org/10.4315/0362-028X-69.5.1046] [PMID: 16715803]
[11]
Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel), 2017, 4(4), 58.
[http://dx.doi.org/10.3390/medicines4030058]
[12]
Haque, E; Irfan, S; Kamil, M. Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology, 2016, 85(4), 436-443.
[http://dx.doi.org/10.1134/S0026261716040093]
[13]
Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem., 2009, 57(14), 5987-6000.
[http://dx.doi.org/10.1021/jf900668n] [PMID: 19548681]
[14]
Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 2008, 108(3), 986-995.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.010] [PMID: 26065762]
[15]
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[16]
Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol., 2006, 43(2), 149-154.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01938.x] [PMID: 16869897]
[17]
Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 2002, 68(4), 1561-1568.
[http://dx.doi.org/10.1128/AEM.68.4.1561-1568.2002] [PMID: 11916669]
[18]
Firmino, D.F.; Cavalcante, T.T.A.; Gomes, G.A.; Firmino, N.C.S.; Rosa, L.D.; de Carvalho, M.G.; Catunda, F.E.A., Jr. Antibacterial and antibiofilm activities of cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities. Sci. World J., 2018, 2018, 7405736.
[http://dx.doi.org/10.1155/2018/7405736] [PMID: 29977171]
[19]
Delgado, B.; Fernández, P.S.; Palop, A.; Periago, P.M. Effect of thymol and cymene on bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol., 2004, 21(3), 327-334.
[http://dx.doi.org/10.1016/S0740-0020(03)00075-3]
[20]
Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot., 2000, 63(5), 620-624.
[http://dx.doi.org/10.4315/0362-028X-63.5.620] [PMID: 10826719]
[21]
Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 2010, 17(13), 1061-1066.
[http://dx.doi.org/10.1016/j.phymed.2010.06.018] [PMID: 20727725]
[22]
Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules, 2010, 15(11), 7825-7839.
[http://dx.doi.org/10.3390/molecules15117825] [PMID: 21060291]
[23]
Bacterial resistance strategies Available from:https://amrls.umn.edu/microbiology
[24]
Munita, J.M; Arias, C.A. Mechanisms of antibiotic resistance. Wiley and Son., 2016, 481-511.
[http://dx.doi.org/10.1128/9781555819286.ch17]
[25]
Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[26]
Sköld, O. Resistance to trimethoprim and sulfonamides. Vet. Res., 2001, 32(3-4), 261-273.
[http://dx.doi.org/10.1051/vetres:2001123] [PMID: 11432417]
[27]
Struelens, M.J. The epidemiology of antimicrobial resistance in hospital acquired infections: Problems and possible solutions. BMJ, 1998, 317(7159), 652-654.
[http://dx.doi.org/10.1136/bmj.317.7159.652] [PMID: 9727997]
[28]
World Health Organization. Antimicrobial resistance., Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
[29]
Walsh, D.J.; Livinghouse, T.; Goeres, D.M.; Mettler, M.; Stewart, P.S. Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria. Front Chem., 2019, 7, 653.
[http://dx.doi.org/10.3389/fchem.2019.00653] [PMID: 31632948]
[30]
Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 2018, 23(4), E795.
[http://dx.doi.org/10.3390/molecules23040795] [PMID: 29601469]
[31]
Microbioz India. Review of the causes of antimicrobial resistance. The Magazine, 2020. Available from: https://microbiozindia.com/microbiology-news/review-of-the-causes-of-antimicrobial-resistance/
[32]
Encyclopædia-Britannica. Antibiotic resistance: Mechanisms of antibiotic resistance. Encyclopædia Britannica, 2012. Available from: https://www.britannica.com/science/antibiotic-resistance Accessed 12 November 2020.
[33]
Orhan, I.E.; Ozcelik, B.; Kan, Y.; Kartal, M. Inhibitory effects of various essential oils and individual components against extended-spectrum beta-lactamase (ESBL) produced by Klebsiella pneumoniae and their chemical compositions. J. Food Sci., 2011, 76(8), M538-M546.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02363.x] [PMID: 22417594]
[34]
Piddock, L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev., 2006, 19(2), 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[35]
Limaverde, P.W.; Campina, F.F.; da Cunha, F.A.B.; Crispim, F.D.; Figueredo, F.G.; Lima, L.F.; Datiane de M Oliveira-Tintino, C.; de Matos, Y.M.L.S.; Morais-Braga, M.F.B.; Menezes, I.R.A.; Balbino, V.Q.; Coutinho, H.D.M.; Siqueira-Júnior, J.P.; Almeida, J.R.G.S.; Tintino, S.R. Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and α-terpinene against Staphylococcus aureus IS-58. Food Chem. Toxicol., 2017, 109(Pt 2), 957-961.
[http://dx.doi.org/10.1016/j.fct.2017.02.031] [PMID: 28238773]
[36]
Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pagès, J.M.; Amaral, L.; Bolla, J.M. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob. Agents Chemother., 2009, 53(5), 2209-2211.
[http://dx.doi.org/10.1128/AAC.00919-08] [PMID: 19258278]
[37]
Ahmad, A.; Khan, A.; Manzoor, N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci., 2013, 48(1-2), 80-86.
[http://dx.doi.org/10.1016/j.ejps.2012.09.016] [PMID: 23111348]
[38]
Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. antibacterial effects and mode of action of selected essential oils components against Escherichia coli and staphylococcus aureus. Evid. Based Complement. Alternat. Med., 2015, 2015, 795435.
[http://dx.doi.org/10.1155/2015/795435] [PMID: 26221178]
[39]
Wu, X.Z.; Cheng, A.X.; Sun, L.M.; Lou, H.X. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans. Acta Pharmacol. Sin., 2008, 29(12), 1478-1485.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00900.x] [PMID: 19026167]
[40]
Yutani, M.; Hashimoto, Y.; Ogita, A.; Kubo, I.; Tanaka, T.; Fujita, K. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole. Phytother. Res., 2011, 25(11), 1707-1713.
[http://dx.doi.org/10.1002/ptr.3579] [PMID: 21721062]
[41]
Gerdt, J.P.; Blackwell, H.E. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem. Biol., 2014, 9(10), 2291-2299.
[http://dx.doi.org/10.1021/cb5004288] [PMID: 25105594]
[42]
Goswami, J. Quorum sensing by super bugs and their resistance to antibiotics. A short review. JuniperPublishers, 2017, 3(3), 1-7.
[43]
Asfour, H.Z. Anti-Quorum sensing natural compounds. J. Microsc. Ultrastruct., 2018, 6(1), 1-10.
[http://dx.doi.org/10.4103/JMAU.JMAU_10_18] [PMID: 30023261]
[44]
Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med., 2012, 2(11), 1-26.
[http://dx.doi.org/10.1101/cshperspect.a012427] [PMID: 23125205]
[45]
Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J., 2014, 8(1), 6-14.
[http://dx.doi.org/10.2174/1874285801408010006] [PMID: 24627729]
[46]
Kalia, M.; Yadav, V.K.; Singh, P.K.; Sharma, D.; Pandey, H.; Narvi, S.S.; Agarwal, V. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa. PLoS One, 2015, 10(8), e0135495.
[http://dx.doi.org/10.1371/journal.pone.0135495] [PMID: 26263486]
[47]
Jamuna Bai, A. Shodhganga: A reservoir of Indian theses, 2015. Screening of essential oils for quorum sensing inhibitory and anti-biofilm activity.Role of quorum sensing in food related bacteria;
[48]
Khan, M.S.A.; Zahin, M.; Hasan, S.; Husain, F.M.; Ahmad, I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol., 2009, 49(3), 354-360.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02666.x] [PMID: 19627477]
[49]
Luciardi, M.C.; Blázquez, M.A.; Cartagena, E.; Bardón, A.; Arena, M.E. Mandarin essential oils inhibit quorum sensing and virulence factors of pseudomonas aeruginosa. Lebensm. Wiss. Technol., 2016, 68, 373-380.
[http://dx.doi.org/10.1016/j.lwt.2015.12.056]
[50]
de Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci., 2019, 26(1), 5.
[http://dx.doi.org/10.1186/s12929-019-0499-8] [PMID: 30621719]
[51]
Coutinho, H.D.M.; Costa, J.G.M.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P.; Lima, E.O. Effect of Momordica charantia L. in the resistance to aminoglycosides in methicilin-resistant Staphylococcus aureus. Comp. Immunol. Microbiol. Infect. Dis., 2010, 33(6), 467-471.
[http://dx.doi.org/10.1016/j.cimid.2009.08.001] [PMID: 19732954]
[52]
Braga, L.C.; Leite, A.A.M.; Xavier, K.G.S.; Takahashi, J.A.; Bemquerer, M.P.; Chartone-Souza, E.; Nascimento, A.M.A. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol., 2005, 51(7), 541-547.
[http://dx.doi.org/10.1139/w05-022] [PMID: 16175202]
[53]
Eumkeb, G.; Siriwong, S.; Phitaktim, S.; Rojtinnakorn, N.; Sakdarat, S. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J. Appl. Microbiol., 2012, 112(1), 55-64.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05190.x] [PMID: 22111967]
[54]
Khan, M.S.A.; Ahmad, I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother., 2012, 67(3), 618-621.
[http://dx.doi.org/10.1093/jac/dkr512] [PMID: 22167241]
[55]
Gemeda, N.; Tadele, A.; Lemma, H.; Girma, B.; Addis, G.; Tesfaye, B.; Abebe, A.; Gemechu, W.; Yirsaw, K.; Teka, F.; Haile, C.; Amano, A.; Woldkidan, S.; Geleta, B.; Debella, A. Development, Characterization, and Evaluation of Novel Broad-Spectrum Antimicrobial Topical Formulations from Cymbopogon Martini (Roxb.)W. Evid-Based Complement. Altern. Med. Watson Essential Oil, 2018, 2018, 9812093.
[http://dx.doi.org/10.1155/2018/9812093]
[56]
Wani, A.; Sanghani, C.; Wani, S. Formulation, characterization, and in vitro evaluation of novel microemulsion-based spray for topical delivery of isotretinoin. Asian J. Pharm. Clin. Res., 2018, 11(10), 226-232.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i10.27019]
[57]
Veerasophon, J.; Sripalakit, P.; Saraphanchotiwitthaya, A. Formulation of anti-acne concealer containing cinnamon oil with antimicrobial activity against Propionibacterium acnes. J. Adv. Pharm. Technol. Res., 2020, 11(2), 53-58.
[http://dx.doi.org/10.4103/japtr.JAPTR_1_20] [PMID: 32587816]
[58]
Othman, A.M. Topical herbal antimicrobial formulation containing thymus laevigatus essential oil. World J. Pharm. Res., 2014, 3, 3693-3703.
[59]
Raeiszadeh, M.; Pardakhty, A.; Sharififar, F.; Farsinejad, A.; Mehrabani, M.; Hosseini-Nave, H.; Mehrabani, M. Development, physicochemical characterization, and antimicrobial evaluation of niosomal myrtle essential oil. Res. Pharm. Sci., 2018, 13(3), 250-261.
[http://dx.doi.org/10.4103/1735-5362.228955] [PMID: 29853934]
[60]
Taleb, M.H.; Abdeltawab, N.F.; Shamma, R.N.; Abdelgayed, S.S.; Mohamed, S.S.; Farag, M.A.; Ramadan, M.A. Origanum vulgare L. essential oil as a potential anti-acne topical nanoemulsion-in vitro and in vivo study. Molecules, 2018, 23(9), 2164.
[http://dx.doi.org/10.3390/molecules23092164] [PMID: 30154336]
[61]
Satpathy, B.; Sahoo, M.; Sahoo, P.; Patra, S.R. Formulation and evaluation of herbal gel containing essential oils of piper betle against skin infecting pathogens Int. J. Res. Pharm. Sci., 2011, 2(3), 373-378.
[62]
Gemeda, N.; Tadele, A.; Lemma, H.; Girma, B.; Addis, G.; Tesfaye, B.; Abebe, A.; Gemechu, W.; Yirsaw, K.; Teka, F.; Haile, C.; Amano, A.; Woldkidan, S.; Geleta, B.; Debella, A. Development, characterization, and evaluation of novel broad-spectrum antimicrobial topical formulations from Cymbopogon martini (Roxb.) W. Watson essential oil. Evid. Based Complement. Alternat. Med., 2018, 2018, 9812093.
[http://dx.doi.org/10.1155/2018/9812093] [PMID: 30275867]
[63]
Tomczykowa, M.; Wróblewska, M.; Winnicka, K.; Wieczorek, P.; Majewski, P.; Celińska-Janowicz, K.; Sawczuk, R.; Miltyk, W.; Tryniszewska, E.; Tomczyk, M. Novel gel formulations as topical carriers for the essential oil of bidens tripartita for the treatment of candidiasis. Molecules, 2018, 23(10), 2517.
[http://dx.doi.org/10.3390/molecules23102517] [PMID: 30275354]
[64]
Ujilestari, T.; Nanung, D.D.; Bambang, A.; Ronny, M; Zuprizal, Formulation and characterization of self-nano emulsifying drug delivery systems of lemongrass (cymbopogon citratus) essential oil. 2018, 14(3), 360-363.
[65]
Ioannis, P.; Souzan, V.; Diamanto, L.; Christos, R.; Ioannis, N. Formulation, characterization and antimicrobial activity of tablets of essential oil prepared by compression of spray-dried powder J. Drug. Deli. Sci. Techno., 2019, 50, 226-236.
[http://dx.doi.org/10.1016/j.jddst.2019.01.031]
[66]
van Vuuren, S.F.; Suliman, S.; Viljoen, A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol., 2009, 48(4), 440-446.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02548.x] [PMID: 19187494]
[67]
Rapper, de S.; Avaro, V.; Sandy, V. The in vitro antimicrobial effects of lavandula angustifolia essential oil in combination with conventional antimicrobial agents. Evid. Based Complement. Alternat. Med., 2016, 2016(1), 1-9.
[68]
Duarte, A.; Ferreira, S.; Silva, F.; Domingues, F.C. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine, 2012, 19(3-4), 236-238.
[http://dx.doi.org/10.1016/j.phymed.2011.11.010] [PMID: 22240078]
[69]
Kon, K.; Rai, M. Antibacterial Activity of Thymus Vulgaris Essential Oil Alone and in Combination with Other Essential Oils. Nusant. Biosci., 1970, 4(2), 50-56.
[http://dx.doi.org/10.13057/nusbiosci/n040202]
[70]
Cassella, S.; John, P. Synergistic antifungal activity of tea tree (Melaleuca alternifolia) and lavender (Lavandula angustifolia) essential oils against dermatophyte infection Int. J. Aromather., 2002, 12(1), 2-15.
[http://dx.doi.org/10.1054/ijar.2001.0127]
[71]
Moon, S.E.; Kim, H.Y.; Cha, J.D. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral Biol., 2011, 56(9), 907-916.
[http://dx.doi.org/10.1016/j.archoralbio.2011.02.005] [PMID: 21397894]
[72]
Soonwera, M.; Sittichok, S. Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and of their synergistic combinations against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). Environ. Sci. Pollut. Res. Int., 2020, 27(16), 20201-20214.
[http://dx.doi.org/10.1007/s11356-020-08529-2] [PMID: 32239399]
[73]
Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res., 2007, 21(10), 989-994.
[http://dx.doi.org/10.1002/ptr.2179] [PMID: 17562569]
[74]
Rosato, A.; Vitali, C.; Gallo, D.; Balenzano, L.; Mallamaci, R. The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine, 2008, 15(8), 635-638.
[http://dx.doi.org/10.1016/j.phymed.2008.05.001] [PMID: 18579358]
[75]
D’Arrigo, M.; Ginestra, G.; Mandalari, G.; Furneri, P.M.; Bisignano, G. Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine, 2010, 17(5), 317-322.
[http://dx.doi.org/10.1016/j.phymed.2009.07.008] [PMID: 19699074]
[76]
El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res., 2019, 10(2), 63-67.
[http://dx.doi.org/10.4103/japtr.JAPTR_366_18] [PMID: 31041184]
[77]
Giordani, R.; Regli, P.; Kaloustian, J.; Mikaïl, C.; Abou, L.; Portugal, H. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res., 2004, 18(12), 990-995.
[http://dx.doi.org/10.1002/ptr.1594] [PMID: 15742351]
[78]
Mertas, A.; Garbusińska, A.; Szliszka, E.; Jureczko, A.; Kowalska, M.; Król, W. The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains. BioMed Res. Int., 2015, 2015, 590470.
[http://dx.doi.org/10.1155/2015/590470] [PMID: 25722982]
[79]
Ilić, B.S.; Kocić, B.D.; Cirić, V.M.; Ćvetković, O.G.; Miladinović, D.L. An in vitro synergistic interaction of combinations of Thymus glabrescens essential oil and its main constituents with chloramphenicol. Sci. World. J., 2014, 2014, 826219.
[http://dx.doi.org/10.1155/2014/826219] [PMID: 24616649]
[80]
Lee, J.S.; Choi, Y.S.; Lee, H.G. Synergistic antimicrobial properties of nanoencapsulated clove oil and thymol against oral bacteria. Food Sci. Biotechnol., 2020, 29(11), 1597-1604.
[http://dx.doi.org/10.1007/s10068-020-00803-w] [PMID: 33088608]
[81]
Siddiqua, S.; Anusha, B.A.; Ashwini, L.S.; Negi, P.S. Antibacterial activity of cinnamaldehyde and clove oil: Effect on selected foodborne pathogens in model food systems and watermelon juice. J. Food Sci. Technol., 2015, 52(9), 5834-5841.
[http://dx.doi.org/10.1007/s13197-014-1642-x] [PMID: 26344998]
[82]
Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med., 2016, 16, 158.
[http://dx.doi.org/10.1186/s12906-016-1134-9] [PMID: 27245046]
[83]
Kohlert, C.; van Rensen, I.; März, R.; Schindler, G.; Graefe, E.U.; Veit, M. Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans. Planta Med., 2000, 66(6), 495-505.
[http://dx.doi.org/10.1055/s-2000-8616] [PMID: 10985073]
[84]
Dajic Stevanovic, Z.; Sieniawska, E.; Glowniak, K.; Obradovic, N.; Pajic-Lijakovic, I. Natural macromolecules as carriers for essential oils: from extraction to biomedical application. Front. Bioeng. Biotechnol., 2020, 8, 563.
[http://dx.doi.org/10.3389/fbioe.2020.00563] [PMID: 32671026]
[85]
Zhao, Y.; Wang, C.; Chow, A.H.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int. J. Pharm., 2010, 383(1-2), 170-177.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.035] [PMID: 19732813]
[86]
Wadhwa, G.; Kumar, S.; Chhabra, L. Essential oil–cyclodextrin complexes: An updated review. J. Incl. Phenom. Macrocycl. Chem., 2017, 89, 39-58.
[http://dx.doi.org/10.1007/s10847-017-0744-2]
[87]
Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Alternat. Med., 2014, 2014, 651593.
[http://dx.doi.org/10.1155/2014/651593] [PMID: 24971152]
[88]
Suman, P. S. K.; Suchi, S.; Ajit, K. S.; Mahendra, P. D.; Tiruppadiripuliyur, R. S. K.; Krishna, K. A.; Ateeque, A.; Nirmal, K. P.; Prachi, S.; Sunita, D. Formulation comprising thymol useful in the treatment of drug resistant bacterial infections. US 6824795 B2, 2004.
[89]
Eric, A.J.; Byron, F. Methods of sensitizing microbial. US6319958 B1, 2001.
[90]
Briant, B. Topical compositions for treatment of viral lesions. US 7311928 B2, 2007.
[91]
Benny, A. Composition to enhance the bioavailability of cur cumin US 7879273 B2, 2011.
[92]
Gerard, P. E. Antibiotic compositions containing essential oils, prophylaxis and treatment of nosocomial diseases. EP2175870A1, 2010.
[93]
REMMAL. Pharmaceutical composition comprising an anti-bacterial agent and an active ingredient selected from carveol, carvacrol, alpha-ionone, beta-ionone, and thymol. EP 2879655 B1, 2006.
[94]
Ronald, R.; Van, B. Enhanced antimicrobial activity compositions of blends of plant Essential oils US 8158166 B2, 2021.
[95]
Samuel, S. S.; Larry, W. Essential oils-based disinfecting compositions having tuberculocidal and fungicidal efficacies. US 8147877 B2, 2012.
[96]
Arei, M.; Charles, L. Encapsulated Essential oils. US 9079152 B2, 2015.
[97]
Yih, K. H.; Wang, H. F. Essential oil composition with anti-free radical ability. EO 2418004 A1, 2012.
[98]
Tara, C. S. First aid formulations of turmeric powder lavender essential oil and glycerin for dressing wounds. US 8469799 B2, 2013.
[99]
Rossines, E.; Jolyguillou, M. L.; Saulnier, P.; Benoit, J. P. Nanocapsulation of essential oils for preventing or curing infectious diseases alone or with an antibiotic. WO 2012114201 A1, 2012.
[100]
Altiok, D.; Tihminlioglu, F.; Gunes, S. S. Essential oil loaded mucoadhesive nanocomposite delivery system for gastrointestinal system. WO 2016108774 A1, 2016.
[101]
Lamb, R. D. Essential oil compositions and applications utilizing essential oils Wo 2016187422 A1, 2016.
[102]
Tara, C. S. Apparatus and method for natural cure of middle ear infections without antibiotics. US 20160213903, 2016.
[103]
Liu, J.; Liu, K.; Huo, P.; Zhang, W.; Liu, W.; Xiao, S.; Sun, Y. Compound vetiver essential oil and preparation method thereof. CN10514745A, 2015.
[104]
Suman, P. S. K.; Puspalata, C.; Krishna, K. A.; Atique, A.; Tiruppadiripuliyur, R. S. K.; Santha, K.; Mahendra, P. D.; Ajit, K. S.; Jai, S. A.; Sushil, K. Method of treatment for fungal infections with a synergistic formulation of antifungal agents. US2003015126 A1, 2003.
[105]
Zouari, N.; Ayadi, I.; Fakhfakh, N.; Rebai, A.; Zouari, S. Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic species. Lipids Health Dis., 2012, 11, 28.
[http://dx.doi.org/10.1186/1476-511X-11-28] [PMID: 22439877]
[106]
Bajalan, I.; Pirbalouti, A.G. Variation in Chemical Composition of Essential Oil of Populations of Lavandula × Intermedia Collected from Western Iran. Ind. Crops Prod., 2015, 69, 344-347.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.049]
[107]
Fernandes, S.R.; Ferreira, H.D.; de Sá, S.; Borges, L.L.; Tresvenzol, L.M.F.; Ferri, P.H.; dos Santos, P.A.; Paula, J.R.; Fiuza, T.S. Chemical composition and seasonal variation of the volatile oils from Trembleya phlogiformis leaves. Brazilian J. Pharmacogn., 2017, 27(4), 419-425.
[http://dx.doi.org/10.1016/j.bjp.2017.03.003]
[108]
Grossman, L.I.; Lally, E.T. Assessment of irritation potential of essential oils for root canal cement. J. Endod., 1982, 8(5), 208-212.
[http://dx.doi.org/10.1016/S0099-2399(82)80356-7] [PMID: 6955422]
[110]
Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf., 2013, 12(1), 40-53.
[http://dx.doi.org/10.1111/1541-4337.12006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy