Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

The Challenges of Biomedical Waste Management During the Ongoing Coronavirus Disease-19 (COVID-19) Pandemic: The Current Scenario

Author(s): Sabitha Vadakedath, Venkataramana Kandi*, Tarun Kumar Suvvari, Lakshmi Venkata Simhachalam Kutikuppala, Vikram Godishala and Praveen R. Shahapur

Volume 14, Issue 2, 2022

Published on: 03 September, 2021

Page: [156 - 165] Pages: 10

DOI: 10.2174/1876402913666210903164056

Price: $65

Abstract

The novel Coronavirus (SARS-CoV-2) that has emerged and spread throughout the world causing CoV disease-19 (COVID-19) has since its discovery affected not only humans and animals but also the environment. Because of the highly infectious nature of the virus, and the respiratory aerosol transmission route, face masks and personal protective equipment have become mandatory for public and healthcare workers, respectively. Also, the complex nature of the pathogenicity of the virus, wherein, it has been associated with mild, moderate, and severe life-threatening infections, has warranted increased laboratory testing and placing the infected people in isolation and under constant observation in quarantine centers or at dedicated hospitals. Some infected people, who are generally healthy, and do not show symptoms have been placed in home quarantines. At this juncture, there has been increased amount of Biomedical Waste (BMW), and infectious general waste along with plastic disposable recyclable and non-recyclable waste. The increased BMW along with the potentially hazardous plastic waste collection, segregation, transport, and disposal has assumed increased significance during the ongoing pandemic. Therefore, this review attempts to investigate the current scenario of BMW management and strategies to minimize BMW and prevent potential environmental pollution.

Keywords: Novel coronavirus, SARS-CoV-2, environment, biomedical waste (BMW), hazardous, pollution.

Graphical Abstract

[1]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 2020, 12(3), e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[2]
Pal, M. Kerorsa, GemechuBerhanu.; Kandi, Venkataramana. A Knowledge update on SARS-coronavirus-2 (SARS-CoV-2)/COVID-19 and Its global public health implications. Am. J. Clin. Med. Res., 2020, 8(1), 23-27.
[3]
Kandi, V. Coronavirus disease (COVID-19)/SARS-CoV-2: Hopefully, the human-virus battle ends soon on a positive note. Perspectives Med. Res., 2020, 8(1), 1-3. Available from: https://www.pimr.org.in/2020-vol8-issue-1/Editorial_V1.pdf
[4]
Mohapatra, R.K.; Pintilie, L.; Kandi, V.; Sarangi, A.K.; Das, D.; Sahu, R.; Perekhoda, L. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chem. Biol. Drug Des., 2020, 96(5), 1187-1208.
[http://dx.doi.org/10.1111/cbdd.13761] [PMID: 32654267]
[5]
Mohapatra, R.K.; Das, P.K.; Kandi, V. Challenges in controlling COVID-19 in migrants in Odisha, India. Diabetes Metab. Syndr., 2020, 14(6), 1593-1594.
[http://dx.doi.org/10.1016/j.dsx.2020.08.024] [PMID: 32862097]
[6]
United Nations Environment Programme / SBC World Health Organization. Fundamentals of health-care waste management. Available from: https://www.who.int/water_sanitation_health/medicalwaste/en/guidancemanual1.pdf
[7]
Datta, P.; Mohi, G.K.; Chander, J. Biomedical waste management in India: Critical appraisal. J. Lab. Physicians, 2018, 10(1), 6-14.
[http://dx.doi.org/10.4103/JLP.JLP_89_17] [PMID: 29403196]
[8]
Srivastava, A.; Jaiswal, S.; Chandra, N.; Kumar, S. Enzymatic role in the degradation of E-waste pollution. In: lectronic Waste Pollution. Soil Biology; Hashmi, M.; Varma, A., Eds.; Springer: Cham, 2019, Vol. 57, pp. 307-327.
[http://dx.doi.org/10.1007/978-3-030-26615-8_20]
[9]
Roohi, B.K.; Bano, K.; Kuddus, M.; Zaheer, M.R.; Zia, Q.; Khan, M.F.; Ashraf, G.M.; Gupta, A.; Aliev, G. Microbial enzymatic degradation of biodegradable plastics. Curr. Pharm. Biotechnol., 2017, 18(5), 429-440.
[http://dx.doi.org/10.2174/1389201018666170523165742] [PMID: 28545359]
[10]
Rahman, M.M.; Bodrud-Doza, M.; Griffiths, M.D.; Mamun, M.A. Biomedical waste amid COVID-19: Perspectives from Bangladesh. Lancet Glob. Health, 2020, 8(10), e1262.
[http://dx.doi.org/10.1016/S2214-109X(20)30349-1] [PMID: 32798448]
[11]
Khan, B.A.; Cheng, L.; Khan, A.A.; Ahmed, H. Healthcare waste management in Asian developing countries: A mini review. Waste Manag. Res., 2019, 37(9), 863-875.
[http://dx.doi.org/10.1177/0734242X19857470] [PMID: 31266407]
[12]
Shammi, M.; Behal, A.; Tareq, S.M. The escalating biomedical waste management to control the environmental transmission of COVID-19 pandemic: A perspective from two south asian countries. Environ. Sci. Technol., 2021, 55(7), 4087-4093.
[http://dx.doi.org/10.1021/acs.est.0c05117]
[13]
Bhagawati, G.; Nandwani, S.; Singhal, S. Awareness and practices regarding bio-medical waste management among health care workers in a tertiary care hospital in Delhi. Indian J. Med. Microbiol., 2015, 33(4), 580-582.
[http://dx.doi.org/10.4103/0255-0857.167323] [PMID: 26470969]
[14]
Parida, A.; Capoor, M.R.; Bhowmik, K.T. Knowledge, attitude, and practices of Bio-medical Waste Management rules, 2016; Bio-medical Waste Management (amendment) rules, 2018; and Solid Waste Rules, 2016, among health-care workers in a tertiary care setup. J. Lab. Physicians, 2019, 11(4), 292-299.
[http://dx.doi.org/10.4103/JLP.JLP_88_19] [PMID: 31929693]
[15]
Kwikiriza, S.; Stewart, A.G.; Mutahunga, B.; Dobson, A.E.; Wilkinson, E. A Whole systems approach to hospital waste management in rural uganda. Front. Public Health, 2019, 7, 136.
[http://dx.doi.org/10.3389/fpubh.2019.00136] [PMID: 31245343]
[16]
Bhalla, G.S.; Bandyopadhyay, K.; Sahai, K. Keeping in pace with the new Biomedical Waste Management Rules: What we need to know! Med. J. Armed Forces India, 2019, 75(3), 240-245.
[http://dx.doi.org/10.1016/j.mjafi.2018.12.003] [PMID: 31388224]
[17]
Priya, D.N.; Gupta, M. SasiJyothsna, T.S.; Chakradhar, B. Current Scenario of Biomedical Waste Management in India: A Case Study. In: Waste Valorisation and Recycling; Ghosh, S., Ed.; Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-13-2784-1_14]
[18]
Central pollution control board. Ministry of environment, forest & climate change: Revision 4 guidelines for handling, treatment and disposal of waste generated during. Treatment/Diagnosis/ Quarantine of COVID-19 Patients., Available from: https://cpcb.nic.in/uploads/Projects/Bio-Medical-Waste/BMW-GUIDELINES-COVID_1.pdf
[19]
Sogi, G.M.; Sudan, J. Biomedical Waste - Health beyond Healthcare. Contemp. Clin. Dent., 2019, 10(2), 183-184.
[http://dx.doi.org/10.4103/ccd.ccd_495_19] [PMID: 32308274]
[20]
Behera, B.C. Challenges in handling COVID-19 waste and its management mechanism: A review. Environ. Nanotechnol. Monit. Manag., 2021, 15, 100432.
[http://dx.doi.org/10.1016/j.enmm.2021.100432] [PMID: 33614423]
[21]
Haque, M.S.; Uddin, S.; Sayem, S.M.; Mohib, K.M. Coronavirus disease 2019 (COVID-19) induced waste scenario: A short overview. J. Environ. Chem. Eng., 2021, 9(1), 104660.
[http://dx.doi.org/10.1016/j.jece.2020.104660] [PMID: 33194544]
[22]
Somani, M.; Srivastava, A.N.; Gummadivalli, S.K.; Sharma, A. Indirect implications of COVID-19 towards sustainable environment: An investigation in Indian context. Bioresour. Technol. Rep., 2020, 11, 100491.
[http://dx.doi.org/10.1016/j.biteb.2020.100491] [PMID: 33521605]
[23]
Sharma, H.B.; Vanapalli, K.R.; Cheela, V.S.; Ranjan, V.P.; Jaglan, A.K.; Dubey, B.; Goel, S.; Bhattacharya, J. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour. Conserv. Recycling, 2020, 162, 105052.
[http://dx.doi.org/10.1016/j.resconrec.2020.105052] [PMID: 32834486]
[24]
Tenenbaum, L. The amount of plastic waste is surging because of the coronavirus pandemic, 2020. Available from: https://www.forbes.com/sites/lauratenenbaum/2020/04/25/plastic-waste-during-the-time of-covid-19/#7c4e661f7e48
[25]
Rai, A.; Kothari, R.; Singh, D.P. Assessment of Available Technologies for Hospital Waste Management: A Need for Society. In: Waste Management: Concepts, Methodologies, Tools, and Applications; IGI Global, 2020, pp. 860-876.
[26]
Ilyas, S.; Srivastava, R.R.; Kim, H. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Sci. Total Environ., 2020, 749, 141652.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141652] [PMID: 32822917]
[27]
Pruthi, G.; Parkash, H.; Bharathi, P.V.; Jain, R.; Gupta, A.; Rai, S. Comprehensive review of guidelines to practice prosthodontic and implant procedures during COVID-19 pandemic. J. Oral Biol. Craniofac. Res., 2020, 10(4), 768-775.
[http://dx.doi.org/10.1016/j.jobcr.2020.10.010] [PMID: 33101891]
[28]
Hasana, S.; Hossain, M.F.; Jalouli, M.; Kabir, M.T.; Uddin, M.G.; Wahed, M.I.I.; Behl, T.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Aleya, L.; Uddin, M.S. Genetic diversity of SARS-CoV2 and environmental settings: Possible association with neurological disorders. Mol. Neurobiol., 2021, 58(5), 1917-1931.
[http://dx.doi.org/10.1007/s12035-020-02239-z] [PMID: 33404977]
[29]
Mukherjee, S.; Boral, S.; Siddiqi, H.; Mishra, A.; Meikap, B.C. Present cum future of SARS-CoV-2 virus and its associated control of virus-laden air pollutants leading to potential environmental threat - A global review. J. Environ. Chem. Eng., 2021, 9(2), 104973.
[http://dx.doi.org/10.1016/j.jece.2020.104973] [PMID: 33462561]
[30]
Kandi, V. Implementation of hospital infection control committee: A big step forward towards improved patient care. Perspectives Med. Res., 2018, 6(3), 1-5. https://pimr.org.in/editorial-vol-6-iisue-3-2018.PDF
[31]
Yadav, A.; Kaushal, R. Feckless practices of bio medical waste management: A conundrum for developing countries. Int. Surgery J., 2019, 7(61), 235-239.
[http://dx.doi.org/10.18203/2349-2902.isj20195976]
[32]
Das, A.; Garg, R.; Ojha, B.; Banerjee, T. Biomedical waste management: The challenge amidst COVID-19 pandemic. J. Lab. Physicians, 2020, 12(2), 161-162.
[http://dx.doi.org/10.1055/s-0040-1716662] [PMID: 32905217]
[33]
Ganguly, R.K.; Chakraborty, S.K. Integrated approach in municipal solid waste management in COVID-19 pandemic: Perspectives of a developing country like India in a global scenario. Case Studies Chemical Environmental Eng., 2021, 3, 100087.
[http://dx.doi.org/10.1016/j.cscee.2021.100087]
[34]
Kulkarni, B.N.; Anantharama, V. Repercussions of COVID-19 pandemic on municipal solid waste management: Challenges and opportunities. Sci. Total Environ., 2020, 743, 140693.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140693] [PMID: 32663690]
[35]
Fan, Y.V.; Jiang, P.; Hemzal, M.; Klemeš, J.J. An update of COVID-19 influence on waste management. Sci. Total Environ., 2021, 754, 142014.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142014] [PMID: 32920389]
[36]
Xiao, S.; Dong, H.; Geng, Y.; Francisco, M.J.; Pan, H.; Wu, F. An overview of the municipal solid waste management modes and innovations in Shanghai, China. Environ. Sci. Pollut. Res. Int., 2020, 27(24), 29943-29953.
[http://dx.doi.org/10.1007/s11356-020-09398-5] [PMID: 32504437]
[37]
Devi, A.; Ravindra, K.; Kaur, M.; Kumar, R. Evaluation of biomedical waste management practices in public and private sector of health care facilities in India. Environ. Sci. Pollut. Res. Int., 2019, 26(25), 26082-26089.
[http://dx.doi.org/10.1007/s11356-019-05785-9] [PMID: 31278642]
[38]
Goswami, M.; Goswami, P.J.; Nautiyal, S.; Prakash, S. Challenges and actions to the environmental management of Bio-Medical Waste during COVID-19 pandemic in India. Heliyon, 2021, 7(3), e06313.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06313] [PMID: 33748452]
[39]
Singh, N.; Tang, Y.; Ogunseitan, O.A. Environmentally sustainable management of used personal protective equipment. Environ. Sci. Technol., 2020, 54(14), 8500-8502.
[http://dx.doi.org/10.1021/acs.est.0c03022]
[40]
Kumar, H.; Azad, A.; Gupta, A.; Sharma, J.; Bherwani, H.; Labhsetwar, N.K.; Kumar, R. COVID-19 Creating another problem? Sustainable solution for PPE disposal through LCA approach. Environ. Dev. Sustain., 2021, 23(6), 9418-9432.
[http://dx.doi.org/10.1007/s10668-020-01033-0] [PMID: 33071605]
[41]
Gharaibeh, A.; Smith, R.H.; Conway, M.J. Reducing spread of infections with a photocatalytic reactor-potential applications in control of hospital Staphylococcus aureus and Clostridioides difficile infections and inactivation of RNA viruses. Infect. Dis. Rep., 2021, 13(1), 58-71.
[http://dx.doi.org/10.3390/idr13010008] [PMID: 33440699]
[42]
Rowan, N.J.; Laffey, J.G. Unlocking the surge in demand for personal and protective equipment (PPE) and improvised face coverings arising from coronavirus disease (COVID-19) pandemic - Implications for efficacy, re-use and sustainable waste management. Sci. Total Environ., 2021, 752, 142259.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142259] [PMID: 33207488]
[43]
Centers for Disease Control and Prevention (CDC) 2020. Strategies for Optimizing the Supply of N95 Respirators. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/respirators-strategy/index.html
[44]
Rimmer, A. Covid-19: Experts question guidance to reuse PPE. BMJ, 2020, 369, m1577.
[http://dx.doi.org/10.1136/bmj.m1577] [PMID: 32312734]
[45]
Fischer, R.J.; Morris, D.H.; van Doremalen, N.; Sarchette, S.; Matson, M.J.; Bushmaker, T.; Yinda, C.K.; Seifert, S.N.; Gamble, A.; Williamson, B.N.; Judson, S.D.; de Wit, E.; Lloyd-Smith, J.O.; Munster, V.J. Effectiveness of N95 Respirator Decontamination and Reuse against SARS-CoV-2 Virus. Emerg. Infect. Dis., 2020, 26(9), 2253-2255.
[http://dx.doi.org/10.3201/eid2609.201524] [PMID: 32491983]
[46]
Boškoski, I.; Gallo, C.; Wallace, M.B.; Costamagna, G. COVID-19 pandemic and personal protective equipment shortage: Protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointest. Endosc., 2020, 92(3), 519-523.
[http://dx.doi.org/10.1016/j.gie.2020.04.048] [PMID: 32353457]
[47]
Rockey, N.; Arts, P.J.; Li, L.; Harrison, K.R.; Langenfeld, K.; Fitzsimmons, W.J.; Lauring, A.S.; Love, N.G.; Kaye, K.S.; Raskin, L.; Roberts, W.W.; Hegarty, B.; Wigginton, K.R. Humidity and deposition solution play a critical role in virus inactivation by heat treatment of N95 respirators. MSphere, 2020, 5(5), e00588-e20.
[http://dx.doi.org/10.1128/mSphere.00588-20] [PMID: 33087516]
[48]
Zulauf, K.E.; Green, A.B.; Nguyen Ba, A.N.; Jagdish, T.; Reif, D.; Seeley, R.; Dale, A.; Kirby, J.E. Microwave-generated steam decontamination of N95 respirators utilizing universally accessible materials. MBio, 2020, 11(3), e00997-e20.
[http://dx.doi.org/10.1128/mBio.00997-20] [PMID: 32587063]
[49]
Hartanto, B.W.; Mayasari, D.S. Environmentally friendly non-medical mask: An attempt to reduce the environmental impact from used masks during COVID 19 pandemic. Sci. Total Environ., 2021, 760, 144143.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144143] [PMID: 33338847]
[50]
Rowan, N.J.; Moral, R.A. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. Sci. Total Environ., 2021, 772, 145530. Epub ahead of print
[http://dx.doi.org/10.1016/j.scitotenv.2021.145530] [PMID: 33581526]
[51]
Derraik, J.G.B.; Anderson, W.A.; Connelly, E.A. Anderson, YC Rapid review of SARS-CoV-1 and SARS-CoV-2 viability, susceptibility to treatment, and the disinfection and reuse of PPE, particularly filtering facepiece respirators. Int. J. Environ. Res. Public Health, 2020, 17(17), 6117.
[http://dx.doi.org/10.3390/ijerph17176117]
[52]
Chan, K.H.; Sridhar, S.; Zhang, R.R.; Chu, H.; Fung, A.Y.; Chan, G.; Chan, J.F.; To, K.K.; Hung, I.F.; Cheng, V.C.; Yuen, K.Y. Factors affecting stability and infectivity of SARS-CoV-2. J. Hosp. Infect., 2020, 106(2), 226-231.
[http://dx.doi.org/10.1016/j.jhin.2020.07.009] [PMID: 32652214]
[53]
Suman, R.; Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Nandan, D. Sustainability of coronavirus on different surfaces. J. Clin. Exp. Hepatol., 2020, 10(4), 386-390.
[http://dx.doi.org/10.1016/j.jceh.2020.04.020] [PMID: 32377058]
[54]
Jiang, P.; Fan, Y.V.; Klemeš, J.J. Data analytics of social media publicity to enhance household waste management. Resour. Conserv. Recycling, 2021, 164, 105146.
[http://dx.doi.org/10.1016/j.resconrec.2020.105146] [PMID: 32905054]
[55]
Thakur, V. Framework for PESTEL dimensions of sustainable healthcare waste management: Learnings from COVID-19 outbreak. J. Clean. Prod., 2021, 287, 125562.
[http://dx.doi.org/10.1016/j.jclepro.2020.125562] [PMID: 33349739]
[56]
Dharmaraj, S.; Ashokkumar, V.; Pandiyan, R. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere, 2021, 275, 130092.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130092]
[57]
Charles, H.; Pranut, P.; Ananchai, K.; Inthawoot, S. Innovation for biomedical waste disposal by using inner ostomy bag as a case study. Rev. Integ. Bus. Eco. Res., 2021, 10, 294-321.
[58]
BrêdaMascarenhas LA.; Machado, BAS.; Rodrigues, LdAP.; Saraiva Hodel, KV.; Bandeira Santos, AA.; Freitas Neves, PR. Potential application of novel technology developed for instant decontamination of personal protective equipment before the doffing step. PLoS One, 2021, 16(6), e0250854.
[59]
Lemmer, K.; Pauli, G.; Howaldt, S.; Schwebke, I.; Mielke, M.; Grunow, R. Decontamination of personal protective equipment. Health Secur., 2019, 17(3), 200-212.
[http://dx.doi.org/10.1089/hs.2019.0005] [PMID: 31173501]
[60]
Slaughter, R.J.; Watts, M.; Vale, J.A.; Grieve, J.R.; Schep, L.J. The clinical toxicology of sodium hypochlorite. Clin. Toxicol. (Phila.), 2019, 57(5), 303-311.
[http://dx.doi.org/10.1080/15563650.2018.1543889] [PMID: 30689457]
[61]
Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, 104(3), 246-251.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[62]
Weaver, D.T.; McElvany, B.D.; Gopalakrishnan, V.; Card, K.J.; Crozier, D.; Dhawan, A. UV decontamination of personal protective equipment with idle laboratory biosafety cabinets during the COVID-19 pandemic. PLoS One, 2021, 16(7), e0241734.
[http://dx.doi.org/10.1371/journal.pone.0241734]
[63]
Su-Velez, B.M.; Maxim, T.; Long, J.L.; St John, M.A.; Holliday, M.A. Decontamination methods for reuse of filtering facepiece respirators. JAMA Otolaryngol. Head Neck Surg., 2020, 146(8), 734-740.
[http://dx.doi.org/10.1001/jamaoto.2020.1423] [PMID: 32614377]
[64]
John, A.R.; Raju, S.; Cadnum, J.L.; Lee, K.; McClellan, P.; Akkus, O.; Miller, S.K.; Jennings, W.D.; Buehler, J.A.; Li, D.F.; Redmond, S.N.; Braskie, M.; Hoyen, C.K.; Donskey, C.J. Scalable in-hospital decontamination of N95 filtering face-piece respirator with a peracetic acid room disinfection system. Infect. Control Hosp. Epidemiol., 2021, 42(6), 678-687.
[http://dx.doi.org/10.1017/ice.2020.1257] [PMID: 33040749]
[65]
Kearney, A.D.; Boyle, M.A.; Babu, S.K.; Fallon, M.; Segurado, R.; Codd, M.; O’Rourke, J.; Stevens, N.T.; Carling, P.C.; Daniels, S.; Humphreys, H. Challenges in assessing contamination levels and novel decontamination technologies in the critical care setting. Infect. Control Hosp. Epidemiol., 2020, 41(5), 622-623.
[http://dx.doi.org/10.1017/ice.2020.38] [PMID: 32131907]
[66]
Sarkis-Onofre, R.; Borges, R.D.C.; Demarco, G.; Dotto, L.; Schwendicke, F.; Demarco, F.F. Decontamination of N95 respirators against SARS-CoV-2: A scoping review. J. Dent., 2021, 104, 103534.
[http://dx.doi.org/10.1016/j.jdent.2020.103534] [PMID: 33197526]
[67]
Russo, R.; Levine, C.; Grady, C.; Peixoto, B.; McCormick-Ell, J.; Block, T.; Gresko, A.; Delmas, G.; Chitale, P.; Frees, A.; Ruiz, A.; Alland, D. Decontaminating N95 respirators during the COVID-19 pandemic: simple and practical approaches to increase decontamination capacity, speed, safety and ease of use. J. Hosp. Infect., 2021, 109, 52-57.
[http://dx.doi.org/10.1016/j.jhin.2020.12.006] [PMID: 33347939]
[68]
Perkins, D.J.; Nofchissey, R.A.; Ye, C.; Donart, N.; Kell, A.; Foo-Hurwitz, I.; Muller, T.; Bradfute, S.B. COVID-19 global pandemic planning: Dry heat incubation and ambient temperature fail to consistently inactivate SARS-CoV-2 on N95 respirators. Exp. Biol. Med. (Maywood), 2021, 246(8), 952-959.
[http://dx.doi.org/10.1177/1535370220977819] [PMID: 33342283]
[69]
Grillet, A.M.; Nemer, M.B.; Storch, S.; Sanchez, A.L.; Piekos, E.S.; Leonard, J.; Hurwitz, I.; Perkins, D.J. COVID-19 global pandemic planning: Performance and electret charge of N95 respirators after recommended decontamination methods. Exp. Biol. Med. (Maywood), 2021, 246(6), 740-748.
[http://dx.doi.org/10.1177/1535370220976386] [PMID: 33325749]
[70]
Ju, J.T.J.; Boisvert, L.N.; Zuo, Y.Y. Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Adv. Colloid Interface Sci., 2021, 292, 102435.
[http://dx.doi.org/10.1016/j.cis.2021.102435] [PMID: 33971389]
[71]
He, Q.; Guo, M.; Jin, T.Z.; Arabi, S.A.; Liu, D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int. J. Food Microbiol., 2021, 337, 108936.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2020.108936] [PMID: 33161345]
[72]
Pottage, T.; Lewis, S.; Lansley, A.; Fraser, S.; Hendon-Dunn, C.; Bacon, J.; Ngabo, D.; Parks, S.R.; Bennett, A.M. Hazard Group 3 agent decontamination using hydrogen peroxide vapour in a class III microbiological safety cabinet. J. Appl. Microbiol., 2020, 128(1), 116-123.
[http://dx.doi.org/10.1111/jam.14461] [PMID: 31559683]
[73]
Jean, J.; Rodríguez-López, M.I.; Jubinville, E.; Núñez-Delicado, E.; Gómez-López, V.M. Potential of pulsed light technology for control of SARS-CoV-2 in hospital environments. J. Photochem. Photobiol. B, 2021, 215, 112106.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112106] [PMID: 33383557]
[74]
Halstead, F.D.; Ahmed, Z.; Bishop, J.R.B.; Oppenheim, B.A. The potential of visible blue light (405 nm) as a novel decontamination strategy for carbapenemase-producing enterobacteriaceae (CPE). Antimicrob. Resist. Infect. Control, 2019, 8, 14.
[http://dx.doi.org/10.1186/s13756-019-0470-1] [PMID: 30675341]
[75]
Joyce, P.W.S.; Cuthbert, R.N.; Kregting, L.; Crane, K.; Vong, G.Y.W.; Cunningham, E.M.; Dick, J.T.A.; Coughlan, N.E. Stay clean: direct steam exposure to manage biofouling risks. Mar. Pollut. Bull., 2019, 142, 465-469.
[http://dx.doi.org/10.1016/j.marpolbul.2019.04.011] [PMID: 31232325]
[76]
Rajiuddin, S.M.; Vigre, H.; Musavian, H.S.; Kohle, S.; Krebs, N.; Hansen, T.B.; Gantzer, C.; Schultz, A.C. Inactivation of hepatitis A virus and murine norovirus on surfaces of plastic, steel and raspberries using steam-ultrasound treatment. Food Environ. Virol., 2020, 12(4), 295-309.
[http://dx.doi.org/10.1007/s12560-020-09441-1] [PMID: 32885354]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy