Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Protective Effect of Nerium oleander Distillate and Tarantula cubensis Alcoholic Extract on Cancer Biomarkers in Colon and Liver Tissues of Rats with Experimental Colon Cancer

Author(s): Burak Dik*, Devran Coskun and Ayşe Er

Volume 22, Issue 10, 2022

Published on: 11 January, 2022

Page: [1962 - 1969] Pages: 8

DOI: 10.2174/1871520621666210903120253

Price: $65

conference banner
Abstract

Background: Colon cancers are among the top three causes of cancer-related deaths. This study is a continuation of previous research aiming to identify effective treatments.

Objective: This study investigated the effects of Tarantula cubensis alcoholic extract (TCAE) and Nerium oleander (NO) distillate on the levels of midkine, transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF), alpha-fetoprotein (AFP), cyclooxygenase (COX)-2, insulin-like growth factor (IGF) and caspase-3 in the liver and colon tissues of rats with experimentally induced colon cancer.

Methods: The liver and colon tissues of rats were homogeneously divided into control, colon cancer (azoxymethane, AZM), AZM + TCAE, and AZM + NO distillate groups. The levels of midkine, TGF-β, VEGF, AFP, COX-2, IGF, and caspase-3 in the colon and liver tissues were measured by ELISA.

Results: The levels of all parameters in colon and liver tissues in the AZM group were higher (p<0.05) than those in the control group. TCAE and NO distillate prevented (p < 0.05) increases in midkine, TGF-β, VEGF, AFP, COX-2, IGF, and caspase-3 levels in the colon. NO distillate prevented the increase in all parameters except IGF, whereas TCAE prevented the increase in all values apart from COX-2 and IGF levels in the liver (p<0.05).

Conclusion: NO distillate and TCAE may prevent the studied markers from reaching specified levels observed in the colon in AZM-induced colon cancer. The increases in the levels of the parameters in the liver were not as severe as those in the colon; however, an 18-week study period may not be sufficient for liver metastasis formation. Future molecular studies should investigate the mechanisms and pathways of these treatments in greater detail.

Keywords: Tarantula cubensis alcoholic extract, Nerium oleander distillate, colon cancer, midkine, vascular endothelial growth factor, alpha- fetoprotein.

Graphical Abstract

[1]
Afshari, K.; Haddadi, N.S.; Haj-Mirzaian, A.; Farzaei, M.H.; Rohani, M.M.; Akramian, F.; Naseri, R.; Sureda, A.; Ghanaatian, N.; Abdolghaffari, A.H. Natural flavonoids for the prevention of colon cancer: A comprehensive review of preclinical and clinical studies. J. Cell. Physiol., 2019, 234(12), 21519-21546.
[http://dx.doi.org/10.1002/jcp.28777] [PMID: 31087338]
[2]
Corum, O.; Ozdemir, O.; Yazar, E. Halofuginone may suppresses azoxymethane-induced serum tumor necrosis factor-a synthesis and aberrant crypt foci progression in rat colon. Indian J. Anim. Res., 2017, 51(6), 1120-1124.
[http://dx.doi.org/10.18805/ijar.v0i0f.7600]
[3]
Yalcın, A.S.; Attaallah, W.; Yılmaz, A.M.; Aktan, A.Ö. Free radicals, whey proteins and colorectal cancer. Marmara Med. J., 2014, 27(1), 1-6.
[4]
Chen, J.; Huang, X-F. The signal pathways in azoxymethane-induced colon cancer and preventive implications. Cancer Biol. Ther., 2009, 8(14), 1313-1317.
[http://dx.doi.org/10.4161/cbt.8.14.8983] [PMID: 19502780]
[5]
Arteaga, T.A.; McKnight, J.; Bergman, P.J. A review of 18 cases of feline colonic adenocarcinoma treated with subtotal colectomies and adjuvant carboplatin. J. Am. Anim. Hosp. Assoc., 2012, 48(6), 399-404.
[http://dx.doi.org/10.5326/JAAHA-MS-5807] [PMID: 23033464]
[6]
Woldemeskel, M.; Hawkins, I.; Whittington, L. Ki-67 protein expression and tumor associated inflammatory cells (macrophages and mast cells) in canine colorectal carcinoma. BMC Vet. Res., 2017, 13(1), 111.
[http://dx.doi.org/10.1186/s12917-017-1030-7] [PMID: 28427401]
[7]
Feng, Y.; Li, Y.; Dai, W.; Mo, S.; Li, Q.; Cai, S. Clinicopathologic features and prognostic factors in alpha-fetoprotein-producing colorectal cancer: Analysis of 78 cases. Cell. Physiol. Biochem., 2018, 51(5), 2052-2064.
[http://dx.doi.org/10.1159/000495824] [PMID: 30522102]
[8]
Hung, Y-J.; Lin, Z.H.; Cheng, T-I.; Liang, C-T.; Kuo, T-M.; Kao, K-J. Serum midkine as a prognostic biomarker for patients with hepatocellular carcinoma. Am. J. Clin. Pathol., 2011, 136(4), 594-603.
[http://dx.doi.org/10.1309/AJCPWT70XOVXSVGE] [PMID: 21917682]
[9]
Jones, D.R. Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. Br. J. Pharmacol., 2014, 171(12), 2925-2939.
[http://dx.doi.org/10.1111/bph.12601] [PMID: 24460734]
[10]
Peterson, J.E.; Zurakowski, D.; Italiano, J.E., Jr; Michel, L.V.; Connors, S.; Oenick, M.; D’Amato, R.J.; Klement, G.L.; Folkman, J. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis, 2012, 15(2), 265-273.
[http://dx.doi.org/10.1007/s10456-012-9259-z] [PMID: 22402885]
[11]
Dik, B.; Baş, A.L.; Yazıhan, N. The effect of midkine on growth factors and oxidative status in an experimental wound model in diabetic and healthy rats. Can. J. Physiol. Pharmacol., 2017, 95(5), 604-609.
[http://dx.doi.org/10.1139/cjpp-2016-0439] [PMID: 28177680]
[12]
Kemik, Ö.; Kemik, A.S.; Dülger, A.C. Colon cancer and midkine.In: Midkine: From Embryogenesis to Pathogenesis and Therapy; Springer, 2012, pp. 305-311.
[http://dx.doi.org/10.1007/978-94-007-4234-5_26]
[13]
Krzystek-Korpacka, M.; Diakowska, D.; Neubauer, K.; Gamian, A. Circulating midkine in malignant and non-malignant colorectal diseases. Cytokine, 2013, 64(1), 158-164.
[http://dx.doi.org/10.1016/j.cyto.2013.07.008] [PMID: 23899719]
[14]
Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.; Iglesias, M.; Céspedes, M.V.; Sevillano, M.; Nadal, C.; Jung, P.; Zhang, X.H.; Byrom, D.; Riera, A.; Rossell, D.; Mangues, R.; Massagué, J.; Sancho, E.; Batlle, E. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012, 22(5), 571-584.
[http://dx.doi.org/10.1016/j.ccr.2012.08.013] [PMID: 23153532]
[15]
Jung, B.; Staudacher, J.J.; Beauchamp, D. Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology, 2017, 152(1), 36-52.
[http://dx.doi.org/10.1053/j.gastro.2016.10.015] [PMID: 27773809]
[16]
Staudacher, J.J.; Bauer, J.; Jana, A.; Tian, J.; Carroll, T.; Mancinelli, G.; Özden, Ö.; Krett, N.; Guzman, G.; Kerr, D.; Grippo, P.; Jung, B. Activin signaling is an essential component of the TGF-β induced pro-metastatic phenotype in colorectal cancer. Sci. Rep., 2017, 7(1), 5569.
[http://dx.doi.org/10.1038/s41598-017-05907-8] [PMID: 28717230]
[17]
Martins, S.F.; Garcia, E.A.; Luz, M.A.; Pardal, F.; Rodrigues, M.; Filho, A.L. Clinicopathological correlation and prognostic significance of VEGF-A, VEGF-C, VEGFR-2 and VEGFR-3 expression in colorectal cancer. Cancer Genomics Proteomics, 2013, 10(2), 55-67.
[PMID: 23603341]
[18]
Zhang, C.; Hao, L.; Wang, L.; Xiao, Y.; Ge, H.; Zhu, Z.; Luo, Y.; Zhang, Y.; Zhang, Y. Elevated IGFIR expression regulating VEGF and VEGF-C predicts lymph node metastasis in human colorectal cancer. BMC Cancer, 2010, 10(1), 184.
[http://dx.doi.org/10.1186/1471-2407-10-184] [PMID: 20459642]
[19]
Stockmann, C.; Doedens, A.; Weidemann, A.; Zhang, N.; Takeda, N.; Greenberg, J.I.; Cheresh, D.A.; Johnson, R.S. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature, 2008, 456(7223), 814-818.
[http://dx.doi.org/10.1038/nature07445] [PMID: 18997773]
[20]
Sell, S. Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer. Tumour Biol., 2008, 29(3), 161-180.
[http://dx.doi.org/10.1159/000143402] [PMID: 18612221]
[21]
Adigun, O.O.; Yarrarapu, S.N.S.; Khetarpal, S. Alpha Fetoprotein; StatPearls Publishing: Treasure Island, FL, 2020.
[22]
Kurihara, K.; Konishi, F.; Kanazawa, K.; Fujii, T.; Saito, K. Alpha-fetoprotein-producing carcinoma of the colon: report of a case. Surg. Today, 1997, 27(5), 453-456.
[http://dx.doi.org/10.1007/BF02385712] [PMID: 9130351]
[23]
Yachida, S.; Fukushima, N.; Nakanishi, Y.; Akasu, T.; Kitamura, H.; Sakamoto, M.; Shimoda, T. Alpha-fetoprotein-producing carcinoma of the colon: report of a case and review of the literature. Dis. Colon Rectum, 2003, 46(6), 826-831.
[http://dx.doi.org/10.1007/s10350-004-6663-5] [PMID: 12794586]
[24]
Watanabe, K.; Kawamori, T.; Nakatsugi, S.; Wakabayashi, K. COX-2 and iNOS, good targets for chemoprevention of colon cancer. Biofactors, 2000, 12(1-4), 129-133.
[http://dx.doi.org/10.1002/biof.5520120120] [PMID: 11216473]
[25]
Janakiram, N.B.; Rao, C.V. The role of inflammation in colon cancer.Inflammation and cancer; Springer, 2014, pp. 25-52.
[26]
Yamauchi, T.; Watanabe, M.; Hasegawa, H.; Nishibori, H.; Ishii, Y.; Tatematsu, H.; Yamamoto, K.; Kubota, T.; Kitajima, M. The potential for a selective cyclooxygenase-2 inhibitor in the prevention of liver metastasis in human colorectal cancer. Anticancer Res., 2003, 23(1A), 245-249.
[PMID: 12680220]
[27]
Prescott, S.M. Is cyclooxygenase-2 the alpha and the omega in cancer? J. Clin. Invest., 2000, 105(11), 1511-1513.
[http://dx.doi.org/10.1172/JCI10241] [PMID: 10841506]
[28]
Pollak, M. Insulin-like growth factor physiology and cancer risk. Eur. J. Cancer, 2000, 36(10), 1224-1228.
[http://dx.doi.org/10.1016/S0959-8049(00)00102-7] [PMID: 10882860]
[29]
LeRoith, D.; Roberts, C.T., Jr The insulin-like growth factor system and cancer. Cancer Lett., 2003, 195(2), 127-137.
[http://dx.doi.org/10.1016/S0304-3835(03)00159-9] [PMID: 12767520]
[30]
Wu, Y.; Yakar, S.; Zhao, L.; Hennighausen, L.; LeRoith, D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res., 2002, 62(4), 1030-1035.
[PMID: 11861378]
[31]
Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst., 2000, 92(18), 1472-1489.
[http://dx.doi.org/10.1093/jnci/92.18.1472] [PMID: 10995803]
[32]
Park, J.H. Inhibition of colon cancer cell growth by dietary components: role of the insulin-like growth factor (IGF) system. Asia Pac. J. Clin. Nutr., 2008, 17(Suppl. 1), 257-260.
[PMID: 18296350]
[33]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[34]
Wu, D.; Zhou, W-Y.; Lin, X-T.; Fang, L.; Xie, C-M. Bufalin induces apoptosis via mitochondrial ROS-mediated caspase-3 activation in HCT-116 and SW620 human colon cancer cells. Drug Chem. Toxicol., 2019, 42(4), 444-450.
[http://dx.doi.org/10.1080/01480545.2018.1512611] [PMID: 30777466]
[35]
Wu, H.; Rao, G.N.; Dai, B.; Singh, P. Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3. J. Biol. Chem., 2000, 275(42), 32491-32498.
[http://dx.doi.org/10.1074/jbc.M002458200] [PMID: 10915781]
[36]
Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int. J. Cancer, 2018, 143(4), 921-930.
[http://dx.doi.org/10.1002/ijc.31374] [PMID: 29524226]
[37]
Persad, R.; Liu, C.; Wu, T-T.; Houlihan, P.S.; Hamilton, S.R.; Diehl, A.M.; Rashid, A. Overexpression of caspase-3 in hepatocellular carcinomas. Mod. Pathol., 2004, 17(7), 861-867.
[http://dx.doi.org/10.1038/modpathol.3800146] [PMID: 15098015]
[38]
Adib-Hashemi, F.; Farahmand, F.; Hesari, S.F.; Rezakhaniha, B.; Fallah, E.; Fayyaz, A.F. Anti-inflammatory and protective investigations on the effects of Theranekron (R)” an alcoholic extract of the Tarantula cubensis” on wound healing of peritoneal in the rat: An in vivo comparative study. (Retraction of vol 10, 19, 2015). Diagn. Pathol., 2016, 11, 118.
[39]
Richardson-Boedler, C. The brown spider Loxosceles laeta: source of the remedy Tarentula cubensis? Homeopathy, 2002, 91(3), 166-170.
[http://dx.doi.org/10.1054/homp.2002.0029] [PMID: 12322871]
[40]
Theranekron D6: Richter Pharma., 2020.Available from:. https://www.richter-pharma.at/product-theranekron-d6_301.htm
[41]
Er, A.; Corum, O.; Corum, D.; Hitit, M.; Donmez, H.; Guzeloglu, A. Alcoholic extract of Tarantula cubensis induces apoptosis in MCF-7 cell line. Biomed. Res. (0970-938X), 2017, 28(8)..
[42]
Gültiken, N.; Vural, M.R. The effect of Tarantula cubensis extract applied in pre and postoperative period of canine mammary tumours. J. Istanbul Vet. Sci., 2007, (2), 13-23..
[43]
Lotfollahzadeh, S.; Alizadeh, M.R.; Mohri, M.; Mokhber Dezfouli, M.R. The therapeutic effect of Tarentula cubensis extract (Theranekron®) in foot-and-mouth disease in cattle: a randomised trial in an endemic setting. Homeopathy, 2012, 101(3), 159-164.
[http://dx.doi.org/10.1016/j.homp.2012.05.008] [PMID: 22818233]
[44]
Albay, M.K.; Sahinduran, S.; Kale, M.; Karakurum, M.C.; Sezer, K. Influence of Tarantula cubensis extract on the treatment of the oral lesions in cattle with bluetongue disease. Kafkas Univ. Vet. Fak. Derg., 2010, 16(4), 593-596.
[45]
Gurbulak, K.; Akcay, A.; Gumussoy, K.S.; Sist, B.; Steiner, S.; Abay, M. Investigation of the efficacy of Tarantula cubensis extract (Theranekron D6) in the treatment of subclinical and clinical mastitis in dairy cows. Turk. J. Vet. Anim. Sci., 2014, 38(6), 712-718.
[http://dx.doi.org/10.3906/vet-1405-101]
[46]
Sardari, K.; Kakhki, E.G.; Mohri, M. Evaluation of wound contraction and epithelialization after subcutaneous administration of Theranekron® in cows. Comp. Clin. Pathol., 2007, 16(3), 197-200.
[http://dx.doi.org/10.1007/s00580-006-0657-8]
[47]
Yardımcı, C.; Yardımcı, B. Indolent ulcer in a cat. Ankara Univ. Vet. Fak. Derg., 2008, (55), 65-67.
[48]
Karayannopoulou, M.; Lafioniatis, S. Recent advances on canine mammary cancer chemotherapy: A review of studies from 2000 to date. Breast Cancer Res., 2016, 29(32), 43.
[49]
Pulat, Ç.Ç. In vitro cytotoxic activity of Tarantula cubensis alcoholic extract on different human cell lines. Cumhuriyet Sci. J., 2021, 42(2), 252-259.
[http://dx.doi.org/10.17776/csj.859132]
[50]
Dolapcioglu, K.; Dogruer, G.; Ozsoy, S.; Ergun, Y.; Ciftci, S.; Soylu Karapinar, O.; Aslan, E. Theranekron for treatment of endometriosis in a rat model compared with medroxyprogesterone acetate and leuprolide acetate. Eur. J. Obstet. Gynecol. Reprod. Biol., 2013, 170(1), 206-210.
[http://dx.doi.org/10.1016/j.ejogrb.2013.05.026] [PMID: 23827690]
[51]
Yenigun, V.B.; Azzawri, A.A.; Acar, M.S.; Kaplan, M.B.; Ucar, V.B.; Tastekin, D. Alcoholic extract of Tarantula cubensis (Theranekron®) induce autophagy on gastric cancer cells. Exper. Biomed. Res., 2021, 4(2), 89-98.
[http://dx.doi.org/10.30714/j-ebr.2021267971]
[52]
Abe, F.; Yamauchi, T. Digitoxigenin oleandroside and 5α-adynerin in the leaves of Nerium odorum (Nerium 9). Chem. Pharm. Bull. (Tokyo), 1978, 26(10), 3023-3027.
[http://dx.doi.org/10.1248/cpb.26.3023]
[53]
Abe, F.; Yamauchi, T. Oleasides; novel cardenolides with an unusual framework in Nerium (Nerium 10). Chem. Pharm. Bull. (Tokyo), 1979, 27(7), 1604-1610.
[http://dx.doi.org/10.1248/cpb.27.1604] [PMID: 540349]
[54]
Rashan, L.J.; Franke, K.; Khine, M.M.; Kelter, G.; Fiebig, H.H.; Neumann, J.; Wessjohann, L.A. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J. Ethnopharmacol., 2011, 134(3), 781-788.
[http://dx.doi.org/10.1016/j.jep.2011.01.038] [PMID: 21291990]
[55]
Wasfi, I.A.; Zorob, O. Al katheeri, N.A.; Al Awadhi, A.M. A fatal case of oleandrin poisoning. Forensic Sci. Int., 2008, 179(2-3), e31-e36.
[http://dx.doi.org/10.1016/j.forsciint.2008.05.002] [PMID: 18602779]
[56]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Orta, M.L.; Mateos, S.; López-Lázaro, M. A hydroalcoholic extract from the leaves of Nerium oleander inhibits glycolysis and induces selective killing of lung cancer cells. Planta Med., 2013, 79(12), 1017-1023.
[http://dx.doi.org/10.1055/s-0032-1328715] [PMID: 23824549]
[57]
Ozel, H.Z. Extracts of Nerium species, methods of preparation, and use therefore.Google Patents , 1992.
[58]
Pan, Y.; Rhea, P.; Tan, L.; Cartwright, C.; Lee, H-J.; Ravoori, M.K.; Addington, C.; Gagea, M.; Kundra, V.; Kim, S.J.; Newman, R.A.; Yang, P. PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway. Invest. New Drugs, 2015, 33(2), 271-279.
[http://dx.doi.org/10.1007/s10637-014-0190-6] [PMID: 25476893]
[59]
Newman, R.A.; Cisneros, A.; Felix, E.; Vijjeswarapu, M.; Lin, Y.; Yang, P. Composition and preliminary pharmacology studies with anvirzelt: An extract of Nerium oleander. J. Herb. Pharmacother., 2001, 1(3), 1-16.
[http://dx.doi.org/10.1080/J157v01n03_01]
[60]
Dik, B.; Uney, K.; Ozdemir, O.; Demirci, S.; Yazihan, N.; Bas, A. Acute oral toxicity of Nerium oleander distillate in rats. J. Vet. Pharmacol. Ther., 2012, 35.
[61]
Dik, B.; Uney, K.; Ozdemir, O.; Demirci, S.; Yazihan, N.; Bas, A. Repeated dose 28-days oral toxicıiy of nerıum oleander distillate in mice. In: Reviews of Clinical Pharmacology and Drug Therapy;, 2013; p. 28..
[62]
Dik, B.; Yazihan, N.; Uney, K.; Demirci, S.; Bas, A. In vitro toxicity of lyophilized liquid extract of Nerium oleander; In: Phytopharm, 2014, p. 14.
[63]
Karabulut, A.K.; Uysal, I.I.; Bas, A.L.; Doğan, N.U.; Fazlıogulları, Z.; Acar, H. Nerium oleander’in liyofilize sıvı distilatının rat embriyoları gelişimi üzerine toksik ve teratojen etkilerinin in vitro kültür ortamında araştırılması. Genel Tip Derg., 2014, 24(2)
[64]
Bas, A. L.; Demirci, S.; Yazihan, N.; Uney, K.; Ermis Kaya, E. Nerium oleander distillate improves fat and glucose metabolism in high-fat diet-fed streptozotocin-induced diabetic rats.Int. J. Endocrino.,2012, 2012.,
[65]
Menger, L.; Vacchelli, E.; Kepp, O.; Eggermont, A.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Cardiac glycosides and cancer therapy. OncoImmunology, 2013, 2(2) ,e23082.
[http://dx.doi.org/10.4161/onci.23082] [PMID: 23525565]
[66]
Er, A.; Ozdemir, O.; Coskun, D.; Dik, B.; Bahcivan, E.; Faki, H.E. Effects of Tarantula cubensis alcoholic extract and Nerium oleander distillate on experimentally induced colon cancer. Development, 2019, 45, 47.
[67]
Wong, S.L.; Mangu, P.B.; Choti, M.A.; Crocenzi, T.S.; Dodd, G.D., III; Dorfman, G.S.; Eng, C.; Fong, Y.; Giusti, A.F.; Lu, D.; Marsland, T.A.; Michelson, R.; Poston, G.J.; Schrag, D.; Seidenfeld, J.; Benson, A.B. III American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J. Clin. Oncol., 2010, 28(3), 493-508.
[http://dx.doi.org/10.1200/JCO.2009.23.4450] [PMID: 19841322]
[68]
Lu, Q.; Li, J.; Cao, H.; Lv, C.; Wang, X.; Cao, S. Comparison of diagnostic accuracy of Midkine and AFP for detecting hepatocellular carcinoma: a systematic review and meta-analysis. Biosci. Rep., 2020, 40(3), 1-11.
[http://dx.doi.org/10.1042/BSR20192424] [PMID: 32039435]
[69]
Kemper, M.; Hentschel, W.; Graß, J.K.; Stüben, B.O.; Konczalla, L.; Rawnaq, T.; Ghadban, T.; Izbicki, J.R.; Reeh, M. Serum Midkine is a clinical significant biomarker for colorectal cancer and associated with poor survival. Cancer Med., 2020, 9(6), 2010-2018.
[http://dx.doi.org/10.1002/cam4.2884] [PMID: 31984657]
[70]
Takei, Y.; Kadomatsu, K.; Matsuo, S.; Itoh, H.; Nakazawa, K.; Kubota, S.; Muramatsu, T. Antisense oligodeoxynucleotide targeted to Midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res., 2001, 61(23), 8486-8491.
[PMID: 11731432]
[71]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[72]
Younis, M.A.; Khalil, I.A.; Abd Elwakil, M.M.; Harashima, H. A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells. Mol. Pharm., 2019, 16(9), 4031-4044.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00738] [PMID: 31403802]
[73]
Tsushima, H.; Kawata, S.; Tamura, S.; Ito, N.; Shirai, Y.; Kiso, S.; Imai, Y.; Shimomukai, H.; Nomura, Y.; Matsuda, Y.; Matsuzawa, Y. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology, 1996, 110(2), 375-382.
[http://dx.doi.org/10.1053/gast.1996.v110.pm8566583] [PMID: 8566583]
[74]
Shen, X.; Hu, X.; Mao, J.; Wu, Y.; Liu, H.; Shen, J.; Yu, J.; Chen, W. The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells. Cell Death Dis., 2020, 11(1), 65.
[http://dx.doi.org/10.1038/s41419-020-2254-1] [PMID: 31988275]
[75]
Li, L.; Ma, X. Study on specificity of colon carcinoma-associated serum markers and establishment of SVM prediction model. Saudi J. Biol. Sci., 2017, 24(3), 644-648.
[http://dx.doi.org/10.1016/j.sjbs.2017.01.037] [PMID: 28386191]
[76]
Jedinak, A.; Dudhgaonkar, S.; Sliva, D. Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology, 2010, 215(3), 242-249.
[http://dx.doi.org/10.1016/j.imbio.2009.03.004] [PMID: 19457576]
[77]
Liu, P.; Atkinson, S.J.; Akbareian, S.E.; Zhou, Z.; Munsterberg, A.; Robinson, S.D. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci. Rep., 2017, 7(1), 1-11.
[http://dx.doi.org/10.1038/s41598-017-12855-w] [PMID: 28127051]
[78]
Kim, D.H.; Sung, B.; Kang, Y.J.; Hwang, S.Y.; Kim, M.J.; Yoon, J-H. Im, E.; Kim, N.D. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. Int. J. Oncol., 2015, 47(6), 2226-2232.
[http://dx.doi.org/10.3892/ijo.2015.3200] [PMID: 26498863]
[79]
Zhang, J-L.; Chen, G-W.; Liu, Y-C.; Wang, P-Y.; Wang, X.; Wan, Y-L.; Zhu, J.; Gao, H.Q.; Yin, J.; Wang, W.; Tian, M.L. Secreted protein acidic and rich in cysteine (SPARC) suppresses angiogenesis by down-regulating the expression of VEGF and MMP-7 in gastric cancer. PLoS One, 2012, 7(9) ,e44618.
[http://dx.doi.org/10.1371/journal.pone.0044618] [PMID: 22957090]
[80]
Rahbari, N.N.; Kedrin, D.; Incio, J.; Liu, H.; Ho, W.W.; Nia, H.T. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Science translational medicine, 2016, 8(306) ,360ra135.
[http://dx.doi.org/10.1126/scitranslmed.aaf5219]
[81]
Singhal, A.; Jayaraman, M.; Dhanasekaran, D.N.; Kohli, V. Molecular and serum markers in hepatocellular carcinoma: predictive tools for prognosis and recurrence. Crit. Rev. Oncol. Hematol., 2012, 82(2), 116-140.
[http://dx.doi.org/10.1016/j.critrevonc.2011.05.005] [PMID: 21680198]
[82]
Li, M.S.; Li, P.F.; Yang, F.Y.; He, S.P.; Du, G.G.; Li, G. The intracellular mechanism of alpha-fetoprotein promoting the proliferation of NIH 3T3 cells. Cell Res., 2002, 12(2), 151-156.
[http://dx.doi.org/10.1038/sj.cr.7290121] [PMID: 12118941]
[83]
Abdel-Hamid, N.M.; Salama, A.F.; El-Sheekh, M.; Sarhan, N.; Gabr, A.M. Oxidative stress predominates apoptosis during experimental hepatocellular carcinoma. J. Contemp. Med. Sci., 2017, 3(12), 295-299.
[http://dx.doi.org/10.22317/jcms.12201702]
[84]
Giannitrapani, L.; Ingrao, S.; Soresi, M.; Florena, A.M.; La Spada, E.; Sandonato, L.; D’Alessandro, N.; Cervello, M.; Montalto, G. Cyclooxygenase-2 expression in chronic liver diseases and hepatocellular carcinoma: an immunohistochemical study. Ann. N. Y. Acad. Sci., 2009, 1155, 293-299.
[http://dx.doi.org/10.1111/j.1749-6632.2009.03698.x] [PMID: 19250220]
[85]
Wu, T. Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat. Rev., 2006, 32(1), 28-44.
[http://dx.doi.org/10.1016/j.ctrv.2005.10.004] [PMID: 16337744]
[86]
Kumar, V.; Bhatt, P.C.; Rahman, M.; Al-Abbasi, F.A.; Anwar, F.; Verma, A. Umbelliferon-α-d-glucopyranosyl-(2I®1II)-α-Dglucopyranoside ameliorates Diethylnitrosamine induced precancerous lesion development in liver via regulation of inflammation, hyperproliferation and antioxidant at pre-clinical stage. Biomed. Pharmacother., 2017, 94, 834-842.
[http://dx.doi.org/10.1016/j.biopha.2017.07.047] [PMID: 28802237]
[87]
Fouad, A.A.; Al-Mulhim, A.S.; Jresat, I. Therapeutic effect of coenzyme Q10 against experimentally-induced hepatocellular carcinoma in rats. Environ. Toxicol. Pharmacol., 2013, 35(1), 100-108.
[http://dx.doi.org/10.1016/j.etap.2012.11.016] [PMID: 23274416]
[88]
Li, N.; Zheng, D.; Xue, J.; Guo, W.; Shi, J.; Sun, J.; Lu, C.; Zheng, W.; Wu, M.; Cheng, S. Cidan inhibits liver cancer cell growth by reducing COX-2 and VEGF expression and cell cycle arrest. Exp. Ther. Med., 2015, 9(5), 1709-1718.
[http://dx.doi.org/10.3892/etm.2015.2351] [PMID: 26136881]
[89]
Bae, S.H.; Jung, E.S.; Park, Y.M.; Kim, B.S.; Kim, B.K.; Kim, D.G.; Ryu, W.S. Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor, NS-398. Clin. Cancer Res., 2001, 7(5), 1410-1418.
[PMID: 11350912]
[90]
Umesalma, S.; Sudhandiran, G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol., 2010, 107(2), 650-655.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00565.x] [PMID: 20406206]
[91]
Feng, X.; Yu, Y.; He, S.; Cheng, J.; Gong, Y.; Zhang, Z.; Yang, X.; Xu, B.; Liu, X.; Li, C.Y.; Tian, L.; Huang, Q. Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett., 2017, 385, 12-20.
[http://dx.doi.org/10.1016/j.canlet.2016.10.042] [PMID: 27826040]
[92]
Flanagan, L.; Meyer, M.; Fay, J.; Curry, S.; Bacon, O.; Duessmann, H. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell death .& disease,, 2016, 7(2) ,e2087.
[93]
Benson, K.F.; Newman, R.A.; Jensen, G.S. Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (nae-8(®)). Clin. Cosmet. Investig. Dermatol., 2015, 8, 239-248.
[PMID: 26005354]
[94]
Coskun, D. Veterinary supportive therapy: Tarantula cubensis alcoholic extract, inactived parapoxvirus ovis and corynebacterium cutis lysate. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 2017, 10(1), 30-37.
[95]
Yu, M-S.; Wong, A.Y-Y.; So, K-F.; Fang, J-N.; Yuen, W-H.; Chang, R.C-C. New polysaccharide from Nerium indicum protects neurons via stress kinase signaling pathway. Brain Res., 2007, 1153, 221-230.
[http://dx.doi.org/10.1016/j.brainres.2007.03.074] [PMID: 17475226]
[96]
Wu, Y.; Brodt, P.; Sun, H.; Mejia, W.; Novosyadlyy, R.; Nunez, N.; Chen, X.; Mendoza, A.; Hong, S.H.; Khanna, C.; Yakar, S. Insulin- like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res., 2010, 70(1), 57-67..
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2472] [PMID: 20048072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy